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Abstract. In this work, we extend the existing local fractional Sumudu decomposition method to solve the 
nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the 
nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we 
get the desired non-differentiable exact solutions. The steps to solve the examples and the results obtained, 
showed the flexibility of  applying this algorithm, and therefore, it can be applied to similar examples. 

Keywords: Adomian decomposition method, Sumudu transform method, Local fractional derivative operator, Local 
fractional, Nonlinear local fractional gas dynamics equation, Nonlinear local fractional Klein-Gordon equation.  

1. Introduction 

The perception of  a derivative of  order any real number is no longer a stunning fact but quite the contrary. Its 
contribution has allowed and still allows us to glimpse natural phenomena which surround us in a different way and to 
model them by differential equations or systems of  non-integer order and which better reflect the passage from real to 
known. Given the importance of  these fractional differential equations and others, many researchers have worked to 
improve existing methods, or discover new methods to solve them, or find approximate solutions for them. These efforts 
have affected this area in several methods, including the Adomian decomposition method and in the abbreviation 
(ADM), which is among the most famous methods developed recently, where it was developed by George Adomian 
[1,2]. 

With the advent of  fractional differential equations, researchers used this method to solve this new type of  equations 
[3-8], and it was also used to solve another fractional equations which include, local fractional differential equations [9-
11], local fractional partial differential equations [12-18], and local fractional integro-differential equations [19-21], or we 
find them benefit from the combined with some known transforms, such as: Laplace transform and Sumudu transform, 
in order to facilitate the solution of  this type of  equations, especially nonlinear ones. Among these works, we find local 
fractional laplace decomposition method [22] and local fractional Sumudu decomposition method [17]. 
   The idea of  this article is to work on the method proposed in [17] to solve linear local fractional partial differential 
equations in order to extend it to solve nonlinear partial differential equations within local fractional derivative. The 
value of  the LFSDM is to enable us to combine two powerful methods to obtain exact solutions for nonlinear local 
fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation.  
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2. Basic Definitions 

In this section, we will present the basic concepts on fractional local calculus, and in particular the local fractional 
derivative, local fractional integral and local fractional Sumudu transform. 

2.1 Local fractional derivative 

Definition 2.1 

   Setting ( ) ( , )g Cσρ α β , the local fractional derivative of ( )g ρ with order σ

 

at 0ρ ρ  is defined as [23,24]: 

0
0

( ) 0

0

( ( ) ( ))
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 (1) 

where 

0 0( ( ) ( )) (1 )( ( ) ( )),g g g gσ ρ ρ ρ ρ ρΔ Γ     (2) 

and ( , )Cσ α β , designates the class of functions called local fractional continuous on the interval ( , ).α β  

2.2 Local fractional integral 

Definition 2.2 

   The local fractional integral of  ( )g ρ of  order σ

 

in the interval [ , ]α β  is defined as [23,24]: 
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where 1 0 1 2, max( , , ,...),j j jτ τ τ τ τ τ τΔ Δ Δ Δ Δ    and 1 0[ , ], ,j j Nτ τ τ α τ β    is a partition of  the interval [ , ].α β

 
2.3 Some properties of the local fractional operators 

The local fractional operators fulfill some fundamental equations. In particular, we have the following: 

Definition 2.3 

   In fractal space, the Mittage-Leffler function, the hyperbolic sine and hyperbolic cosine are defined as [23,24]: 
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By using the local fractional derivative (1) and the definitions (2.3) it can be easily shown that: 
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2.4 Local fractional Sumudu transform 

We present here the definition of  local fractional Sumudu transform (denoted in this paper by ( lf Sσ ) and some 
properties concerning this transformation [12]: 
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For examples, 
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Definition 2.4 

   The local fractional Sumudu transform of  ( )g ρ  is defined by: 
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The Following inverse formula of  (19) is defined as: 

 1 ( ) ( ),0 1.lf S F w gσ σ ρ σ     (20) 

Theorem 2.1 (linearity). If  ( ) ( )lf S g F wσ σρ   and  ( ) ( )lf S wσ σφ ρ Ψ , then one has: 

 ( ) ( ) ( ) ( ).lf S g F w wσ σ σρ φ ρ Ψ    (21) 

Proof. Using formula (19), we obtain: 
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This ends the proof. 

Theorem 2.2 

(1) (Sumudu transform of local fractional derivative). 

