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In this paper, a new so-called iterative Laplace transform method is implemented to investigate the solution of certain important
population models of noninteger order. *e iterative procedure is combined effectively with Laplace transformation to develop
the suggested methodology. *e Caputo operator is applied to express the noninteger derivative of fractional order. *e series
form solution is obtained having components of convergent behavior toward the exact solution. For justification and verification
of the present method, some illustrative examples are discussed. *e closed contact is observed between the obtained and exact
solutions. Moreover, the suggested method has a small volume of calculations; therefore, it can be applied to handle the solutions
of various problems with fractional-order derivatives.

1. Introduction

Over the last century, fractional differential equations (FDEs)
have attracted a great deal of attention from scientists due to
their ability to raise real-world issues in numerous engi-
neering fields and physics. FDEs are broadly used in certain
fields of science [1–5]. Several phenomena in chemistry,
physics, engineering, and other sciences can be effectively
described using fractional calculus. Acoustics, the nonlinear
oscillation of earthquake, electrochemistry, electromagne-
tism, signal processing, and diffusion processes can be
modeled by fractional equations [6, 7]. In modern times, it is
difficult to imagine the modeling of several real-world issues
without the use of fractional partial differential equations
(FPDEs). Indeed, this century’s calculus [8] can be called a
fractional calculus because of the diversity of implementations
in different fields of science and technology. *e researchers
have used several analytical and numerical techniques such as
variational iteration method (VIM) [9], homotopy analysis
method (HAM) [10], and generalized fractional Taylor series
method [11] to solve linear and nonlinear FPDEs.

Any phenomena in the areas of engineering and sci-
ence may be alternatively modeled via fractional-order
derivatives. It is due to their nonlocal properties, which are
inherent in some complex structures. *ey are used as
modeling devices in financial, viscoelasticity, transport
phenomenon, nanotechnology, control theory, and bio-
logical modeling [12–15]. In biology, biological cell
membranes are shown to have electrical conductance in a
fractional order and are classified among noninteger order
systems [16–18]. Anomalous diffusion concepts in non-
homogeneous media can be discussed by noninteger,
derivative-based diffusion equations [19–21]. Another
example of a fractional-order element is practice, which is
a noninteger-ordered electrical circuit with resistance and
capacitance properties [10]. In this connection, certain
important techniques have been used including the frac-
tional operational matrix method (FOMM) [22, 23],
fractional wavelet method (FWM) [24–27], homotopy
analysis method (HAM) [28], homotopy perturbation
method (HPM) [29], homotopy perturbation transform
method (HPTM) [30], Laplace Adomian decomposition
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method (LADM) [31], and fractional variational iteration
method (FVIM) [32].

Daftardar-Gejji and Jafari in 2006 have developed the
iterative technique to solve nonlinear functional equations
[33, 34]. Later on, the iterative technique is applied to solve
noninteger differential equations (DEs) [35]. In recent time,
Jafari et al. have used Laplace transform together with an
iterative technique for the first time which is nowadays
becoming an effective technique named as the iterative
Laplace transform method (ILTM) [36]. ILTM is imple-
mented to solve partial differential equations (PDEs) and
Fokker–Plank problems [37]. Recently, many other FPDEs
have been solved by using ILTM such as time-fractional
Schrodinger equations [38], fractional telegraph equations
[39], fractional heat and wave-like equations [40], and time-
fractional Fisher equation [41].

*e main theme of the present research work is to use
ILTM for obtaining the analytical solution of the noninteger
biological population model [42].

zρψ(μ, ], τ)

zτρ
�

z2ψ2(μ, ], τ)

zμ2
+

z2ψ2(μ, ], τ)

z]2
+ g(ψ(μ, ], τ)),

τ > 0, 0< ρ≤ 1,

(1)

subject to the starting values: ψ(μ, ], 0) � g0(μ, ]).
Equation (1) is identified as the time fractional-order

