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Abstract. This paper deals with a new formulation of time fractional optimal
control problems governed by Caputo-Fabrizio (CF) fractional derivative. The

optimality system for this problem is derived, which contains the forward and
backward fractional differential equations in the sense of CF. These equations

are then expressed in terms of Volterra integrals and also solved by a new nu-
merical scheme based on approximating the Volterra integrals. The linear rate

of convergence for this method is also justified theoretically. We present three

illustrative examples to show the performance of this method. These examples
also test the contribution of using CF derivative for dynamical constraints and

we observe the efficiency of this new approach compared to the classical version

of fractional operators.
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1. Introduction. Fractional calculus has been an active research field for decades
and several promising ideas have been proposed in different fields of science and
engineering. Fractional differentiation and integration operators, which are the gen-
eralization of classical integer-order counterparts, are capable of capturing memory
effects due to their nonlocal nature [48, 51, 39]. Let’s see the excellent paper of
J. Liouville from 1832, namely: J. Liouville, Mémoire: Sur quelques questions de
géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces
questions, J l’Ecole Polytéch 13 (21) (1832) 1–66. In this very interesting work,
we can find a simple fractional derivative which is not in the class that some col-
leagues tried to classified (see J. Liouville’s paper [40, p. 3]). Thus, we think that
any attempt to make a classification of fractional operators is just a nice discussion
because the non-locality cannot be described by a single class of fractional opera-
tors. As J. Liouville said in his paper, we have to consider applications to validate
our fractional calculus models. Only experimental tests, as it is very well known in
science and engineering, will validate or not one of the fractional calculus operators
for a given non-local model. Not always the more complicated fractional model will
give a better result than a simple fractional one. In the literature, fractional opera-
tors have been incorporated to model different dynamics mathematically. In [14], it
has been shown that physical properties of viscoelastic materials can be expressed
through a model with fractional derivatives. In [61], Zhang et al. have reviewed
the fractional calculus in terms of Earth sciences. Moreover, fractional calculus in
continuous and discrete cases [33, 5, 4, 11, 7, 6, 1, 9, 2, 3] have been applied to
physics [26], bioengineering [42], optics [24], fluid flow [21], energy systems [37] and
biology [56, 54, 50, 47, 31, 30].

The Caputo fractional derivative is one of the mostly used fractional differenti-
ation operators. Other than this operator, several different fractional derivatives
have been defined and proposed in the literature. One of the newly defined opera-
tors is Caputo-Fabrizio (CF) fractional derivative, which is capable of eliminating
singular kernel in the definition of classical Caputo derivative [18]. In the study
[29], the underlying physical meaning of the nonsingular kernel was investigated
and a collection of recent applications of fractional differentiation operators with
non-singular kernels was presented. On the other hand, the effect of different kernels
were compared for the fractional diffusion equation within the context of continu-
ous time random walk, the efficiency and future contribution of CF derivative were
underlined in [53]. A heat conduction equation with a relaxation term is obtained
through the Cattaneo constitutive equation with Jeffrey’s fading memory and the
relaxation term corresponds to the CF time-fractional derivative in [28]. Moreover,
the determination of the fractional order as a ratio of the relaxation time to the
characteristic diffusion time of the process has been investigated in [27].

Several dynamical systems have been modeled through CF derivative. For ex-
ample, material damping which is an incident where the actual stress depends on
the entire strain history and the memory kernel which is used to define the stress
cannot be chosen arbitrary. Indeed, singularity in the kernel must be eliminated. In
addition, the fading memory is described by a monotonic and decreasing function of
time. At that point, vital choice of exponential kernel must be underlined [23]. On
the other hand, Casson fluid has been modeled in [52]. In [12], Bergman minimal
blood glucose-insulin model has been generalized. The CF operator has also been
used to investigate the motion of a charged field [44]. On the other hand, steady
heat flow with CF derivative is solved in the study [58].
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In addition to fractional differential equations (FDEs), several real-world prob-
lems can be modeled through optimal control theory. For instance, optimal treat-
ment schedules for tuberculosis have been investigated in [25], while a SEIRS model
is proposed with vaccination and treatment as control functions in [43]. In the s-
tudy [19], a dynamic model for smoking–tuberculosis transmission has been studied
based on the data in South Korea and optimal treatment strategy has been decided,
while a model for fish harvesting has been investigated based on optimal control
theory in [20]. On the other hand, a temperature control problem has been stud-
ied for the solid-liquid phase transition [46]. Moreover, it has been observed that
the OCPs governed by FDEs have led to valuable results. For example, fractional
optimal control problems (FOCPs) have been solved numerically using Legendre
orthonormal polynomial basis [41]. In [32], the FOCP has been converted into a
classical static optimization problem and Ritz’s direct method has been used to
obtain a new numerical scheme. The state and control functions have been approx-
imated by the Legendre orthonormal basis in [45]. A pseudo-spectral method has
been applied in [22]. Optimality conditions for fractional variational problems have
been derived in [60], while a FOCP has been investigated for a model containing
integer and fractional order derivatives in [34]. Different numerical algorithms for
FOCPs governed by Caputo derivative have been investigated in [57]. Moreover,
a constrained dynamic optimization problem defined by Riemann-Liouville deriva-
tive is solved with the use of Grünwald-Letnikov definition in [16]. As a different
model, a free final time FOCP governed by a dynamical model involving integer
and fractional order derivatives has been studied in [49]. On the other hand, the
existence of optimal pairs of system governed by fractional evolution equations has
been proven in [55]. Other than these mathematical studies, some applications of
FOCPs can be mentioned as follows. Fractional descriptor continuous-time linear
systems described by the CF derivative have been studied and necessary and suf-
ficient conditions for the positivity and stability of the systems were established
[36, 35]. The FOCP with Mittag-Leffler derivative has been analyzed in the recent
paper [15].