If  ( ) ( )lf S g F wσ σρ  , then one has: 

( ) (0)( )
.lf F w Fd g

S
d w

σ
σ

σ σ σ

ρ

ρ

        
 (23) 

We obtain the following results, as the direct result of  (22): 
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When 2n  , from (24), we get: 
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(2) (Sumudu transform of local fractional integral). If  ( ) ( )lf S g F wσ σρ  , we have: 

 ( )
0 ( ) ( ).lf S I g w F wσ σ

σ ρ σρ   (26) 

Proof. See [12]. 

3. Local Fractional Sumudu Decomposition Method 

Let us consider the following nonlinear operator with local fractional derivative: 

( , ) ( , ) ( , ) ( , ),L X R X N X kσ σ συ ν υ ν υ ν υ ν    (27) 

where */ ( )m mL mσ σ
σ τ Ν    is the linear local fractional derivative operator of  order mσ , Rσ is the linear local 

fractional operator, Nσ represents the nonlinear local fractional operator, and ( , )k υ ν is given function. By applying a 
local fractional Sumudu transform on each side of  equation (27), we obtain: 

[ ( , )] [ ( , ) ( , )] [ ( , )].lf lf lfS L X S R X N X S kσ σ σ σ σ συ ν υ ν υ ν υ ν    (28) 

Depending on the properties of  this transform, we have: 
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By taking the inverse transform on each side of  the equation (28), it gives: 
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 (30) 

According to the Adomian decomposition method [1], we decompose the unknown function X as an infinite series given 
by: 

0

( , ) ( , ),n
n

X Xυ ν υ ν



  (31) 

and the nonlinear term can be decomposed as: 
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  (32) 

where nA  are Adomian polynomials [25] of  0X , 1X , 2X ,… nX and it can be calculated by: 
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Substituting (31) and (32) in (30), we get: 
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On comparing both sides of  (34), we have: 
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 1
1 0 0( , ) [ ( , ) ] ,lf m lfX S w S R X Aσ

σ σ συ ν υ ν   

 1
2 1 1( , ) [ ( , ) ] ,lf m lfX S w S R X Aσ

σ σ συ ν υ ν   

 1
3 2 2( , ) [ ( , ) ] ,lf m lfX S w S R X Aσ

σ σ συ ν υ ν   

 

(35) 

The general iteration formulas that defines the terms is given by: 
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(36) 

where 0< 1σ 
 

and *,n m Ν . 

4. Applications 

   The work shown in this paragraph has the aim of  validating the extension of  the application of  local fractional 
sumudu decomposition method (LFSDM) presented in [17] for solving the nonlinear local fractional gas dynamics 
equation and nonlinear local fractional Klein-Gordon equation. 
  
Example 4.1 

 First, we consider that the form of the gas dynamics equation on Cantor sets becomes: 

( ) ( ) 2( , ) ( , ) ( , ) ( ( , )) ( , ) 0,0< 1, R,X X X X Xσ σ
ν υυ ν υ ν υ ν υ ν υ ν σ υ       (37) 

under the initial condition: 

( ,0) ( ).X E σ
συ υ   (38) 

Using the formula (30), we obtain: 

 1 ( ) 2( , ) ( ) ( [ ( , ) ( , ) ( ( , )) ( , )]) .lf lfX E S w S X T X Xσ σ σ
σ σ σ υυ ν υ υ ν υ ν υ ν υ ν      (39) 

Referring to the method adopted in this research [1], the solution function X  can be decomposed by an infinite series 
defined by: 
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0

( , ) ( , ),n
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and the nonlinear term can be decomposed as: 
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and  
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Substituting (40), (41) and (42) in (39), we get: 
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              (43) 

On comparing both sides of (43), we have: 

0 ( , ) ( ),X E σ
συ ν υ   

 1
1 0 0 0( , ) [ ( ) ( ) ( , )] ,lf lfX S w S A X B X Xσ

σ συ ν υ ν    

 1
2 1 1 1( , ) [ ( ) ( ) ( , )] ,lf lfX S w S A X B X Xσ

σ συ ν υ ν    

 1
3 2 2 2( , ) [ ( ) ( ) ( , )] ,lf lfX S w S A X B X Xσ

σ συ ν υ ν    

 

(44) 

The first few components of ( )nA X  and ( )nB X  polynomials [25], for example, are given by: 

( )
0 0 0,( ) ( , ) ( , ),A X X X σ

υυ ν υ ν  

( ) ( )
1 0 1, 1 0,( ) ( , ) ( , ) ( , ) ( , ),A X X X X Xσ σ

υ υυ ν υ ν υ ν υ ν   
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and 

2
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1 0 12 ( , ) ( , ),B X Xυ ν υ ν  

2
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Using He's polynomials (45), (46) and the iteration formulas (44), we obtain: 
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and so on. The first four terms of  the non-differentiable approximation solution for (36), are given by: 