biological population model, used by Gurney and Nisbet as
a unique situation for modeling the animal population. In
general, movements are made both by mature animals
driven by mature invaders or by young animals just
reaching maturity moving out of their parental territory to
establish their breeding territory. In both cases, the as-
sumption that they would be driven towards neighboring
vacant land is much more likely. Hence, movement in this
model occurs almost entirely down the gradient of pop-
ulation density and will be faster at high population
densities than at low ones, where the population density is
represented by ψ(μ, ], τ) and the population rate is
expressed by g(ψ(μ, ], τ)). For ρ⟶ 1, Various properties
such like Holder estimates for its solution are discussed in
[43, 44]. *e three consecutive cases for g(u) are as
follows:

g(ψ) � c, for any constant c that reduces to Malthusian
law
g(ψ) � ψ(d1 − d2ψ), for positive constants d1 and d2
that reduce to Verhulst law
g(ψ) � −dψk, (d≥ 0, 0< k< 1), for positive d that re-
duces to porous media

*e ILTM solutions are found to be in good contact with
the exact solutions of the problems.*e solutions at different
fractional orders are also calculated. It is investigated that the
fractional-order solutions are convergent towards integer-
order solution of the problems as fractional order ap-
proaches to an integer order. It is also observed that the
suggested method is very simple and effective and required

small number of calculation. Moreover, the present method
provides the series form solution with easily computable
components. It is also shown that the series form solution
has the desire rate of convergence towards the exact solution
of the problem and the closed form solution is achieved.

2. Definitions and Preliminaries

In this part of the paper, some important definitions related
to FC and Laplace transform are briefly discussed. *ese
preliminaries are important to continue and complete the
present research work.

Definition 1. *e fractional derivative in terms of Caputo
operator is expressed as

D
ρ
τψ(μ, τ) �

1
Γ(n − ρ)

􏽚
τ

0
(τ − ζ)

n− ρ−1ψ(n)
(μ, ζ)dζ,

n − 1< ρ≤ n, n ∈ N

� J
n−ρ
τ D

n
u(μ, τ).

(2)

Here,

D
n

�
dn

dτn
. (3)

Definition 2. *e fractional integral in terms of Rie-
mann–Liouville integral is expressed as

j
ρ
τψ(μ, τ) �

1
Γ(ρ)

􏽚
τ

0
(τ − ζ)

ρ−1ψ(μ, ζ)dζ ,

ζ > 0, (n − 1< ρ≤ n), n ∈ N,

(4)

where j
ρ
τ represents the fractional integral operator.

Definition 3. *e Laplace transform is describe as

L[g(τ)] � G(τ) � 􏽚
∞

0
e

− sτ
g(τ)dτ. (5)

Definition 4. *e Laplace transform of the fractional de-
rivative D

ρ
τψ(μ, τ) is defined as

L D
ρ
τψ(μ, τ)􏼂 􏼃 � s

ρ
L[ψ(μ, τ)] − 􏽘

n−1

k�0
ψ(k)

(μ, 0)s
ρ− k−1

,

n − 1< ρ≤ n, n ∈ N.

(6)

Definition 5. *e Mittag-Leffler function is given by

Eρ(z) � 􏽘
∞

q�0

zq

Γ(ρq + 1)
, (ρ ∈ C,Re(ρ)> 0). (7)

3. The Basic Concept of ILTM

In this section, we will briefly discuss ILTM to solve frac-
tional-order nonlinear PDEs.
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D
ρ
τψ(μ, ], τ) + Rψ(μ, ], τ) + Nψ(μ, ], τ) � g(μ, ], τ),

n − 1< ρ≤ n, n ∈ N,
(8)

ψ(k)
(μ, ], 0) � hk(μ, ]), k � 0, 1, 2, . . . , n − 1, (9)

where D
ρ
τψ(μ, ], τ) is the fractional Caputo operator of order

ρ, n − 1< ρ≤ n, denoted by equation (8), and R and N are
linear and nonlinear operators. g(μ, ], τ) is source function.

Using Laplace transform of equation (8), we get

L D
ρ
τψ(μ, ], τ)􏼂 􏼃 + L[Rψ(μ, ], τ) + Nψ(μ, ], τ)]

� L[g(μ, ], τ)].
(10)

Applying the property of Laplace differentiation,

L[ψ(μ, ], τ)] �
1
sρ

􏽘

m−1

k�0
s
ρ− 1− kψ(k)

(μ, ], 0) +
1
sρ

L[g(μ, ], τ)]

−
1
sρ

L[Rψ(μ, ], τ) + Nψ(μ, ], τ)].