Numerical methods for the FOCPs governed by Caputo derivative have been
proposed in several studies as summarized above. However, the main drawback of
this operator is its singular kernel, and hence, some nonlocal dynamics cannot be
modeled properly through the use of Caputo derivative. Therefore, the new CF
fractional derivative has been proposed in [17] by eliminating the singular kernel.
Mathematical modeling of dynamical systems within the use of CF operator has
been studied for a while; however, the FOCP formulation subject to a FDE with
CF derivative is a new developing research field. Note that, determining the an-
alytical solution of FOCPs in CF sense is not an easy task; hence, accurate and
efficient numerical schemes are needed to obtain the numerical solution within this
new calculus. Motivated by the aforementioned discussion, this paper proposes a
new formulation of FOCPs governed by a FDE with CF derivative. The optimal-
ity system for this problem is derived, which contains forward and backward CF
derivatives. We also provide a new numerical scheme to solve this problem, which
exhibits linear rate of convergence. To the best of our knowledge, this is the first
study investigating the performance of FOCPs in terms of a new first order numer-
ical scheme designed for the CF derivative. We illustrate the performance of this
method with three numerical examples. These examples also verify the efficiency of
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this new formulation over the use of Caputo derivative in terms of the asymptotic
behaviour of controlled system like settling time.

The rest of this paper is organized as follows. In Sect. 2, we state the definition
and properties of CF derivative. Section 3 introduces the FOCP with CF derivative
and presents its necessary optimality conditions. In Sect. 4, a new scheme is devel-
oped for both of the state and adjoint equations. In Sect. 5, a convergence estimate
is provided. Section 6 discusses three numerical examples to underline the efficiency
of the new technique. Then, the paper ends with summary and conclusion.

2. Preliminaries. In the literature, there are several definitions of fractional dif-
ferential operators including Caputo, Riemann-Liouville, Marchaud and Hadamard
[39]; however, all of these operators suffer from singular kernel. In order to elimi-
nate this drawback, some new fractional derivatives with nonsingular kernel have
been formulated through the use of Mittag-Leffler function [13], Sinc function [59]
and exponential function [17]. In this section, we briefly review the new fractional
derivative with exponential kernel proposed by Caputo and Fabrizio in [17] and
mention the required definitions and properties following the paper [8].

The left CF fractional derivative is defined for 0 ≤ α ≤ 1 in the Caputo sense as

CF
0 Dαt f(t) =

M(α)

1− α

∫ t

0

f ′(s) exp

(
− α

1− α
(t− s)

)
ds, (1)

and the corresponding right differentiation operator is modified by

CF
t DαT f(t) = −M(α)

1− α

∫ T

t

f ′(s) exp

(
− α

1− α
(s− t)

)
ds, (2)

where M(α) is a normalization function with M(0) = 1 = M(1). In addition, the
right Riemann-Liouville differentiation operator in the sense of CF is proposed in
the form

CFR
t DαT f(t) = −M(α)

1− α
d

dt

∫ T

t

f(s) exp

(
− α

1− α
(s− t)

)
ds. (3)

The corresponding left and right fractional integrals are also given respectively as

CF
0 Iαt f(t) =

1− α
B(α)

f(t) +
α

B(α)

∫ t

0

f(s) ds, (4a)

CF
t IαT f(t) =

1− α
B(α)

f(t) +
α

B(α)

∫ T

t

f(s) ds. (4b)

Before ending this section, we mention the following useful relations between the
aforementioned fractional and integral operators

CF
0 Iαt CF

0 Dαt f(t) = f(t)− f(0), (5a)

CF
t IαT CF

t DαT f(t) = f(t)− f(T ). (5b)

3. Fractional optimal control problem formulation. In this section, we con-
sider the following formulation of FOCPs regarding the CF fractional derivative

min J(u) =

∫ T

0

F (t, x(t), u(t)) dt, (6a)

subject to CF
0 Dαt x(t) = G(t, x(t), u(t)), 0 < t ≤ T, (6b)
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x(0) = x0, (6c)

where x ∈ Rn is the state vector while u ∈ Rm denotes the control variable, F :
Rn+m+1 → R and G : Rn+m+1 → Rn are nonlinear scalar and vector functions,
respectively. The symbol CF0 Dαt x(t) denotes the left CF fractional derivative defined
by Eq. (1), the parameter T is the final time, and x0 is the specified initial state
vector. The aim behind solving the FOCP (6) is to obtain the optimum control u∗(t)
for dynamical constraints (6b)-(6c) so that the cost functional J(u) is minimized. In
order to solve this problem, we give and prove a new theorem deriving the necessary
optimality conditions associated to the FOCP (6).

