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Abstract: This study considers ethylene-glycol as a moderate ionized regular liquid whose rheological
behavior can be analyzed through the relations of the Carreau stress–strain tensor. Hybrid nanoliquids
are potent liquids that give better performance for heat transfer and the properties of thermo physical
than regular heat transfer liquids (water, ethylene glycol, and oil) and nanoliquids by single
nanomaterials. Here, a type of hybrid nanoliquid involving silicon oxide (SiO2) and Molybdenum
disulfide (MoS2) nanoparticles with ethylene glycol as a base liquid are considered. In addition,
the impact of nonlinear radiation along with Lorentz force is invoked. Similarity variables are utilized
to acquire the numerical findings and their solutions for transmuting ordinary differential equations
(ODEs). Using bvp4c from MATLAB, we can obtain these quantitative and numerical results of
the converted nonlinear equations. The impacts of the pertinent constraints on the temperature
distribution, velocity, Nusselt number, and skin friction are estimated. The outcomes indicate that the
double-edged methods for the results originate from the precise values of the permeable parameters.
Further, the critical values (Sc = 1.9699, 2.0700 and 2.2370) are enhanced due to the influence of the
local Weissenberg number. This implies that the increasing value of the local Weissenberg number
accelerate the boundary layer separation. Furthermore, a stability investigation is performed and
confirms that the first solution is a physically reliable solution.

Keywords: Magnetohydrodynamic flow; generalized Carreau fluid; shrinking sheet; radiative
heat transfer

1. Introduction

Hybrid nanoliquids are an extraordinary group of heat transport liquids. These liquids are
technologically created to increase the performance of heat transport in several engineering and
industrial processes. A hybrid nanoliquid is prepared by dispersing two distinct nanomaterials.
This new class of nanoliquid offers improved thermal effectiveness compared to a conventional
nanoliquid and a regular liquid. The optimization of the efficiency of this nanoliquid’s thermal
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system is critical in numerous scientific applications, such as in the cooling systems of automobiles,
micro-electronics, power generation, acoustics, air conditioning, heat exchangers, etc. Thus, it is
vital to manage the thermal conductivity of this type of liquid to ensure a better performance of heat
transport. Sarkar et al. [1] and Sidik et al. [2] summarized the current research related to the preparation
techniques for hybrid nanoliquids, the thermo–physical properties of hybrid nanoliquids, and the
recent applications of hybrid nanoliquids. The expansion of hybrid nanoliquids, along with improved
thermal conductivity and admirable stability, is indispensable and can help guide us to optimize
energy and make it more sustainable, since hybrid nanoliquids enhance the thermal system’s efficiency,
as reviewed by Das [3]. Ghadikolaei et al. [4] discussed the influence of the magnetic number on a
stagnation-point flow consisting of water-based Cu and TiO2 hybrid nanoparticles from a stretched
sheet using shape factors. Zeeshan et al. [5] presented an analytic result for the Poiseuille flow involving
a C2H6O2/Al2O3 nanoliquid through a wavy porous channel. The impacts of thermal radiation and
shape factor into the 3D flow of a heat transport containing water and an ethylene glycol-based
Ag/Fe3O3 hybrid nanoliquid from a rotated stretched channel, as demonstrated by Ghadikolaei et al. [6].
Khan et al. [7] scrutinized the influence of binary reactions on a magnetic–radiative cross flow involving
Ti6Al4V nanomaterials with activation energy and presented multiple solutions. Recently, Kumar
and Sahoo [8] analyzed the viscosity and thermal conductivity of a propylene glycol and ethylene
glycol-based CuO\Al2O3 nanoliquid along with different-shaped nanomaterials. They also analyzed
the X-ray diffraction and zeta potential.

Presently, a great deal of curiosity has been exhibited by researchers to vet the flow of a type
of fluid with the characteristics of heat transfer due to a shrinking surface. A sheet that shrinks in
size by applying a suction or external heat is called a shrinking sheet. The common applications that
involve a shrinking surface are called shrinking films. The aforementioned films are instrumental in
wrapping products in huge amounts since they can be easily removed with the help of sufficient heat.
Problems involving shrinking films can be used to investigate the impact of capillaries in the minor
pores, the behavior of the shrinking-swell, and the characteristics of hydraulic agricultural clay soils.
Wang [9] developed a viscous flow towards a shrinking surface. Miklavčič and Wang [10] recognized
the uniqueness and existence criteria for the problem of a viscous flow by using suction. A steady MHD
viscous flow past a decreasing surface with suction was vetted by Fang and Zhang [11]. Khan et al. [12]
discussed the influence of variable viscosity on a laminar thin film flow through a stretching/shrinking
sheet in the presence of erratic thermal conductivity. Bhattacharyya et al. [13] investigated the point at
which the motion of a fluid is zero at the boundary layer with the properties of transfer of heat from
the shrinking surface with a partial slip effect. Makinde et al. also examined an MHD mix convection
flow containing a nanoliquid near the point of stagnation towards a sheet that is convectively heated
and stretched [14]. The steady electric conducting viscous flow past a porous shrinking surface with
second-order slip effect was scrutinized by Mahmood et al. [15]. Mansur et al. [16] explored the flow of
the stagnation point under the assumption of an MHD containing a nanofluid at an ambient point past
a penetrable expanding/contracting sheet.

The aforementioned research is confined to Newtonian fluids. However, several industrial fluids
have been studied, such as muds, artificial fibers, condensed milk, slurries, polymeric fluids, sugar
solutions, foods, banana puree, and blood show. These fluids show the behaviors of non-Newtonian
liquids. Modelling these non-Newtonian fluids presents a variety of challenges to researchers.
Therefore, it is imperative to consider the characteristics of heat transfer in non-Newtonian fluids from
a pragmatic viewpoint. Many researchers have introduced numerous models for that do not agree with
the Newtonian law and are thus called non-Newtonian fluids. One of these non-Newtonian liquids
or wide-ranging Newtonian fluids is called “Carreau.” In 1972, Carreau [17] introduced the global
range of a fluid, a non-Newtonian fluid and called it a “Carreau” fluid. This Carreau model reasonably
coincides with the behavior of polymer suspensions under various flow conditions. This perfect
scheme is especially suited to promoting dilutions, polymers, and aqueous solutions and dissolutions.
The present model also explains the shear weakening and shear congealing performances of several
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non-Newtonian liquids. MHD flow was investigated by Akbar et al. [18] at the stagnation-point of a
Carreau fluid past a leaky contracting surface; the study acquired multiple results. The Hall effects in
an MHD Carreau Yasuda liquid with peristaltic transport through the curved channel were discussed
by Abbasi et al. [19]. Masood and Hashim [20] examined a one-dimensional viscous flow with the
characteristics of heat transfer involving a Carreau liquid from a stretched sheet that is considered to
be non-linear. Masood et al. [21] studied the impact of radiation, which is considered to be non-linear
for the MHD flow of a Carreau liquid from the expanded sheet under a convective boundary condition
that is also considered nonlinear.