(11)

By using inverse Laplace transform of equation (11), we
obtain

ψ(μ, ], τ) � L
−1 1

sρ
􏽘

m−1

k�0
s
ρ−1−kψk

(μ, ], 0) + L[g(μ, ], τ)]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ − L
−1 1

sρ
L[Rψ(μ, ], τ) + Nψ(μ, ], τ)]􏼔 􏼕. (12)

From iterative technique,

ψ(μ, ], τ) � 􏽘
∞

i�0
ψi(μ, ], τ). (13)

Since R is a linear operator,

R 􏽘
∞

i�0
ψi(μ, ], τ)⎛⎝ ⎞⎠ � 􏽘

∞

i�0
R ψi(μ, ], τ)􏼂 􏼃, (14)

and the nonlinear operator N is split as

N 􏽘
∞

i�0
ψi(μ, ], τ)⎛⎝ ⎞⎠ � N ψ0(μ, ], τ)􏼂 􏼃

+ 􏽘

∞

i�1
N 􏽘

i

k�0
ψk(μ, ], τ)⎛⎝

⎧⎨

⎩

− N 􏽘
i−1

k�0
ψk(μ, ], τ)⎛⎝ ⎞⎠

⎫⎬

⎭.

(15)

Substituting equations (13)–(15) into equation (12), we
obtain

􏽘

∞

i�0
ψi(μ, ], τ) � L

−1 1
sρ

􏽘

m−1

k�0
s
ρ−1−kψk

(μ, ], 0) + L[g(μ, ], τ)]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− L
−1 1

sρ
L 􏽘
∞

i�0
R ψi(μ, ], τ)􏼂 􏼃 + N ψ0(μ, ], τ)􏼂 􏼃 + 􏽘

∞

i�1
N 􏽘

i

k�0
ψk(μ, ], τ) − N 􏽘

i−1

k�0
ψk(μ, ], τ)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦.

(16)

Using equation (16), we define the following iterative
formula:

ψ0(μ, ], τ) � L
−1 1

sρ
􏽘

m−1

k�0
s
ρ−1−kψk

(μ, ], 0) +
1
sρ

L(g(μ, ], τ))⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (17)

ψ1(μ, ], τ) � −L
−1 1

sρ
L R ψ0(μ, ], τ)􏼂 􏼃 + N ψ0(μ, ], τ)􏼂 􏼃􏼂􏼔 􏼕, (18)

ψm+1(μ, ], τ) � −L
−1 1

sρ
L R ψm(μ, ], τ)( 􏼁 − N 􏽘

m

k�0
ψk(μ, ], τ)⎛⎝ ⎞⎠ − N 􏽘

m−1

k�0
ψk(μ, ], τ)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦, m≥ 1. (19)

*e approximate m-term solution of equations (18) and
(19) in form of series is as follows:
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ψ(μ, ], τ) � ψ0(μ, ], τ) + ψ1(μ, ], τ) + ψ2(μ, ], τ) + · · · + ψm(μ, ], τ), m � 1, 2, . . . . (20)

4. Implementation of ILTM

In this section, ILTM is applied to determine the exact
solution of some special cases of equation (1). It has been
shown that the ILTM is an accurate and appropriate ana-
lytical technique to solve nonlinear FPDEs.

Example 1. *e biological population model with time
noninteger derivative is express as

zρψ
zτρ

�
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ− 1
(1 − rψ),

0< ρ≤ 1, μ, ] ∈ R, τ > 0,

(21)

with starting values

ψ(μ, ], 0) �

����������������
hr

4
μ2 +

hr

4
]2 + ] + 5

􏽲

. (22)

*e Laplace transform to equation (21) is expressed as

s
ρ
L[ψ(μ, ], τ)] − 􏽘

m−1

k�0
ψ(k)

(μ, ], 0)s
ρ− k− 1

� L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ− 1
(1 − rψ)􏼠 􏼡, (23)