Theorem 3.1. The pair (x(t), u(t)) is a minimum of (6) if there exists an adjoin-
t function p(t), where the triple (x(t), u(t), p(t)) satisfies the following optimality
system

CF
0 Dαt x(t) = G(t, x(t), u(t)), x(0) = x0, (7a)

CF
t DαT p(t) =

∂F (t, x(t), u(t))

∂x(t)
+ p(t)

∂G(t, x(t), u(t))

∂x(t)
, p(T ) = 0, (7b)

∂F (t, x(t), u(t))

∂u(t)
+ p(t)

∂G(t, x(t), u(t))

∂u(t)
= 0. (7c)

Proof. To construct the optimality system associated to the problem (6), we define
the modified performance index as

J̄(u) =

∫ T

0

[
F (t, x(t), u(t))− pT (t)

(
CF
0 Dαt x(t)−G(t, x(t), u(t))

)]
dt, (8)

where p(t) ∈ Rn is the co-state or adjoint function. We take the first variation of
J̄(u) to find

δJ̄(u) =

∫ T

0

[(∂F
∂x

)T
δx+

(
∂F

∂u

)T
δu

− (δp(t))T
(
CF
0 Dαt x(t)−G(t, x(t), u(t))

)
− pT (t)

(
CF
0 Dαt δx(t)−

(
∂G

∂x

)T
δx−

(
∂G

∂u

)T
δu
)]

dt. (9)

For the time fractional term in (9), we apply the method of integration by parts as∫ T

0

pT (t)
(
CF
0 Dαt δx(t)

)
dt =

∫ T

0

(
CFR
t DαT p(t)

)T
δx(t) dt, (10)

with the condition p(T ) = 0. Then, following the study [8, Prop. 2], we observe
that ∫ T

0

(
CFR
t DαT p(t)

)T
δx(t) dt

=

∫ T

0

(
CF
t DαT p(t)

)T
δx(t) dt+

B(α)

1− α
p(T )︸︷︷︸

=0

exp
(
− α

1− α
(T − t)

)

=

∫ T

0

(
CF
t DαT p(t)

)T
δx(t) dt. (11)
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We substitute (11) into (9) to reach the equation

δJ̄(u) =

∫ T

0

(
∂F

∂x
+ p(t)

∂G

∂x
− CF

t DαT p(t)
)T

δx

+

(
∂F

∂u
+ p(t)

∂G

∂u

)T
δu− (δp)T

(
CF
0 Dαt x(t)−G(t, x(t), u(t))

)
dt. (12)

The optimality system for Eq. (6) is obtained through the equation δJ̄(u) = 0,
which must hold for all variations δx(t), δu(t) and δp(t). By taking the variations
into consideration, we see that δx(t) 6= 0, δu(t) 6= 0 and δp(t) 6= 0 in general. Hence,
for δJ̄(u) = 0 to be satisfied, the terms in the parenthesis in (12) must be equal
to zero. Therefore, we obtain the adjoint equation (7b), the gradient equation (7c)
and the state equation (7a), respectively.

The optimality system serves as a tool to find the solution of FOCP (6). The state
equation (7a), which can be linear or nonlinear, involves a left fractional derivative
whereas the adjoint equation (7b) is modeled with a right fractional operator; hence,
the analytical solution of these equations cannot be obtained for complicated FDEs.
To overcome this difficulty, we need to use approximation techniques, which will be
discussed in the next section.

4. Proposed numerical model. In this section, we propose an efficient discretiza-
tion method for both of the state and adjoint equations (7a)-(7b). Here, we assume
that the control variable u(t) can be extracted explicitly from Eqn. (7c) as a func-
tion of the state and adjoint variables as u(t) = K(t, x(t), p(t)). We substitute
u(t) = K(t, x(t), p(t)) into Eqs. (7a) and (7b) before discretizing the state and ad-
joint equations. Then, we solve the state equation forward starting with x(0) = x0

and the adjoint equation backward through the use of p(T ) = 0. Hence, we should
construct two different discretization schemes. Before obtaining the approximate
solution, we discretize the mesh I = [0, T ] as

0 = t0 < t1 < . . . < tM = T, (13)

with constant time step ∆t = T
M . We denote the numerical approximations of

x(t), p(t) at t = ti as xi, pi for 0 ≤ i ≤ M , respectively. Now, we proceed with the
derivation of discrete schemes for the state and adjoint equations, as the following
subsections state.