Thus, convective conditions with thermal radiation are evident in manufacturing and engineering
processes, and their impacts can be seen in those fields. Gas and nuclear turbines, chemical reactions,
and lye forging are a few examples. Aziz [22] discussed the influence of the convective boundary
conditions of the flow from a flat plate. MHD flow with the properties of heat transfer has been
scrutinized by Makinde [23] together with mixed convection, thereby creating a plate engrossed in
permeable medium with convective boundary conditions. The boundary layer and heat transfer flow
from a spongy expanded surface through a convective boundary condition were numerically examined
by Ishak [24]. A mixed convective flow was studied by Rahman et al. [25], who considered the impact
of the convective boundary condition through a vertical plate. Ibrahim and Haq [26] examined the
electric conducting flow comprising a nano-liquid near the point where the velocity is taken to be zero
over the expanded sheet through a convective condition. Makinde et al. [27] investigated the impact of
slip on the electric conducting flow near the ambient position where the fluid is flowing at infinity and
contains a nano-liquid from a convective heated expanded surface with a radiation effect.

In summary, the aim of the present study is to analyze the MHD flow with the characteristics of heat
transfer involving a partially ionized non-Newtonian Carreau liquid through hybrid nanoliquids from
a shrinking sheet under convective conditions and nonlinear thermal radiation. A hybrid nanoliquid
is numerically created by suspending two distinct nanomaterials, Silicon dioxide (SiO2) (using sand)
and Molybdenum disulfide (MoS2). In addition, water is used as the regular liquid. Moreover,
Molybdenum is a chemical factor and does not occur physically as a free metal on Earth. It is only
observed in the structures of oxides. The existence of MoS2/SiO2 nanomaterials with ethylene glycol as
a regular liquid has been examined for the enhancement of heat transfer. A suitable transformation is
used to renovate the leading PDEs into dissimilar ODEs. These equations were solved numerically by
bvp4c in MATLAB. Multiple solutions have obtained a precise value of the suction constraint. Thus,
the impacts of several governing parameters on the fluid’s quantity have been analyzed carefully.

2. Mathematical Formulation

Let us consider the 2D MHD movement of a fluid over a shrinking sheet, which is taken to be
non-linear, involving MoS2-SiO2 hybrid nanofluids in ethylene glycol (Carreau liquid) with a boundary
condition that is convective in nature. The coordinates of the x-axis and y-axis are taken along the
path of the movement of the flow and are normal to the shrinking sheet, respectively, as shown in
Figure 1. In addition, the hybrid nanoparticles (MoS2-SiO2) in the ethylene glycol are determined to be
plasma [28] and non-Newtonian due to the nature of shear thinning [29]. An external magnetic field
(variable) B(x) = x(m−1)/2B0 is oriented in the direction where the fluid is lying, and this magnetic field
is almost insignificant when using a small Rm (magnetic Reynolds number). The variable shrinking
velocity is uw = cxm, where c > 0 and m > 0 are constants. The leading PDEs are

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂v
∂y

= νhbn f
∂
∂y


1 + Γ2

(
∂u
∂y

)2


n−1
2
∂u
∂y

− σhbn f B2

ρhbn f
u (2)
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u∂T
∂x + v∂T

∂y = − 1
(ρcp)hbn f

∂q
∂y +

khbn f

(ρcp)hbn f

∂2T
∂y2 +

σhbn f B2

(ρcp)hbn f
(u)2

+
µhbn f

(ρcp)hbn f

(
∂u
∂y

)2
[
1 + Γ2

(
∂u
∂y

)2
] n−1

2

,
(3)

The subjected suitable conditions at the boundary consist of the shrinking velocity, the porous
boundary, and the convective temperature condition at the surface, while at the free surface, the
temperature and velocity trend toward zero; these conditions are mathematically written as

u = −uw(x), v = −Vw, −khbn f
∂T
∂y = h f

(
T f − T

)
at y = 0, T→ T∞ , u→ 0 as y→∞.

(4)

where (u, v) denotes the constituents of the field velocity in the x- and y-axis directions, respectively, ν,
ρ, k, and Γ stand for the kinematic viscosity of the fluid, the density, the thermal conductivity, and
the relaxation time constant, respectively, cp, σ, n, T, and T∞ denotes the heat (which is specific),
the electrical conductivity of the liquid, the power law index, the temperature, and the ambient
temperature, respectively. It is important to note that Equation (2) can be reduced to a Newtonian liquid
by taking n = 1. In addition, the value of n varies as 0 < n < 1, with (n < 1 & n > 1) communicating
the behavior of shear thickening and shear thinning fluids.
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Thermo–Physical Properties of the Hybrid Nanoliquid

The mixture of a hybrid nanofluid involving MoS2 (φ1) and SiO2 (φ2) nanoparticles in water,
which is considered a regular fluid. In addition, the nanoparticle volume fractions of SiO2 have been
set to 1%, and those of MoS2 fluctuate from 1% to 5%. Following the article of Xie et al. [30], the volume
fraction of the hybrid nanoliquid is suggested to be

φhn f =
VMoS2 + VSiO2

VTotal
= φ1 + φ2.

Moreover, Table 1 is set to explain the thermophysical attributes of the hybrid nanoliquid.
In Table 1, ρ f , ρs1 , and ρs2 denote the liquid density and solid nanomaterials of MoS2 and the solid
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nanomaterials of SiO2;
(
ρcp

)
hnb f

is the specific heat of the hybrid nanoliquid, while
(
ρcp

)
f
,
(
ρcp

)
s1

, and(
ρcp

)
s2

are the regular liquid and the solid nanoparticles of MoS2 and SiO2, respectively; µhbn f and µ f

are the hybrid nanoliquid viscosity and regular viscosity, respectively, khbn f is the thermal conductivity
of the hybrid nanoliquid, and k f , ks1 , and ks2 are the thermal conductivity of the regular liquid and
the nanoparticles of MoS2 and SiO2, respectively; σhbn f is the electrical conductivity of the hybrid
nanoliquid, and σ f , σs1 , σs2 , are the electrical conductivity of the regular liquid and the nanoparticles of
MoS2 and SiO2, respectively.