L[ψ(μ, ], τ)] �
1
s

����������������
hr

4
μ2 +

hr

4
]2 + ] + 5

􏽲

+
1
sρ

L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ− 1
(1 − rψ)􏼠 􏼡􏼢 􏼣. (24)

Using inverse Laplace transform of equation (24),

ψ(μ, ], τ) �

����������������
hr

4
μ2 +

hr

4
]2 + ] + 5

􏽲

+ L
− 1 1

sρ
L

z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ− 1
(1 − rψ)􏼠 􏼡􏼢 􏼣􏼢 􏼣. (25)

Using the iterative technique described in equations (14)
and (15), we obtain the following solution components of
Example 1:

ψ0(μ, ], τ) �

����������������
hr

4
μ2 +

hr

4
]2 + ] + 5

􏽲

,

ψ1(μ, ], τ) � L
−1 1

sρ
L

z2

zμ2
ψ2
0􏼐 􏼑 +

z2

z]2
ψ2
0􏼐 􏼑 + hψ−1

0 1 − rψ0( 􏼁􏼠 􏼡􏼢 􏼣􏼢 􏼣

� h
hr

4
μ2 +

hr

4
]2 + ] + 5􏼠 􏼡

− 1/2
⎛⎝ ⎞⎠

τρ

Γ(ρ + 1)
,

ψ2(μ, ], τ) � L
−1 1

sρ
L

z2

zμ2
ψ2
1􏼐 􏼑 +

z2

z]2
ψ2
1􏼐 􏼑 + hψ−1

1 1 − rψ1( 􏼁􏼠 􏼡􏼢 􏼣􏼢 􏼣

� −2h
2 hr

4
μ2 +

hr

4
]2 + ] + 5􏼠 􏼡

− 3/2
⎛⎝ ⎞⎠

τ2ρ

Γ(2ρ + 1)
,

ψ3(μ, ], τ) � L
−1 1

sρ
L

z2

zμ2
ψ2
2􏼐 􏼑 +

z2

z]2
ψ2
2􏼐 􏼑 + hψ−1

2 1 − rψ2( 􏼁􏼠 􏼡􏼢 􏼣􏼢 􏼣

� 3h
3 hr

4
μ2 +

hr

4
]2 + ] + 5􏼠 􏼡

− 5/2
⎛⎝ ⎞⎠

τ3ρ

Γ(3ρ + 1)
.

(26)
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*e series form of analytical solution is given as

ψ(μ, ], τ) � ψ0(μ, ], τ) + ψ1(μ, ], τ) + ψ2(μ, ], τ) + ψ3(μ, ], τ) + · · ·

�
hr

4
μ2 +

hr

4
]2 + ] + 5􏼠 􏼡

1/2

+ h
hr

4
μ2 +

hr

4
]2 + ] + 5􏼠 􏼡

− 1/2
⎛⎝ ⎞⎠

tρ

Γ(ρ + 1)

− 2h
2 hr

4
μ2 +

hr

4
]2 + ] + 5􏼠 􏼡

− 3/2
⎛⎝ ⎞⎠

τ2ρ

Γ(2ρ + 1)

+ 3h
3 hr

4
μ2 +

hr

4
]2+] + 5)

− 5/2
􏼠 􏼡

τ3ρ

Γ(3ρ + 1)
+ · · · ,

ψ(μ, ], τ) � ψ0 +
hτρ

ψ0
􏽘

∞

n�0

n + 1
Γ((n + 1)ρ + 1)

−hτρ

ψ2
0

􏼠 􏼡

n

.

(27)

*e exact result is given by

ψ(μ, ], τ) �

���������������������
hr

4
μ2 +

hr

4
]2 + ] + 2hτ + 5

􏽲

. (28)

Example 2. *e biological population model with time
noninteger derivative is expressed as

zρψ
zτρ

�
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ, (29)

with initial condition

ψ(μ, ], 0) �
��
μ]

√
. (30)

*e Laplace transform to equation (29) is expressed as

s
ρ
L[ψ(μ, ], τ)] − 􏽘

m−1

k�0
ψ(k)

(μ, ], 0)s
ρ− k− 1

� L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ􏼠 􏼡,

s
ρ
L[ψ(μ, ], τ)] � ψ(0)

(μ, ], 0)
sρ

s
+ L

z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ􏼠 􏼡,

(31)

L[ψ(μ, ], τ)] �
1
s

��
μ]

√
+
1
sρ

L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ􏼠 􏼡􏼢 􏼣. (32)

Using inverse Laplace transform of equation (32),

ψ(μ, ], τ) �
��
μ]

√
+ L

− 1 1
sρ

L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + hψ􏼠 􏼡􏼢 􏼣􏼢 􏼣.