4.1. Discretization of state equation. By using the properties of CF integral
and derivative in (4a) and (5a), we obtain the Volterra integral equation corre-
sponding to Eq. (7a) as

x(t) = x(0) +
1− α
B(α)

G1(t, x(t), p(t)) +
α

B(α)

t∫
0

G1(s, x(s), p(s)) ds, (14)

where G1(t, x(t), p(t)) := G(t, x(t),K(t, x(t), p(t)). We discretize Eq. (14) at t = tk
and apply the forward Euler method to approximate the integral on the right-hand
side as

x(tk) = x0 +
1− α
B(α)

G1(tk, xk, pk) +
α

B(α)

tk∫
0

G1(s, x(s), p(s)) ds



NEW ASPECTS OF TIME FRACTIONAL OPTIMAL CONTROL PROBLEMS 413

= x0 +
1− α
B(α)

G1(tk, xk, pk) +
α

B(α)

k∑
j=1

tj∫
tj−1

G1(s, x(s), p(s)) ds

≈ x0 +
1− α
B(α)

G1(tk, xk, pk) + ∆t
α

B(α)

k∑
j=1

G1(tj−1, xj−1, pj−1). (15)

Then, the discrete scheme for the state is expressed by

xk = x0 +
1− α
B(α)

G1(tk, xk, pk) + ∆t
α

B(α)

k∑
j=1

G1(tj−1, xj−1, pj−1). (16)

4.2. Discretization of adjoint equation. We use the definition (4b) and prop-
erty (5b) to obtain the Volterra integral form of adjoint equation (7b) as

p(t) = p(T )︸︷︷︸
=0

+
1− α
B(α)

H1(t, x(t), p(t)) +
α

B(α)

T∫
t

H1(s, x(s), p(s)) ds, (17)

where H1(t, x(t), p(t)) :=
(
∂F (t,x(t),u(t))

∂x(t) + p(t)∂G(t,x(t),u(t))
∂x(t)

)∣∣∣
u(t)=K(t,x(t),p(t))

. We

fix t = tk in (17) and use the backward Euler method to approximate the integral
in (17) to obtain

p(tk) =
1− α
B(α)

H1(tk, xk, pk) +
α

B(α)

tk∫
0

H1(s, x(s), p(s)) ds

=
1− α
B(α)

H1(tk, xk, pk) +
α

B(α)

M∑
j=k+1

tj∫
tj−1

H1(s, x(s), p(s)) ds

≈ 1− α
B(α)

H1(tk, xk, pk) + ∆t
α

B(α)

M∑
j=k+1

H1(tj , xj , pj). (18)

Then, we reach the following numerical scheme for the adjoint equation

pk =
1− α
B(α)

H1(tk, xk, pk) + ∆t
α

B(α)

M∑
j=k+1

H1(tj , xj , pj). (19)

As it is shown, Eqs. (16) and (19) form a coupled system of nonlinear alge-
braic equations. Solving these equations, the unknown variables xk and pk are
determined for k = 0, ...,M ; then, the discrete optimal control is obtained from
uk = K(tk, xk, pk). However, before applying the proposed numerical method, we
must be sure that the proposed scheme has a good convergence property. In other
words, we must be sure that the numerical error decays as we decrease the length
of time step. Hence, we will present error estimates and determine the rate of
convergence of the new technique in the next section.

5. Error estimates and convergence analysis. In this section, we derive the
rate of convergence of the new approximation scheme to solve the following frac-
tional initial value problem (IVP)
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CF
0 Dαt x(t) = G(t, x(t)), 0 < t ≤ 1, (20a)

x(0) = x0. (20b)

Here, we motivated by the study [38, Sec. 3] to derive error estimates. Before
presenting the main theoretical results, we start with the justification of two lemmas.

Lemma 5.1. Let x(t) be the solution of Eq. (20) and G(t, x(t)) be a bounded and
Lipschitz continuous function with respect to both t and x with a Lipschitz constant
L. Then, we have

|x(t)− x(t−∆t)| = O(∆t), (21)

under the condition 1− L 1−α
B(α) ≥ 0.

Proof. We will apply the technique in [38, Lemma 3.6]. Let |G(t, x(t))| < M ; then,
we have

x(t)− x(t−∆t)

=
1− α
B(α)

(G(t, x(t))− G(t−∆t, x(t−∆t)))

+
α

B(α)

 t∫
0

G(s, x(s)) ds−
t−∆t∫
0

G(s, x(s)) ds


≤ 1− α
B(α)

(|G(t, x(t))− G(t−∆t, x(t))|)

+
1− α
B(α)

(|G(t−∆t, x(t))− G(t−∆t, x(t−∆t))|)

+
α

B(α)

t∫
t−∆t

|G(s, x(s))| ds

≤ 1− α
B(α)

(L∆t+ L|x(t)− x(t−∆t)|) +
α

B(α)
M∆t. (22)

Hence, we obtain

|x(t)− x(t−∆t)| ≤ ∆t
(1− α)(LB(α) +Mα)

B(α)(B(α)− (1− α)L)
, (23)

with 1− L 1−α
B(α) ≥ 0. Thus, the estimate (21) is achieved.