Table 1. The thermophysical attributes of the hybrid nanofluid.

Properties Hybrid Nanofluid

Density ρhbnf =
[
(1−φ2)

{
(1−φ1)ρ f + φ1ρs1

}
+ φ2ρs2

]
Viscosity

µhbn f
µ f

= 1
(1−φ1)

2.5(1−φ2)
2.5

Electrical conductivity σhbn f = σb f

[
σs2 (1+2φ2)+2σb f (1−φ2)

σs2 (1−φ2)+σb f (2+φ2)

]
with σb f = σ f

[
σs1 (1+2φ1)+2σ f (1−φ1)

σs1 (1−φ1)+σ f (2+φ1)

]
Thermal conductivity

khbn f

kn f
=

ks2+2kn f−2φ2(kn f−ks2 )
ks2+2kn f +φ2(kn f−ks2 )

with kn f =
ks1+2k f−2φ1(k f−ks1 )
ks1+2k f +φ1(k f−ks1 )

× k f

Heat capacity
(
ρcp

)
hnb f

=

(
(1−φ2)

[
(1−φ1) + φ1

(ρcp)s1

(ρcp) f

]
+ φ2

(ρcp)s2

(ρcp) f

)

Following Masood et al. [21] and Mushtaq et al. [31], the heat flux radiative qr is expressed
as follows:

qr = −
∂T4

∂y
4σ∗

3k∗
= −

16σ∗

3k∗
T3 ∂T
∂y

, (5)

In the above equation, σ∗ and k∗ stand for the Stefan–Boltzmann constant and the coefficient of
mean absorption, respectively. Utilizing Equation (5), Equation. (3) can be transmuted as

u
∂T
∂x

+ v
∂T
∂y

=
∂
∂y

∂T
∂y

 k
ρcp

+
16σ∗T3

3
(
ρcp

)
k∗


. (6)

Introducing the following transformations, we get

ψ(x, y) = x(m+1)/2 f (η)

√
2cν

m + 1
, η = yx(m−1)/2

√
c(m + 1)

2ν
, θ(η) =

T − T∞
T f − T∞

. (7a)

Here, ψ represents the (function) called the “Stream Function”, from which we acquire

T = T∞[1 + (θw − 1)θ] (7b)

in which θw > 1, where θw is the existence of the temperature ratio parameter.
Using (7a) and (7b), the nonlinear PDEs (2) and (6) are simplified into the subsequent

nonlinear ODEs{
1 + nWe2( f ′′ )2

}{
1 + We2( f ′′ )2

} n−3
2 f ′′′

Λ1
+ Λ2

{
f f ′′ −

( 2m
m + 1

)
( f ′)2

}
−M2Λ3 f ′ = 0, (8)

θ′′
[
Λ4 +

4
3 Rd(θ(θw − 1) + 1)3

]
+ PrΛ5 fθ′ + 4Rd(θw − 1)(θ(θw − 1) + 1)2(θ′)2

+
PrEc( f ′′ )2

Λ1

{(
1 + We2( f ′′ )2

) n−1
2

}
+ M2PrEcΛ3( f ′)2 = 0

(9)
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The converted border conditions are

f (0) = S, θ′(0) = −γ[1− θ(0)], f ′(0) = −1,
f ′(∞)→ 0, θ(∞)→ 0,

}
(10)

in which
Λ1 = (1−φ1)

2.5(1−φ2)
2.5,

Λ2 =
(
(1−φ2)

{
(1−φ1) + φ1

ρs1
ρ f

}
+ φ2

ρs2
ρ f

)
,

Λ3 =


σs2 (1+2φ2)+2σ f

{
σs1 (1+2φ1)+2σ f (1−φ1)

σs1 (1−φ1)+σ f (2+φ1)

}
(1−φ2)

σs2 (1−φ2)+σ f

{
σs1 (1+2φ1)+2σ f (1−φ1)

σs1 (1−φ1)+σ f (2+φ1)

}
(2+φ2)


(
σs1 (1+2φ1)+2σ f (1−φ1)

σs1 (1−φ1)+σ f (2+φ1)

)
,

Λ4 =

[(
ks2+2kn f−2φ2(kn f−ks2)
ks2+2kn f +φ2(kn f−ks2)

)(
(ks1+2k f )−2φ1(k f−ks1)
(ks1+2k f )+φ1(k f−ks1)

)]
,

Λ5 =

(
(1−φ2)

[
(1−φ1) + φ1

(ρcp)s1

(ρcp) f

]
+ φ2

(ρcp)s2

(ρcp) f

)
.

The aforementioned equations (prime) exhibit the derivatives through η. The local Weissenberg
number, the magnetic parameters, the convective parameters, the radiation parameters, the Prandtl
number, and the suction parameter are well-defined as

We2 =
c3(m+1)Γ2x3m−1

2ν , M2 =
2σ f B2

0
(m+1)cρ f

, γ =
h f
√

2ν/c(m+1)x
1−m

2

k ,

Pr = ν
α f

, Rd =
4σ∗T3

∞

kk∗ , Ec = c2x2m

(cp) f (θw−1)T∞
, S = Vwx

1−m
2

√
2/cν(m + 1) > 0

The physical curiosity quantities are the skin and Nusselt number, which are classified as

C f =
µhbn f

ρu2
w

∂u
∂y

1 + Γ2
(
∂u
∂y

)2
n−1

2


y=0

, Nux = −
x

k f (T f − T∞)

[
−khbn f

(
∂T
∂y

)
w
+ (qr)w

]
. (11)

That is,

C f Re1/2
x =

[1+We2( f ′′ (0))2]
n−1

2
√

m+1
2 f ′′ (0)

(1−φ1)
2.5(1−φ2)

2.5 ,

NuxRe−1/2
x =

−khbn f

√
m+1

2 θ′(0)
[
1+ 4

3Rd
{1+(θw−1)θ(0)}

3
]

k f
.

(12)

where Rex = cxm+1/ν shows the Reynolds number.