(33)

Using the iterative technique described in equations (14)
and (15), we obtain the following solution components of
Example 2:
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ψ0(μ, ], τ) �
��
μ]

√
,

ψ1(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
0􏼐 􏼑 +

z2

z]2
ψ2
0􏼐 􏼑 + hψ0􏼠 􏼡􏼢 􏼣􏼢 􏼣

� h
��
μ]

√ τρ

Γ(ρ + 1)
,

ψ2(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
1􏼐 􏼑 +

z2

z]2
ψ2
1􏼐 􏼑 + hψ1􏼠 􏼡􏼢 􏼣􏼢 􏼣

� h
2 ��

μ]
√ τ2ρ

Γ(2ρ + 1)
,

ψ3(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
2􏼐 􏼑 +

z2

z]2
ψ2
2􏼐 􏼑 + hψ2􏼠 􏼡􏼢 􏼣􏼢 􏼣

� h
3 ��

μ]
√ τ3ρ

Γ3ρ + 1
.

(34)

*e series form of analytical solution is given as

ψ(μ, ], τ) � ψ0(μ, ], τ) + ψ1(μ, ], τ) + ψ2(μ, ], τ) + ψ3(μ, ], τ) + · · ·

�
��
μ]

√
+ h

��
μ]

√ τρ

Γ(ρ + 1)
+ h

2 ��
μ]

√ τ2ρ

Γ(2ρ + 1)
+ h

3 ��
μ]

√ τ3ρ

Γ(3ρ + 1)
+ · · · .

(35)

ψ(μ, ], τ) �
��
μ]

√
􏽘

∞

k�0

hτρ( )
k

Γ(kρ + 1)
. (36)

*e exact solution is given by

ψ(μ, ], τ) �
��
μ]

√
Eρ hτρ( 􏼁, (37)

where Eρ(hτρ) is the Mittag-Leffler function defined as

Eρ(z) � 􏽘
∞

k�0

zk

Γ(ρk + 1)
. (38)

As ρ⟶ 1, we have

ψ(μ, ], τ) �
��
μ]

√
􏽘

∞

k�0

(hτ)k

k!
�

��
μ]

√
e

hτ
. (39)

Example 3. *e biological population model with time
noninteger derivative is expressed as

zρψ
zτρ

�
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ, (40)

with initial condition

ψ(μ, ], 0) �

���������

sin μ sinh ]
􏽱

. (41)

*e Laplace transform to equation (40) is expressed as

s
ρ
L[ψ(μ, ], τ)] − 􏽘

m−1

k�0
ψ(k)

(μ, ], 0)s
ρ− k−1

� L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ􏼠 􏼡,

s
ρ
L[ψ(μ, ], τ)] � ψ(0)

(μ, ], 0)
sρ

s
+ L

z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ􏼠 􏼡,

(42)

L[ψ(μ, ], τ)] �
1
s

��
μ]

√
+
1
sρ

L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ􏼠 􏼡􏼢 􏼣. (43)
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Using inverse Laplace transform of equation (43), we obtain

ψ(μ, ], τ) �
��
μ]

√
+ L

− 1 1
sρ

L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ􏼠 􏼡􏼢 􏼣􏼢 􏼣.

(44)

Using the iterative technique described in equations (14)
and (15), we obtain the following solution components of
Example 3:

ψ0(μ, ], τ) �

���������

sin μ sinh]
􏽱

,

ψ1(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
0􏼐 􏼑 +

z2

z]2
ψ2
0􏼐 􏼑 + ψ0􏼠 􏼡􏼢 􏼣􏼢 􏼣

�

���������

sin μ sinh]
􏽱 τρ

Γ(ρ + 1)
,

ψ2(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
1􏼐 􏼑 +

z2

z]2
ψ2
1􏼐 􏼑 + ψ1􏼠 􏼡􏼢 􏼣􏼢 􏼣

�

���������

sin μ sinh]
􏽱 τ2ρ

Γ(2ρ + 1)
,

ψ3(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
2􏼐 􏼑 +

z2

z]2
ψ2
2􏼐 􏼑 + ψ2􏼠 􏼡􏼢 􏼣􏼢 􏼣

�

���������

sin μ sinh]
􏽱 τ3ρ

Γ(3ρ + 1)
.