2 3

( , ) ( ) 1 ... .
(1 ) (1 2 ) (1 3 )

X E
σ σ σ

σ
σ

ν ν ν
υ ν υ

σ σ σΓ Γ Γ

             
 (48) 

and therefore, the non-differentiable exact solution for (36) becomes: 
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k
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i

σ
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           (49) 

Substituting 1σ   into (49), we obtain: 

( , ) .X eν υυ ν   (50) 

Note that, our solution (49) satisfies the initial conditions (37), and in the case 1σ  , we obtain the same solution 
obtained in [26] by homotopy perturbation method, and in [27] by homotopy analysis method. 
 
Example 4.2 

 We consider the following nonlinear local fractional Klein-Gordon equation: 

(2 ) (2 ) ( ) 2 2( , ) ( , ) ( ( , )) ( ( , )) 0,0< 1,X X X Xσ σ σ
ν υ υυ ν υ ν υ ν υ ν σ      (51) 

with the initial conditions: 

( )( ,0) 0, ( ,0) ( ).X X Eσ σ
ν συ υ υ    (52) 

From the formula (29), we obtain: 

 1 2 (2 ) ( ) 2 2( , ) ( ) ( [ ( , ) ( ( , )) ( ( , )) ]) .
(1 )

lf lfX E S w S X X X
σ

σ σ σ σ
σ σ σ υ υ

ν
υ ν υ υ ν υ ν υ ν

σΓ
   


 (53) 

As the Adomian decomposition method [1] depends on the decomposed of  the solution function X  in an infinite 
series given by: 

0
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n

X Xυ ν υ ν



  (54) 

The nonlinear term ( ) 2( ( , ))X σ
ν υ ν  can be decomposed as: 

( ) 2

0
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X C Xσ
υ υ ν




  (55) 

and 2( ( , ))X υ ν  it is given in the previous form (42). Substituting (54), (55) and (42) in (53), we get: 

1 2 (2 )
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             (56) 

On comparing both sides of  (56), we have: 

0 ( , ) ( ) ,
(1 )

X E
σ

σ
σ

ν
υ ν υ

σΓ



 

 1 2 (2 )
1 0, 0 0( , ) [ ( , ) ( ) ( )] ,lf lfX S w S X C X B Xσ σ

σ σ υυ ν υ ν    

 1 2 (2 )
2 1, 1 1( , ) [ ( , ) ( ) ( )] ,lf lfX S w S X C X B Xσ σ

σ σ υυ ν υ ν    

 1 2 (2 )
3 2, 2 2( , ) [ ( , ) ( ) ( )] ,lf lfX S w S X C X B Xσ σ

σ σ υυ ν υ ν    

 

(57) 

The first few components of  ( )nC X  polynomials [25], are given by: 

( ) 2
0 0,( ( , )) ,C X σ

υ υ ν  (58) 
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( ) ( )
1 0, 1,2 ( , ) ( , ),C X Xσ σ

υ υυ ν υ ν  

( ) 2 ( ) ( )
2 1, 0, 2,( ( , )) 2 ( , ) ( , ),C X X Xσ σ σ

υ υ υυ ν υ ν υ ν   

 

Using He's polynomials (42), (58) and the iteration formulas (57), we obtain: 
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3 ( , ) ( ) ,
(1 7 )
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σ
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σ

ν
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(59) 

and so on. Then, the non-differentiable solution of  (51) is calculated by: 

(2 1)

0

( , ) lim ( ) .
(1 (2 1) )

ik

k
i

X E
i

σ
σ

σ

ν
υ ν υ

σΓ



 

          (60) 

Therefore, the non-differentiable exact solution of  the (51) takes the form: 

( , ) ( ) sinh ( ).X E σ σ
σ συ ν υ ν  (61) 

Note that, our solution (61) satisfies the initial conditions (52), and in the case 1σ  , we obtain the same solution 
obtained in [28] by homotopy perturbation method. 

5. Conclusion 

The extension of  the local fractional Sumudu decomposition method (LFSDM) to solve nonlinear partial differential 
equations leads to establish an efficient algorithm; this algorithm allows us to obtain the non-differentiable exact solution 
as soon as possible. Through this work, it can be assumed that this modified algorithm is suitable for solving this type of  
equations. The application of  this method has given us precise solutions for both equations: nonlinear local fractional 
gas dynamics equation and nonlinear local fractional Klein-Gordon equation and can therefore be used to solve other 
nonlinear local fractional partial differential equations, in order to facilitate calculations and their ability to achieve the 
desired results. 
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