3. Stability Analysis of the Solution

When we perform the stability analysis, it is done with the primary objective to obtain the result
of the aforementioned problem to quantify and qualify the physical realization of its first branches.
This process is also done for the second solution, which is not physically realizable. The unsteady
equation that uses a specific order to determine the physical significance of these branches is given as

∂u
∂x

+
∂v
∂y

= 0 (13)

∂u
∂t + u∂u

∂x + v ∂v
∂y = νhbn f

∂2u
∂y2

[
1 + Γ2

(
∂u
∂y

)2
] n−1

2

−
σhbn f B2

0
ρhbn f

u

+νhbn f Γ2(n− 1) ∂
2u
∂y2

(
∂u
∂y

)2
[
Γ2

(
∂u
∂y

)2
+ 1

] n−3
2

(14)
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∂T
∂t + u∂T

∂x + v∂T
∂y = − 1

(ρcp)hbn f

∂qr
∂y +

khbn f

(ρcp)hbn f

∂2T
∂y2 +

σhbn f B2

(ρcp)hbn f
(u)2+

µhbn f

(ρcp)hbn f

(
∂u
∂y

)2
[
1 + Γ2

(
∂u
∂y

)2
] n−1

2

,
(15)

Using the aforementioned model of stability, we declare the fresh time variable that is dimensionless
(τ). For this stability model, the similarity transformation now becomes

u = cxm ∂ f (η,t)
∂η , v = −x(m−1)/2

√
cν(m+1)

2 f (η, t) − yc(m−1)
2 xm−1 ∂ f (η,t)

∂η ,

η = x(m−1)/2y
√

c(m+1)
2ν , τ = cxm−1t, θ(η, t) = T−T∞

T f−T∞ .
(16)

By inserting Equation (16) into Equations (14) and (15), we get

∂3 f
∂η3

1+nWe2
(
∂2 f
∂η2

)2
n−3

2
1+nWe2

(
∂2 f
∂η2

)2


Λ1
+ Λ2

{
f ∂

2 f
∂η2 −

(
2m

m+1

)(∂ f
∂η

)2
}

−Λ2
(

2
m+1

){
(m− 1)τ∂ f

∂η
∂2 f
∂η∂τ +

∂2 f
∂η∂τ

}
−M2Λ3

∂ f
∂η = 0,

(17)

∂2θ
∂η2

[
Λ4 +

4
3 Rd(θ(θw − 1) + 1)3

]
+ Λ5Pr f (η, t) ∂θ∂η

+4Rd(θw − 1)(θ(θw − 1) + 1)2
(
∂θ
∂η

)2
+ PrEc

Λ1

(
∂2 f
∂η2

)2

(
1 + We2

(
∂2 f
∂η2

)2
) n−1

2
+

M2PrEcΛ3

(
∂ f
∂η

)2
−

(
2Pr

m+1

)
Λ5

{
∂θ
∂τ + (m− 1)τ∂ f

∂η
∂θ
∂τ

}
= 0,

(18)

and the subjected conditions are

f (0, τ) = S, ∂θ(0,τ)
∂η = −γ(1− θ(0, τ)), ∂ f (0,τ)

∂η = −1, at η = 0
∂ f (η,τ)
∂η → 0, θ(η, τ)→ 0 as η→∞

(19)

To check the steady flow solution’s stability, let us use f (η) = f0(η) and θ(η) = θ0(η), which
satisfy the BVP (2)−(5). Then, we implement the following (Merkin [32], Weidman et al. [33], and
Zaib et al. [34]).

Let
f (η, τ) = e−βτF(η, τ) + f0(η)
θ(η, τ) = e−βτG(η, τ) + θ0(η)

(20)

where “β” is a value with an unknown (the growth and decay distribution) eigenvalue, and F(η, τ) &
G(η, τ) are too small to allow f0(η) and θ0(η), respectively.

Then, inserting Equation (20) into Equations (17)–(19), we infer the subsequent equations:

(
e−βτ ∂

3F
∂η3 +

∂3 f0
∂η3

)1+nWe2
(
e−βτ ∂

2F
∂η2 +

∂2 f0
∂η2

)2

1+We2

(
e−βτ ∂

2F
∂η2 +

∂2 f0
∂η2

)2
n−3

2

Λ1
+ Λ2{(

e−βτF + f0
)(

e−βτ ∂
2F
∂η2 +

∂2 f0
∂η2

)
−

(
2m

m+1

)(
e−βτ ∂F

∂η +
∂ f0
∂η

)2
}
−

Λ2
(

2
m+1

){
(m− 1)τ

(
e−βτ ∂F

∂η +
∂ f0
∂η

)(
−βe−βτ ∂F

∂η + e−βτ ∂
2F

∂η∂τ

)
+

(
−βe−βτ ∂F

∂η + e−βτ ∂
2F

∂η∂τ

)}
−

M2Λ3

(
e−βτ ∂F

∂η +
∂ f0
∂η

)
= 0,

(21)
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(
∂2θ0
∂η2 + e−βτ ∂

2G
∂η2

)[
Λ4 +

4
3 Rd

((
θ0 + e−βτG

)
(θw − 1) + 1

)3
]
+

Λ4Pr
(
e−βτF + f0

)(
∂θ0
∂η + e−βτ ∂G

∂η

)
+ 4Rd(θw − 1)

(
(θw − 1)

(
θ0 + e−βτG

)
+ 1

)2
(
∂θ0
∂η + e−βτ ∂G

∂η

)2

PrEc
Λ1

(
e−βτ ∂

2F
∂η2 +

∂2 f0
∂η2

)2

(
1 + We2

(
e−βτ ∂

2F
∂η2 +

∂2 f0
∂η2

)2
) n−1

2
+ M2PrEcΛ3

(
e−βτ ∂F

∂η +
∂ f0
∂η

)2

−

(
2Pr

m+1

)
Λ5

{
e−βτ ∂G

∂τ − βe−βτG + (m− 1)τ
(
e−βτ ∂G

∂τ − βe−βτG
)(

e−βτ ∂F
∂η +

∂ f0
∂η

)}
= 0,

(22)

with the conditions given as

F(0, τ) = 0, ∂G(0,τ)
∂η = γG(0, τ) ,∂F(0,τ)

∂η = 0, at η = 0
∂F(η,τ)
∂η → 0, G(η, τ)→ 0 as η→∞

. (23)

Then, for n = 3, we achieve the subsequent linearized problems:

1+3We2
(
∂2 f0
∂η2

)2 ∂3F
∂η3 +6We2 ∂

3 f0
∂η3

∂2 f0
∂η2

∂2F
∂η2

Λ1
+ Λ2

 f0 ∂
2F
∂η2 + F∂

2 f0
∂η2

−
∂F
∂η

(
4m

m+1

)∂ f0
∂η


+

2β
m+1 Λ2

∂F
∂η −M2Λ3

∂F
∂η = 0,

(24)

∂2G
∂η2

[
Λ4 +

4
3 Rd(θ(θw − 1) + 1)3

]
+ Λ5Pr

(
f0 ∂G
∂η + F∂θ0

∂η

)
+

2PrEc
Λ1

∂2F
∂η2

∂2 f0
∂η2

{
1 + 2We2

(
∂2 f0
∂η2

)2
}
+ 8Rd(θw − 1)2(θ(θw − 1) + 1)2G

(
∂θ0
∂η

)2
+

8Rd(θ(θw − 1) + 1)2 ∂G
∂η

∂θ0
∂η + M2PrEcΛ3

(
2∂F
∂η

∂ f0
∂η

)
+

(
2Pr

m+1

)
βGΛ5 = 0,

(25)

Following Weidman et al. [33], we investigated a stable solution for the phenomenon of steady
flow f0(η) with a heat transfer solution θ0(η) through site τ = 0; therefore, F = F0(η) and G = G0(η)
in (24) and (25) are used to classify the early increase/deterioration of the result. In this way, we explain
the subsequent linear eigenvalue problem:(

F0
′′′ (1+3We2( f0′′ )

2)+6We2 f0′′′ f0′′ F0
′′

Λ1

)
+ Λ2

 f0F0
′′ + F0 f0′′−(

4m
m+1

)
f ∗0
′

F∗0
′


+

2β
m+1 Λ2F0

′
−M2Λ3F0

′ = 0,

(26)

G0
′′

[
Λ4 +

4
3 Rd(θ0(θw − 1) + 1)3

]
+ Λ5Pr( f0G0

′ + F0θ0
′)+

2PrEc
Λ1

F0
′′ f0′′

{
1 + 2We2( f0′′ )

2
}
+ 8Rd(θw − 1)2(θ0(θw − 1) + 1)2G0(θ0

′)2+

8Rd(θ0(θw − 1) + 1)2G0
′θ0
′ + M2PrEcΛ3(2F0

′ f0′) +
(

2Pr
m+1

)
βG0Λ5 = 0,

(27)

and conditions at the boundary are

F0(0) = 0, G0
′ = γG0(0) ,F0

′ = 0, at η = 0
F0
′
→ 0, G0 → 0 as η→∞

. (28)

In this research, we explain the linear eigenvalue system of IVP (26)−(27) with a new boundary
condition (28) by relaxing the conditions F0(η) and G0(η). Here, the condition G0 → 0 as η→∞ is
relaxed, and, for a fixed value of γ, we calculate (26) and (27) along with the fresh boundary condition,
G0(0) = 1.

4. Results and Discussion

The transmuted system of the non-linear ODEs (8) and (9) through condition (10) were deciphered
numerically through the bvp4c named via MATLAB for the assorted standards of the pertinent
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parameters. For the numerical simulation, we can fix the range of the pertinent parameters throughout
the study as 0 ≤ φ1 ≤ 0.9, 0 ≤ φ2 ≤ 0.9, 0 ≤ M ≤ 0.5, 0.1 ≤ n ≤ 3.5, 0 ≤ γ ≤ 1.5, 0.1 ≤ Rd ≤ 3,
0.1 ≤ Ec ≤ 2.5, 0 ≤ We ≤ 3.5, and 0.1 ≤ m ≤ 1.5. The thermo–physical characteristics of the ethylene
glycol and the hybrid (MoS2/SiO2) nanofluids are shown in Table 2. Moreover, the results in Table 3 are
in excellent harmony with the previously published results on a limited case, and excellent agreement
has been observed. Here, we found more than one solution (dual solution) throughout the study,
where the first solution is represented by the solid green lines, and the second solution is represented
by red dashed lines, while the critical point is marked by the small red dot. Figures 2 and 3 show the
influences of φ1 and φ2 on the liquid velocity and the temperature profiles, respectively. These pictures
show that the liquid velocity increases in the upper branch solution and declines in the lower branch
solution by augmenting φ1 and φ2, which ultimately widens the velocity boundary layer thickness.
On the other hand, similar behavior is shown in Figure 3, which demonstrates that the temperature
distribution, as well as the thermal boundary layer, increases in the first branch solution due to φ1 and
φ2 and decelerates in the second branch solution as we augment the value of the ethylene glycol hybrid
nanofluid. Physically, the scattering of the hybrid nanoparticles augments the exchange of thermal
energy in the hybrid nanofluid layer, which is bordered on the sheet and the next adjoining hybrid
nanofluid layers’ dispersion of nanoparticles. Thus, the present results suggest that the utilization
of hybrid nanoparticles can help us to develop better heat distribution in particular heat transfer
equipment and can save energy through chemical processes. More generally, the augmentation of the
hybrid nanomaterials shows an increment in the thermal conductivity and its temperature profile for
the upper branch solution, which declines for the lower branch solution in some range along the x-axis
and then suddenly starts increasing in the second branch solution for the temperature distribution.
Due to microscopic instrument, this trend can now be detected and observed. By exercising the
ethylene glycol hybrid nanofluid with the base fluid ethylene glycol and making a hybrid mixture, we
developed the characteristic features of the thermal suspension. As a result, greater thermal capacity
was found due to the mixture of the hybrid nanoparticles.

Table 2. The thermophysical properties of the base fluid (ethylene glycol) and the ethylene glycol
hybrid nanoparticles [35,36].

Characteristic Properties Ethylene Glycol SiO2 MoS2

ρ 1113.5 2650 5060
cp 2430 730 397.746
k 0.253 1.5 34.5
σ 4.3× 10−5 0.0005 1× 10−18

Pr 204

Table 3. Comparison of the values of −θ′(0) when We = S = Rd = 0, m = 1,γ = ∞.

Pr
Ref. [37] Present Research

First Solution Second Solution First Solution Second Solution

0.7 0.454501 0.377110 0.4539 0.3772

2.0 0.911411 0.881301 0.9114 0.8813

7.0 1.895400 1.880900 1.8954 1.8810
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Figure 3. Influence of φ1,φ2 on θ(η).