(45)

*e series form of analytical solution is given as

ψ(μ, ], τ) � ψ0(μ, ], τ) + ψ1(μ, ], τ) + ψ2(μ, ], τ) + ψ3(μ, ], τ) + · · ·

�

���������

sin μ sinh ]
􏽱

+

���������

sin μ sinh ]
􏽱 τρ

Γ(ρ + 1)
+

���������

sin μ sinh ]
􏽱 τ2ρ

Γ(2ρ + 1)
+

���������

sin μ sinh ]
􏽱 τ3ρ

Γ(3ρ + 1)
+ · · · ,

ψ(μ, ], τ) �

���������

sin μ sinh ]
􏽱

􏽘

∞

k�0

τkρ

Γ(ρk + 1)
,

(46)

*e exact result is given by

ψ(μ, ], τ) �

���������

sin μ sinh ]
􏽱

Eρ hτρ( 􏼁. (47)

As ρ⟶ 1, we have

ψ(μ, ], τ) �

���������

sin μ sinh ]
􏽱

􏽘

∞

k�0

(τ)k

k!
�

���������

sin μ sinh ]
􏽱

e
τ
. (48)

Example 4. *e biological population model with time
noninteger derivative is expressed as

zρψ
zτρ

�
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ(1 − rψ), (49)

with initial condition

ψ(μ, ], 0) � exp1/2
��
r/2

√
(μ+])

. (50)
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*e Laplace transform to equation (49) is expressed as

s
ρ

L[ψ(μ, ], τ)] − 􏽘
m−1

k�0
ψ(k)

(μ, ], 0)s
ρ− k− 1

� L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ(1 − rψ)􏼠 􏼡,

s
ρ
L[ψ(μ, ], τ)] � ψ(0)

(μ, ], 0)
sρ

s
+ L

z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ(1 − rψ)􏼠 􏼡,

(51)

L[ψ(μ, ], τ)] �
1
s
exp1/2

��
r/2

√
(μ+])

+
1
sρ

L
z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ(1 − rψ)􏼠 􏼡􏼢 􏼣. (52)

Using inverse Laplace transform of equation (52),

ψ(μ, ], τ) � exp1/2
��
r/2

√
(μ+])

+ L
− 1 1

sρ
L

z2

zμ2
ψ2

􏼐 􏼑 +
z2

z]2
ψ2

􏼐 􏼑 + ψ(1 − rψ)􏼠 􏼡􏼢 􏼣􏼢 􏼣. (53)

Using the iterative technique described in equations (14)
and (15), we obtain the following solution components of
Example 4:

ψ0(μ, ], τ) � exp1/2
��
r/2

√
(μ+])

,

ψ1(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
0􏼐 􏼑 +

z2

z]2
ψ2
0􏼐 􏼑 + ψ0 1 − rψ0( 􏼁􏼠 􏼡􏼢 􏼣􏼢 􏼣

� exp1/2
��
r/2

√
(μ+]) τρ

Γ(ρ + 1)
,

ψ2(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
1􏼐 􏼑 +

z2

z]2
ψ2
1􏼐 􏼑 + ψ1 1 − rψ1( 􏼁􏼠 􏼡􏼢 􏼣􏼢 􏼣

� exp1/2
��
r/2

√
(μ+]) τ2ρ

Γ(2ρ + 1)
,

ψ3(μ, ], τ) � L
− 1 1

sρ
L

z2

zμ2
ψ2
2􏼐 􏼑 +

z2

z]2
ψ2
2􏼐 􏼑 + ψ2 1 − rψ2( 􏼁􏼠 􏼡􏼢 􏼣􏼢 􏼣

� exp1/2
��
r/2

√
(μ+]) τ3ρ

Γ(3ρ + 1)
.