Lemma 5.2. Let x(t) be the solution of Eq. (20) and G(t, x(t)) be a bounded and
Lipschitz continuous function with respect to both t and x with a Lipschitz constant
L. Then, we have∣∣∣∣∣∣

tk∫
0

G(t, x(t)) dt−∆t

k∑
j=1

G(tj−1, x(tj−1))

∣∣∣∣∣∣ ≤ Ctk ∆t, (24)

under the condition 1− L 1−α
B(α) ≥ 0.
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Proof. The proof is motivated from the idea in [38, Lemma 3.7]. We have∣∣∣∣∣∣
tk∫

0

G(t, x(t)) dt−∆t

k∑
j=1

G(tj−1, x(tj−1))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
k∑
j=1

tj∫
tj−1

[G(t, x(t))− G(tj−1, x(tj−1))] dt

∣∣∣∣∣∣∣
≤

k∑
j=1

tj∫
tj−1

|[G(t, x(t))− G(t, x(tj−1))] + [G(t, x(tj−1))− G(tj−1, x(tj−1))]| dt

≤ L
k∑
j=1

tj∫
tj−1

[
|x(t)− x(tj−1)|+ |t− tj−1|

]
dt. (25)

Then, by applying Lemma 5.1 to the first term and bounding the second term, we
obtain the final result.

Now, we present the main theoretical result of this section. We prove that the
error between the exact and numerical solution of Eq. (20) decays linearly as we
halve the length of time step.

Theorem 5.3. Let x(tk) and xk be the exact and numerical solution of IVP (20)
at t = tk. Let G(t, x(t)) be a bounded and Lipschitz continuous function with respect
to both t and x with a Lipschitz constant L. Then, we have

|x(tk)− xk| = O(∆t), (26)

under the condition 1− L 1−α
B(α) ≥ 0.

Proof. We consider the error between the exact and numerical solution (obtained
from Eq. (16)) at t = tk. Using the Lipschitz continuity of G(t, x(t)) and Lemma 5.2,
we obtain

|x(tk)− xk|

≤ 1− α
B(α)

|G(tk, x(tk))− G(tk, xk)|

+
α

B(α)

∣∣∣∣∣∣
tk∫

0

G(t, x(t)) dt−∆t

k∑
j=1

G(tj−1, xj−1)

∣∣∣∣∣∣
≤ 1− α
B(α)

|G(tk, x(tk))− G(tk, xk)|

+
α

B(α)

k∑
j=1

tj∫
tj−1

|G(t, x(t))− G(tj−1, xj−1)| dt

≤ 1− α
B(α)

|G(tk, x(tk))− G(tk, xk)|
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+
α

B(α)

k∑
j=1

tj∫
tj−1

|G(t, x(t))− G(tj−1, x(tj−1))| dt

+ ∆t
α

B(α)

k∑
j=1

|G(tj−1, x(tj−1))− G(tj−1, xj−1)|

≤ L1− α
B(α)

|x(tk)− xk|+
α

B(α)
L

k∑
j=1

tj∫
tj−1

[
|x(t)− x(tj−1)|+ |t− tj−1|

]
dt

+ L∆t
α

B(α)

k∑
j=1

|x(t)− x(tj−1)|. (27)

Then, the Gronwall’s Lemma is applied to Eq. (27) to reach the final estimate.

6. Illustrative examples. In this section, we present three numerical examples to
test the practical use of our proposed method. We depict the trajectory of controlled
system to investigate the contribution of CF derivative over the classical Caputo
fractional operator. In addition, we measure the computational time to observe the
efficiency of the new scheme. Furthermore, we compute the decay rate of the cost
functional J by halving the time step in case that exact solutions of the state and
control equations are not available. We denote the value of J computed with M as
JM . Then, the rate ρ is calculated as

ρ = log2

( JM − JM/2

JM/2 − JM/4

)
.

If the exact solutions of the state and control are known, then we measure the
absolute error in the state, control and cost functional as ex = ‖x(t) − x∗(t)‖∞,
eu = ‖u(t) − u∗(t)‖∞ and eJ = |JM − J∗|, respectively. Here, the term ‖g(t)‖∞
denotes the maximum norm of the function g(t) over [0, T ]. Moreover, we compute
the rate of convergence as

rz = log2

( (ez)M/2

(ez)M

)
,

by halving the time step where z stands for x, u or J .

Example 1. We consider the following linear time-invariant problem

min J(u) =
1

2

∫ 1

0

(
(x(t)− xd(t))2 + u2(t)

)
dt, (28)

subject to
CF
0 Dα

t x(t) = −x(t) + f(t) + u(t), 0 < t ≤ 1, x(0) = 2. (29)

The necessary optimality conditions of the FOCP (28)-(29) are written in the form
CF
0 Dα

t x(t) = −x(t)− p(t) + f(t), 0 < t ≤ 1,
CF
t Dα

1 p(t) = x(t)− xd(t)− p(t), 0 ≤ t < 1,

x(0) = 2, p(1) = 0.