Figures 4 and 5 exhibit the liquid velocity and temperature profile for numerous choices of n.
Figure 4 demonstrates that the liquid velocity decreases with escalating values of n, and, as a result,
the velocity boundary layer grows thicker and thicker in the first solution, while for the second branch
solution, there is an increase in the velocity of the flow. It is also apparent in this plot that the width of
the border layer is higher only for the thickening liquid associated with the thinning liquid. Further,
the border layer width is thicker for the first solution compared to the second solution. Figure 5 shows
that the liquid temperature increases with bigger values of n in the first solution and decreases in
the second solution. Hence, the temperature boundary layer width becomes thicker and thicker for
the first solution but becomes thinner in the second solution. Notably, both solutions can placate the
boundary conditions asymptotically, thereby validating the numerical outcomes of this problem.
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In Figures 6 and 7, the impacts of M on the velocity distribution and the temperature profile are
given for shear thinning and thickening fluids, respectively. Figure 6 shows that the liquid velocity
increases in the first solution and decreases in the second solution for both phenomena of liquids.
Therefore, the velocity boundary thickness shrinks in the first solution and increases in the second
solution for shear thickening and thinning liquids. Physically, magnetic force increases liquid motion
inside the boundary layer, as well as of the final expression of Equation (2), which remains positive in
the region. Moreover, the crosswise magnetic impact on the electrically leading liquid increases the
resistive force identified as a Lorentz force. This Lorentz force has the tendency to speed up liquid
motion in the boundary region. This graph also shows that the profiles are more pronounced for
the shear thickening liquid in comparison to those for the shear thinning liquid for the first solution.
In contrast, Figure 7 indicates that the temperature profiles increase with higher values of M for the
first branch solution because the temperature boundary layer becomes thicker and thicker for shear
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thinning liquid, while an opposite tendency is realized for the solution of the second branch. However,
for shear thickening fluid, the temperature profiles behave in an opposite manner.
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Figures 8 and 9 illustrate the performance of the flow of the liquid and the temperature distribution
of several choices of We. Figure 8 shows that the liquid velocity declines due to the We in the first
solution; therefore, the thickness of the momentum boundary layer increases, whereas, for the second
solution, the boundary layer width declines. Also, it is apparent from these plots that the first solution
shows greater boundary viscosity than the second solution. The temperature boundary layer thus
becomes thicker and thicker with an increase in We in the first solution and declines in the second
solution, as shown in Figure 9. Physically, We indicates the relation of elastic and viscous forces; it
increases the thickness of the hybrid nanofluid, thereby increasing temperature.
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Figure 9. Influence of We on θ(η).

Figure 10 demonstrates that the temperature distribution decreases with higher values of Rd in
the first and second solutions. Consequently, the temperature borderline layer becomes thicker and
thicker and then thinner and thinner for the branch of the first solution, as well as for the second branch
solution. Physically, the greater values of Rd suggest the importance of conduction and, consequently,
decrease the thickness of the temperature profile layer. Figure 11 depicts the temperature parameter
impact θw on the temperature distribution. It can be perceived from this portrait that an increment in
θw indicates a larger wall temperature compared to the ambient liquid. As a result, the temperature of
the liquid increases for both the first and second solutions. Further, the thickness of the temperature
boundary layer increases exponentially under increasing values of θw. The Eckert number was found
in a dimensionless form of ODE due to the presence of the viscous dissipation term in the energy
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equation, which can use the augmentation in the dissipation heat because of the higher value of the
Eckert number. As a result, the temperature of the liquid increases. This fact is depicted by Figure 12,
where the Eckert parameter’s impact Ec on the temperature distribution and dual solutions was found.
Further, it can be perceived from this portrait that an increment in the Ec number generates more work
done by the force of friction. As a result, the temperature of the liquid increases for both the first and
second solutions. Physically, the temperature boundary layer becomes thicker and thicker, increasing
the values of the Ec number. This is done due to an escalation of the internal energy of the liquid,
which is defined by the first law of thermodynamics.
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Figure 13 shows that the growing values of γ approach tougher convective heating at the surface
of the sheet, which increases the temperature slope at the surface for the first and second solutions.
This allows the thermal impact to penetrate deeper into the sluggish boundary layer augmented with γ.
It is understood that the wall constant temperature θ(0) = 1 can be recovered by making γ adequately
large. In addition, γ = 0 communicates the insulated surface case.
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The C f xRe1/2
x and the local Nusselt number NuxRe−1/2

x versus S are portrayed in Figures 14 and 15,
respectively. Figures 14 and 15 demonstrate that the choices of skin factor and NuxRe−1/2

x decline
by mounting We in the first solution, while in second solution, the values increase. This figure also
shows that these NuxRe−1/2

x values always remain positive, which means that the temperature shifts
from a warm surface to a cold liquid. Moreover, the multiple non similar results found the critical
values of S = Sc(< 0), past which no result survives. Calculations showed that the critical values are
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1.9699, 2.0700, and 2.2370 for We = 1, 2, 3, respectively. Thus, the Weissenberg number accelerates the
boundary layer separation.
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Figures 16 and 17 illustrate the aberration of NuxRe−1/2
x & C f xRe1/2

x for the distinct choices of
M. Further, we observed that multiple results exist for the variations in parameter M by keeping all
other parameters stable. In these graphs, we observed that an augmentation in M communicates an
important development in the skin factor and Nusselt number for the phenomenon of the first branch
solution. In addition, the coefficients of the skin friction and heat transfer of the local rate reduce due
to larger magnetic parameters in the second solution. The greatest magnetic constraint developed a
drag-like force recognized as a Lorentz force. This force operates as a mediator that opposes the liquid
flow and makes progress in the heat transfer rate along with the local skin coefficient. In addition, both
graphs show that the size of the center line at the peak of the stationary values (i.e., |Sc|) leans toward
augmentation due to its superior determination of the magnetic parameters.
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Figures 18 and 19 numerically present the results of the local Nusselt number, which was obtained
for dissimilar choices of vigorous physical parameters like Ec and Rd. These figures are drawn
in contradiction of the parameter S by keeping all the other several parameters as fixed. In the
aforementioned plots, the local Nusselt number decelerates for both branches of solutions due to
significant changes in the values of Ec. The similar result for a local Nusselt number is shown above in
Figure 19 for the increment in Rd. Physically, the values of Rd suggest the dominance of conduction,
and, therefore, the heat transfer rate is reduced while the increment in the Ec parameter indicates less
heat transfer of the liquid compared to the ambient liquid. As an outcome, the rate of the heat transfer
decays for both branches of the solutions.
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5. Conclusions