(54)
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Figure 1: *e solution plot of Example 1: (a) exact solution and (b) ILTM solution at ρ � 1, h � 0.01, and r � 48.
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Figure 2: *e absolute error for Example 1 at ρ � 1.
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Figure 3: Solution graph of Example 2: (a) exact solution and (b) ILTM solution at ρ � 1, h � 0.01, and r � 48 .
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Figure 4: *e absolute error for Example 2 at ρ � 1
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Figure 5: *e solution plot of Example 3: (a) exact solution and (b) ILTM solution at ρ � 1, h � 0.01, and r � 48.
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Figure 6: Different fractional orders of ρ in Example 3
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*e series form of analytical solution is given as

ψ(μ, ], τ) � ψ0(μ, ], τ) + ψ1(μ, ], τ) + ψ2(μ, ], τ)

+ ψ3(μ, ], τ) + · · ·

� exp1/2
��
r/2

√
(μ+])

+ exp1/2
��
r/2

√
(μ+]) tρ

Γ(ρ + 1)

+ exp1/2
��
r/2

√
(μ+]) τ2ρ

Γ(2ρ + 1)
+ exp1/2

��
r/2

√
(μ+])

·
τ3ρ

Γ(3ρ + 1)
+ · · · ,

ψ(μ, ], τ) � exp1/2
��
r/2

√
(μ+])

􏽘

∞

k�0

τkρ

Γ(ρk + 1)
.

(55)

*e exact result is given by

ψ(μ, ], τ) � exp1/2
��
r/2

√
(μ+])

Eρ hτρ( 􏼁. (56)

As ρ⟶ 1, we have

ψ(μ, ], τ) � exp1/2
��
r/2

√
(μ+])

􏽘

∞

k�0

(τ)k

k!

� exp1/2
��
r/2

√
(μ+])+τ

.

(57)

5. Review Results

In the present work, ILTM is used to solve some important
biological models of noninteger order. *e solution of the
suggested technique is to explain with the help of its
graphical representation. Figure 1 shows the solution graphs
of exact and ILTM for Example 1 at ρ � 1. It is verified that
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Figure 7: *e solution plot of Example 4: (a) exact solution and (b) ILTM solution at ρ � 1, h � 0.01, and r � 48.
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Figure 8: Different fractional orders of ρ in Example 4.

Complexity 11



the ILTM solution is closely related to the exact solution. In
Figure 2, the error analysis of ILTM for Example 1 is dis-
cussed. It is observed that the considered technique has an
accuracy of a sufficient degree. Similarly, in Figure 3, the
solution plot of ILTM and exact solution is shown for
Example 2. *ese solution graphs are very close and con-
firmed the reliability of the suggested method. Moreover, the
higher degree of accuracy is achieved as represented by
Figure 4. *e exact and ILTM results of Example 3 are
compared in Figure 5. *e solution for both exact solution
and ILTM solution is identical and supports the reliability of
the suggested method. In Figure 6, the solution at various
fractional orders of Example 3 is calculated. It is investigated
that as fractional order approaches to an integer order,
fractional-order solutions are convergent to integer-order
solutions. In Figure 7, the same graphical representation has
been made for the exact and ILTM solution of Example 4.
Figure 7 provides the graphical layout of the solution of
Example 4 at different fractional orders. *e convergence
phenomena of the solutions at different fractional orders can
be seen in Figure 8.

6. Conclusion

*e present research article is related to solve fractional-
order biological population models, using an efficient an-
alytical technique. *e current method is applied for frac-
tional and integer-order models. *e solution graphs for
ILTM and exact solutions to the problems are plotted. It is
investigated that the ILTM results are in strong agreement
within the actual solutions of the current technique. *e
ILTM solutions of the problems at different fractional orders
are also shown with the help of their graphical represen-
tation. *e phenomena of convergence fractional-order
solutions toward the integer-order solution are observed.
*is behavior of the obtained solution has confirmed the
efficiency of the suggested scheme. Due to an effective and
straight forward implementation, the suggested method can
be modified for the solution of other FPDEs arising in
applied sciences.
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