(30)

We note that the corresponding gradient equation, which has been substituted into
the state equation in (30), is written as

u∗(t) = −p(t), 0 ≤ t ≤ 1. (31)
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Table 1. Example 1: The values of J , absolute error, order of conver-
gence and computational time (CT) for α = {0.6, 0.7}.

α = 0.6 α = 0.7

M J eJ rJ CT J eJ rJ CT

50 4.2795 0.0116 - 0.33 6.1951 0.0309 - 0.29
100 4.2818 0.0058 1.00 0.43 6.2030 0.0154 1.00 0.41
200 4.2838 0.0029 1.00 0.74 6.2088 0.0077 1.00 0.77
400 4.2850 0.0015 0.95 2.97 6.2122 0.0039 0.98 2.88
800 4.2857 0.00073 1.03 18.91 6.2140 0.0019 1.03 19.74

Table 2. Example 1: The values of J , absolute error, order of conver-
gence and computational time (CT) for α = {0.8, 0.9}.

α = 0.8 α = 0.9

M J eJ rJ CT J eJ rJ CT

50 9.9900 0.0863 - 0.31 20.2108 0.2844 - 0.27
100 10.0091 0.0432 0.99 0.38 20.1666 0.1425 0.99 0.40
200 10.0247 0.0216 1.00 0.76 20.1912 0.0713 0.99 0.74
400 10.0339 0.0108 1.00 2.43 20.2152 0.0356 1.00 2.90
800 10.0390 0.0054 1.00 18.85 20.2301 0.0178 1.00 19.18

For this problem, we construct the exact solutions of the state and adjoint equations
as

x∗(t) = 1 + exp(−2t), p∗(t) = exp(t)− exp(1). (32)

We determine the source function f(t) and desired state xd(t) by substituting (32)
into (30) as

f(t) =
(2− α)M(α)

2(2− 3α)

(
2 exp(−2t)− α

1− α
exp

(
− α

1− α
t

))
+ exp(−2t) + exp(t) + 1− exp(1), (33)

xd(t) = − exp(1)
(2− α)M(α)

2(2− 3α)

(
exp(t− 1)− α

1− α
exp

(
− α

1− α
(1− t)

))
+ exp(−2t)− exp(t) + 1 + exp(1). (34)

In Table 1-2, we present the values of the cost functional J , absolute error and
decay rate for α = {0.6, 0.7} and α = {0.8, 0.9}, respectively. The problem is
solved in less then 20 seconds. As we increase α, the values of J increases. The
absolute error does not follow the same pattern; but, we observe that the values of
J decrease as we halve the step size and we reach the linear convergence rate which
is compatible with Theorem 5.3.

In Table 3-4, absolute error and decay rates are shown for the state and control
equations. For the state solution, the error is around 10−4. Indeed, the error decays
linearly as shown in Theorem. 5.3. On the other hand, the smallest error for the
control is around 10−3. We measure the first order decay rate for the control, too.

We present time evolution of the exact and numerical solutions of the state for
α = {0.6, 0.7, 0.8, 0.9} in Fig. 1. We notice that the state is approximated very well
with the use of this scheme.

In Fig. 2, we show the exact and numerical solution of the control. We see that
the control is solved very accurately over time.
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Table 3. Example 1: The values of absolute error for x(t) and the
order of convergence for α = {0.6, 0.7, 0.8, 0.9}.

α = 0.6 α = 0.7 α = 0.8 α = 0.9

M ex rx ex rx ex rx ex rx
50 0.0090 - 0.0085 - 0.0146 - 0.0531 -
100 0.0045 1.00 0.0043 0.98 0.0072 1.01 0.0260 1.03
200 0.0022 1.03 0.0021 1.03 0.0036 1.00 0.0129 1.01
400 0.0011 1.00 0.0011 0.93 0.0018 1.00 0.0064 1.01
800 5.57e-04 0.98 5.34e-04 1.04 8.91e-04 1.01 0.0032 1.00

Table 4. Example 1: The values of absolute error for u(t) and the
order of convergence for α = {0.6, 0.7, 0.8, 0.9}.

α = 0.6 α = 0.7 α = 0.8 α = 0.9

M eu ru eu ru eu ru eu ru
50 0.0240 - 0.0417 - 0.0770 - 0.1914 -
100 0.0120 1.00 0.0207 1.01 0.0381 1.01 0.0939 1.02
200 0.0060 1.00 0.0103 1.00 0.0190 1.00 0.0465 1.01
400 0.0030 1.00 0.0051 1.01 0.0095 1.00 0.0232 1.00
800 0.0015 1.00 0.0026 0.97 0.0047 1.01 0.0116 1.00
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Figure 1. Example 1: Comparative results of x(t) and x∗(t) for M =
800 and α = {0.6, 0.7, 0.8, 0.9}.
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Figure 2. Example 1: Comparative results of u(t) and u∗(t) for M =
800 and α = {0.6, 0.7, 0.8, 0.9}.
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Figure 3. Example 1: The absolute error plots for x(t) (left) and u(t)
(right) with M = 800 and α = {0.6, 0.7, 0.8, 0.9}.