In this study, we investigated the MHD flow problem involving MoS2-SiO2 hybrid nanofluids in
ethylene glycol (Carreau liquid) and the heat transfer from a nonlinear convectively-heated porous
shrinking surface with a nonlinear radiative effect. The dual non-similarity solutions of the transmuted
equations were acquired via the bvp4c function in Matlab. These multiple non-similarity solutions
were used solely for the specific choices of the suction parameters. The velocity and temperature of the
nanoliquid were enhanced due to the augmentation of the hybrid nanoparticle in the first solution
and the decrease in the second solution. In addition, the velocity of the fluid enhances with larger
magnetic parameter for the first solution and decreases for the second solution for the shear thinning
liquid along with the shear thickening liquid. While the fluid of the temperature increases for the
shear thinning of the liquid and decreases for the shear thickening of the liquid in the first solution,
the reverse development is observed in the second solution. The inclusion of the Eckert number and
the convective parameter increased the temperature distribution in both the upper and the lower
branch solutions, while the temperature distribution declined due to the larger radiation parameter.
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Moreover, the Weissenberg number We decreased the coefficient of the skin friction in the first solution
and increased it in the second solution, while the Nusselt number increased due to the higher We in the
first solution; conversely, a conflicting drift was observed in the second solution. The skin friction and
the Nusselt number increased for increments in the magnetic parameters in the first solution, while the
repeal result was achieved in the second branch solution.

Finally, this research can be extended by considering a mixed convection flow or time dependent
flow. It is estimated that the present numerical results will provide significant knowledge for computer
routines for more complex problems concerning hybrid nanoliquids in the presence of non-Newtonian
base fluids through heated surfaces due to their numerous applications in heat transfer processes,
such as in solar collectors, heat exchangers, oil recovery, etc., and also stimulate curiosity for future
experimental work.

Author Contributions: A.Z. and U.K.; Writing-Original Draft, I.K.; Conceptualization, D.B.; Methodology, I.K.;
Software, K.S.N.; Validation, D.B.; Formal Analysis, A.Z.; Writing-Review & Editing, Investigation, D.B.; Resources,
I.K. Data Curation, K.S.N.; Visualization and Supervision, D.B.; Project Administration and Funding. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors are grateful to editor and referees.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications.
Renew. Sustain. Energy Rev. 2015, 43, 164–177. [CrossRef]

2. Sidik, N.A.C.; Jamil, M.M.; Aziz Japar, W.M.A.; Adamu, I.M. A review on preparation methods, stability and
applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. [CrossRef]

3. Das, P.K. A Review based on the effect and mechanism of thermal conductivity of normal nanofluids and
hybrid nanofluids. J. Mol. Liq. 2017, 240, 420–446. [CrossRef]

4. Ghadikolaei, S.S.; Yassari, M.; Sadeghi, H.; Hosseinzadeh, K.; Ganji, D.D. Investigation on thermophysical
properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point
flow. Powder Technol. 2017, 322, 428–438. [CrossRef]

5. Zeeshan, A.; Shehzad, N.; Ellahi, R.; Alamri, S.Z. Convective Poiseuille flow of Al2O3-EG nanofluid in a
porous wavy channel with thermal radiation. Neural. Comput. Appl. 2018, 30, 3371–3382. [CrossRef]

6. Ghadikolaei, S.S.; Hosseinzadeh, K.h.; Ganji, D.D. Investigation on three dimensional squeezing flow of
mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe 3 O 4 -Ag) dependent on
shape factor. J. Mol. Liq. 2018, 262, 376–388. [CrossRef]

7. Khan, U.; Zaib, A.; Khan, I.; Nisar, K.S. Activation energy on MHD flow of titanium alloy (Ti6Al4V)
nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear
radiation: Dual Solutions. J. Mater. Res. Technol. 2019, 9, 188–199. [CrossRef]

8. Kumar, V.; Sahoo, R.R. Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary
base fluids. Heat Transf. Asian Res. 2019, 48, 3144–3161. [CrossRef]

9. Wang, C.Y. Liquid film on an unsteady stretching sheet. Quart. Appl. Math. 1990, 48, 601–610. [CrossRef]
10. Miklavčič, M.; Wang, C.Y. Viscous flow due a shrinking sheet. Quart. Appl. Math. 2006, 64, 283–290.

[CrossRef]
11. Fang, T.; Zhang, J. Closed-form exact solution of MHD viscous flow over a shrinking sheet. Commun.

Nonlinear Sci. Numer. Simul. 2009, 14, 2853–2857. [CrossRef]
12. Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A. The effects of variable viscosity and thermal conductivity on a thin

film flow over a shrinking/stretching sheet. Comp. Math. Appl. 2011, 61, 3391–3399. [CrossRef]
13. Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C. Slip effects on boundary layer stagnation-point flow and

heat transfer towards a shrinking sheet. Int. J. Heat Mass Transf. 2011, 54, 308–313. [CrossRef]
14. Makinde, O.D.; Khan, W.A.; Khan, Z.H. Buoyancy effects on MHD stagnation point flow and heat transfer of

a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 2013, 62, 526–533.
[CrossRef]

http://dx.doi.org/10.1016/j.rser.2014.11.023
http://dx.doi.org/10.1016/j.rser.2017.05.221
http://dx.doi.org/10.1016/j.molliq.2017.05.071
http://dx.doi.org/10.1016/j.powtec.2017.09.006
http://dx.doi.org/10.1007/s00521-017-2924-9
http://dx.doi.org/10.1016/j.molliq.2018.04.094
http://dx.doi.org/10.1016/j.jmrt.2019.10.044
http://dx.doi.org/10.1002/htj.21535
http://dx.doi.org/10.1090/qam/1079908
http://dx.doi.org/10.1090/S0033-569X-06-01002-5
http://dx.doi.org/10.1016/j.cnsns.2008.10.005
http://dx.doi.org/10.1016/j.camwa.2011.04.053
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.041
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.049


Crystals 2020, 10, 142 21 of 22

15. Mahmood, T.; Shah, S.M.; Abbas, G. Magnetohydrodynamics viscous flow over a shrinking sheet in a second
order slip flow model. Heat Transf. Res. 2015, 46, 725–734. [CrossRef]