To examine the error distribution, we depict the absolute error in the state and
control in Fig. 3. Although the error is not distributed equally over time, it is less
than 10−3 and 10−2 for both of the state and control, respectively.

Example 2. We consider the following linear time-invariant problem [10]

min J(u) =
1

2

∫ 20

0

(
x2(t) + u2(t)

)
dt, (35)
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Table 5. Example 2: The values of J and computational time (CT).

α = 0.7 α = 0.8 α = 0.9 α = 1

M J CT J CT J CT J CT

50 0.2048 0.08 0.1912 0.08 0.1817 0.08 0.1754 0.08
100 0.2008 0.15 0.1909 0.15 0.1856 0.14 0.1842 0.14
200 0.2019 0.41 0.1945 0.40 0.1920 0.39 0.1940 0.41
400 0.2031 1.70 0.1971 1.67 0.1963 1.71 0.2002 1.61
800 0.2039 17.17 0.1986 17.55 0.1986 16.96 0.2035 17.18

subject to
CF
0 Dα

t x(t) = −x(t) + u(t), 0 < t ≤ 20, x(0) = 1. (36)

The necessary optimality conditions of the FOCP (35)-(36) are written in the form
CF
0 Dα

t x(t) = −x(t)− p(t), 0 < t ≤ 20,

CF
t Dα

20p(t) = x(t)− p(t), 0 ≤ t < 20,

x(0) = 1, p(20) = 0.

(37)

We note that the corresponding gradient equation is obtained as

u∗(t) = −p(t), 0 ≤ t ≤ 20. (38)

For α = 1, the exact solution of this problem is given by

x∗(t) = γ sinh(
√

2t) + cosh(
√

2t), (39)

u∗(t) = (γ +
√

2) sinh(
√

2t) + (γ
√

2 + 1) cosh(
√

2t), (40)

where

γ = −
√

2 sinh(20
√

2) + cosh(20
√

2)

sinh(20
√

2) +
√

2 cosh(20
√

2)
. (41)

We present the values of J and computational time measured by implementing the
proposed method for some values of M and α in Table 5. These results underline
the convergence and speed of the algorithm, which is less than 18 seconds for M =
800. The approximate solutions of x(t) and u(t) obtained with M = 800 for α =
{0.7, 0.8, 0.9, 1} are shown in Fig. 4. For comparison purposes, we also plotted
the exact solution for α = 1 given by Eqs. (39)-(40) in Fig. 4. We observe that
the fractional numerical solution gets closer to the integer-order exact solution as
α approaches 1. Moreover, as the fractional order α is decreased, the settling
time of the response decreases. It means that the behavior of controlled system
strongly depends on the real number α. Hence, the order of differentiation can be
regarded as a control parameter to reach a desired performance in terms of system’s
specifications like settling time. In Table 6, we compare the values of J computed
through the Caputo and CF derivatives by fixing N = 800. We observe that the
values of J computed using the CF derivative are less than those of the classical
Caputo for different values of α. In Fig. 5, we present the numerical solution of state
variable for different values of α within the Caputo and CF fractional operators.
We obtain a better settling time and asymptotic behavior of the response through
the CF derivative than the classical Caputo for all values of 0 < α < 1. We note
that the results for α = 1 obtained within the Caputo and CF coincide with each
other, as expected. To summarize, we can underline the superiority of CF to the
classical Caputo for the FOCPs based on the results shown in Table 6 and Figure 5.
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Figure 4. Example 2: Numerical results of x(t) (left) and u(t) (right).

Table 6. Example 2: The comparative values of J with M = 800.

J
FD α = 0.7 α = 0.8 α = 0.9 α = 1

Caputo 0.2301 0.2073 0.2002 0.2035
CF 0.2039 0.1986 0.1986 0.2035
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Figure 5. Example 2: Numerical results of x(t) for Caputo and CF derivatives.

Example 3. In this example, we consider the fractional Duffing equation
C
0D

α
t x1(t) = x2(t), 0 < t ≤ 20,

C
0D

α
t x2(t) = −x1(t)− 0.02x2(t)− 5x3

1(t) + u(t), 0 ≤ t < 20,

x1(0) = 1, x2(0) = 0.

(42)
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Table 7. Example 3: The values of J , rate of convergence and com-
putational time (CT) for α = {0.7, 0.8}.

α = 0.7 α = 0.8

N JN JN − JN/2 ρ CT JN JN − JN/2 ρ CT

50 12.1411 - - 0.63 13.8799 - - 0.64
100 7.9860 4.1551 - 1.32 8.6678 5.2121 - 1.25
200 6.6614 1.3246 1.65 4.31 6.9545 1.7133 1.61 4.33
400 6.1602 0.5012 1.40 17.18 6.3194 0.6351 1.43 16.97
800 5.9455 0.2147 1.22 146.48 6.0524 0.2670 1.25 144.69

Table 8. Example 3: The values of J , rate of convergence and com-
putational time (CT) for α = {0.9, 1}.

α = 0.9 α = 1

N JN JN − JN/2 ρ CT JN JN − JN/2 ρ CT

50 15.6616 - - 0.73 18.3533 - - 0.69
100 9.9329 5.7287 - 1.39 12.3690 5.9843 - 1.73
200 7.7685 2.1644 1.40 4.30 9.7979 2.5711 1.22 3.81
400 6.9493 0.8192 1.40 18.26 8.7483 1.0496 1.29 18.53
800 6.6071 0.3422 1.26 148.13 8.3018 0.4465 1.23 167.40

The goal is to find the optimal control u∗(t) so that the quadratic cost functional

J =
1

2

∫ 20

0

(
10(x2

1(t) + x2
2(t)) + u2(t)

)
dt, (43)

subject to the constraint (42) is minimized.
The necessary optimality conditions of the FOCP (42)-(43) are formulated as

C
0D

α
t x1(t) = x2(t),

C
0D

α
t x2(t) = −x1(t)− 0.02x2(t)− 5x3

1(t)− p2(t),

R
tD

α
20p1(t) = 10x1(t)− p2(t)− 15x2

1(t)p2(t),

R
tD

α
20p2(t) = 10x2(t) + p1(t)− 0.02p2(t),

x1(0) = 1, x2(0) = 0, p1(20) = p2(20) = 0,

(44)

where the connection between the optimal control and adjoint variable is realized
through the equation

u∗(t) = −p2(t), 0 ≤ t ≤ 20. (45)

In Tables 7-8, the values of J are listed for some values of M and α. For different
values of α, we measure a rate around 1.2 for fractional case, which is better than the
linear rate of convergence proved in Theorem 5.3. Numerical results of x1(t), x2(t)
and u(t) with α = {0.7, 0.8, 0.9, 1} and M = 800 are shown in Fig. 6. We observe
that the difference between the approximate solution of Eq. (44) and the integer-
order solution vanishes as α approaches 1. Moreover, there is a positive correlation
between the order of differentiation α and the settling time of the response. Thus,
some performance requirements like settling time can be controlled through the
parameter α. In Table 9, the values of J measured for the model with Caputo and
CF derivatives are listed. The smaller values of J are computed through the model
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Figure 6. Example 3: Numerical results of x1(t), x2(t) and u(t).

Table 9. Example 3: The comparative values of J with M = 800.

J
FD α = 0.7 α = 0.8 α = 0.9 α = 1

Caputo 6.6976 6.6329 7.1959 8.3018
CF 5.9455 6.0524 6.6071 8.3018

with CF derivative when compared to the one that contains the classical Caputo
for some values of α. In Figs. 7-8, the solution associated with Caputo and CF
fractional operators are compared. We observe that better results for settling time
and asymptotic behavior of the response are achieved by applying CF derivative
instead of Caputo for different values of α. Moreover, there is not a visible difference
between the results obtained with both operators for α = 1. According to the results
reported in Table 9 and Figs. 7-8, we deduce that the FOCP governed by a FDE
with CF derivative leads to better results (compared to the classical Caputo) for
settling time and asymptotic behavior of the response as well as cost value J .

7. Summary and conclusion. The FDEs have been a promising research topic
for a long time since they are capable of modeling real-world problems arising in
different fields such as physics, biology, optics and control systems. In addition, the
fractional derivatives have eliminated the drawback of integer-order counterparts
on account of their nonlocal characteristics. Furthermore, due to elimination of
singular kernel in CF derivative, we can obtain more accurate models within this
new fractional differentiation. However, analytical solution of FOCPs in the CF
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Figure 7. Example 3: Numerical results of x1(t) for Caputo and CF derivatives.

sense cannot be derived explicitly and numerical tools are required at this point.
In this paper, we proposed a new formulation of FOCPs involving CF fractional
derivative. We derived the optimality system for this problem in terms of Volterra
integrals and solved them by an efficient numerical method. We justified that
the new scheme exhibits linear rate of convergence. In addition, we enriched the
study with some numerical examples to test the efficiency of the proposed scheme.
According to the results, the convergence to the optimal solution was achieved very
quickly. In addition, a smaller value of the cost functional as well as better settling
time and asymptotic behavior of the response were measured when the constraint
is modeled through the CF derivative rather than classical Caputo. To sum up, the
FDEs with CF derivative is a promising constraint for FOCPs over the dynamical
models with classical Caputo derivative.
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[44] V. Morales-Delgado, J. Gómez-Aguilar and M. Taneco-Hernandez, Analytical solutions for

the motion of a charged particle in electric and magnetic fields via non-singular fractional
derivatives, The European Physical Journal Plus, 132 (2017), 527.

[45] A. Nemati and S. A. Yousefi, A numerical scheme for solving two-dimensional fractional

optimal control problems by the Ritz method combined with fractional operational matrix,
IMA Journal of Mathematical Control and Information, 34 (2017), 1079–1097.

[46] T. Ohtsuka, K. Shirakawa and N. Yamazaki, Optimal control problem for Allen–Cahn type
equation associated with total variation energy, Discrete Contin. Dyn. Syst. Ser. S , 5 (2012),

159–181.
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