16. Mansur, S.; Ishak, A.; Pop, I. The magnetohydrodynamic stagnation point flow of a nanofluid over a
stretching/shrinking sheet with suction. PLoS ONE 2015, 10, e0117733. [CrossRef]

17. Carreau, P.J. Rheological equations from molecular network theories. Trans. Soc. Rheol. 1972, 116, 99–127.
[CrossRef]

18. Akbar, N.S.; Nadeem, S.; Haq, R.; Ye, S.W. MHD stagnation point flow of Carreau fluid toward a permeable
shrinking sheet: Dual solutions. Ain Shams Eng. J. 2014, 5, 1233–1239. [CrossRef]

19. Abbasi, F.M.; Hayat, T.; Alsaedi, A. Numerical analysis for MHD peristaltic transport of Carreau-Yasuda
fluid in a curved channel with Hall effects. J. Magn. Magn. Mater. 2015, 382, 104–110. [CrossRef]

20. Khan, M.; Hashim. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet.
AIP Adv. 2015, 5, 107203. [CrossRef]

21. Khan, M.; Hashim; Hussain, M.; Azam, M. Magnetohydrodynamic flow of Carreau fluid over a convectively
heated surface in the presence of non-linear radiation. J. Magn. Magn. Mater. 2016, 412, 63–68. [CrossRef]

22. Aziz, A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface
boundary condition. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1064–1068. [CrossRef]

23. Makinde, O.D.; Aziz, A. MHD mixed convection from a vertical plate embedded in a porous medium with a
convective boundary condition. Int. J. Thermal Sci. 2010, 49, 1813–1820. [CrossRef]

24. Ishak, A. Similarity solutions for flow and heat transfer over a permeable surface with convective boundary
condition. Appl. Math. Comput. 2014, 217, 837–842. [CrossRef]

25. Rahman, M.M.; Merkin, J.H.; Pop, I. Mixed convection boundary-layer flow past a vertical flat plate with a
convective boundary condition. Acta Mech. 2015, 226, 2441–2460. [CrossRef]

26. Ibrahim, W.; Haq, R.U. Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching
sheet with convective boundary condition. J. Braz. Soc. Mech. Sci. Eng. 2015, 38, 1155–1164. [CrossRef]

27. Makinde, O.D.; Khan, W.A.; Khan, Z.H. Stagnation point flow of MHD chemically reacting nanofluid over a
stretching convective surface with slip and radiative heat. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
2017, 231, 695–703. [CrossRef]

28. Maurer, H.; Kessler, C. Identification and quantification of ethylene glycol and diethylene glycol in plasma
using gas chromatography-mass spectrometry. Arch. Toxicol. 1988, 62, 66–69. [CrossRef]

29. Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Camacho, A.; Canzonieri, S.; Pineiro, M.M. Thermal
conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids.
Fluid Phase Equilib. 2013, 337, 119–124. [CrossRef]

30. Xie, H.; Jiang, B.; Liu, B.; Wang, Q.; Xu, J.; Pan, F. An investigation on the tribological performances of
the SiO2-MoS2 hybrid nanofluids for magnesium alloy-steel contacts. Nano. Res. Lett. 2016, 11, 329–336.
[CrossRef]

31. Mushtaq, M.; Mustafa, M.; Hayat, T.; Alsaedi, A. Nonlinear radiative heat transfer in the flow of nanofluid
due to solar energy: A numerical study. J. Taiwan Inst. Chem. Eng. 2014, 45, 1176–1183. [CrossRef]

32. David, R.M. Introduction to the Theory of Stability; Springer: Berlin/Heidelberg, Germany, 2012.
33. Weidman, C.R.; Millner, R. High-resolution stable isotope records from North Atlantic cod. Fish. Res. 2000,

46, 327–342. [CrossRef]
34. Zaib, A.; Chamkha, A.J.; Rashidi, M.M.; Bhattacharyya, K. Impact of nanoparticles on flow of a special

non-Newtonian third-grade fluid over a porous heated shrinking sheet with nonlinear radiation. Nonlinear
Eng. 2018, 7, 103–111. [CrossRef]

35. Azhar, E.; Maraj, E.N.; Iqbal, Z. Mechanistic investigation for the axisymmetric transport of nanocomposite
molybdenum disulfide-silicon dioxide in ethylene glycol and sphericity assessment of nanoscale particles.
Eur. Phys. J. Plus 2018, 133, 130. [CrossRef]

http://dx.doi.org/10.1615/HeatTransRes.2015007512
http://dx.doi.org/10.1371/journal.pone.0117733
http://dx.doi.org/10.1122/1.549276
http://dx.doi.org/10.1016/j.asej.2014.05.006
http://dx.doi.org/10.1016/j.jmmm.2015.01.040
http://dx.doi.org/10.1063/1.4932627
http://dx.doi.org/10.1016/j.jmmm.2016.03.077
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.amc.2010.06.026
http://dx.doi.org/10.1007/s00707-015-1334-2
http://dx.doi.org/10.1007/s40430-015-0347-z
http://dx.doi.org/10.1177/0954408916629506
http://dx.doi.org/10.1007/BF00316260
http://dx.doi.org/10.1016/j.fluid.2012.09.029
http://dx.doi.org/10.1186/s11671-016-1546-y
http://dx.doi.org/10.1016/j.jtice.2013.11.008
http://dx.doi.org/10.1016/S0165-7836(00)00157-0
http://dx.doi.org/10.1515/nleng-2017-0033
http://dx.doi.org/10.1140/epjp/i2018-11958-3


Crystals 2020, 10, 142 22 of 22

36. Akbar, N.S.; Iqbal, Z.; Ahmad, B.; Maraj, E.N. Mechanistic investigation for shape factor analysis of
SiO2/MoS2—Ethylene glycol inside a vertical channel influenced by oscillatory temperature gradient. Can. J.
Phys. 2019, 97, 950–958. [CrossRef]

37. Khan, M.; Sardar, H.; Gulzar, M.M.; Alshomrani, A.S. On multiple solutions of non-Newtonian Carreau fluid
flow over an inclined shrinking sheet. Res. Phys. 2018, 8, 926–932. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1139/cjp-2018-0717
http://dx.doi.org/10.1016/j.rinp.2018.01.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Formulation 
	Stability Analysis of the Solution 
	Results and Discussion 
	Conclusions 
	References

