
ORIGINAL RESEARCH
published: 17 January 2020

doi: 10.3389/fphy.2019.00244

Frontiers in Physics | www.frontiersin.org 1 January 2020 | Volume 7 | Article 244

Edited by:

Ahmed Zeeshan,

International Islamic University,

Islamabad, Pakistan

Reviewed by:

Marin I. Marin,

Transilvania University of Braşov,
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In the present article, fractional view of third order Kortewege-De Vries equations

is presented by a sophisticated analytical technique called Mohand decomposition

method. The Caputo fractional derivative operator is used to express fractional

derivatives, containing in the targeted problems. Some numerical examples are

presented to show the effectiveness of the method for both fractional and integer order

problems. From the table, it is investigated that the proposed method has the same rate

of convergence as compare to homotopy perturbation transform method. The solution

graphs have confirmed the best agreement with the exact solutions of the problems and

also revealed that if the sequence of fractional-orders is approaches to integer order, then

the fractional order solutions of the problems are converge to an integer order solution.

Moreover, the proposed method is straight forward and easy to implement and therefore

can be used for other non-linear fractional-order partial differential equations.

Keywords: analytical solution, Mohand transform, Adomian decomposition, caputo derivatives, third order

Kortewege-De Vries equations

1. INTRODUCTION

The class of partial differential equations known as Korteweg-De Vries (KDV) equation which play
a vital role in the diverse field of physics such as fluid mechanics, signal processing, hydrology,
viscoelasticity and fractional kinetics [1, 2]. The KDV equation was first time derived by Korteweg
and Vries in 1895. The KDV equation used to model long waves, tides, solitary waves, and wave
propagating in a shallow canal. A partial differential Kortewege-De Vries equation of third order is
also applied to study the non-linear model of water waves in superficial canal certain namely canal
[3], in the time when wave in water was of important concentration in applications in navigational
design and also for the awareness of flood and tides [4, 5]. The applications in numerous areas
of physics, applied science and other scientific applications, therefore the excessive amount of
investigation as a research work has been capitalized in the study of KDV equations [6–10]. We
considered the third order time fractional KDV equation in the form [1]

∂γ u(χ ,ℑ)

∂ℑγ
+ κu(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+ λ

∂3u(χ ,ℑ)

∂χ3
+ ψ(χ ,ℑ), 0 < γ ≤ 1, (1)

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00244
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00244&domain=pdf&date_stamp=2020-01-17
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:poom.kum@kmutt.ac.th
https://doi.org/10.3389/fphy.2019.00244
https://www.frontiersin.org/articles/10.3389/fphy.2019.00244/full
http://loop.frontiersin.org/people/800361/overview
http://loop.frontiersin.org/people/827640/overview
http://loop.frontiersin.org/people/800383/overview
http://loop.frontiersin.org/people/73178/overview
http://loop.frontiersin.org/people/731533/overview


Shah et al. Fractional View Analysis of Third Order

with initial source

u(χ , 0) = u(χ),

where, κ and λ are real numbers.
The KdV equations of fractional order can be applied to

examine the influence of the higher-order wave dispersion. The
KdV-Burgers equation defines the waves on lower water surfaces.
The strength of fractional KdV equation is the non-local property
[11–21]. For a higher order Korteweg-de Vries equation, which
is a natural extension of the Korteweg-de Vries equation written
in a bilinear form, a Bcklund conversion in bilinear forms is
provided. For this higher-order equation the Bcklund transition
is given in ordinary forms and the inverse scattering scheme
[22], Korteweg-de Vries type of equations 3rd order coefficient
variable [23] and Solution of the third order Korteweg-De Vries
homotopy perturbation approach using elzaki transform [24].

In few decades, integral transform of various types such as
Fourier transform, Laplace transform, Hankel transform, Mellin
transform, Z-transform, Wavelet transform, Elzaki transform,
Kamal transform, Mahgoub transform, Aboodh transform,
Mohand transform, Sumudu transform, Hermite transform etc.,
gained a enormous importance in solving advanced model in the
field mathematics, physics and engineering [25–36].

In the current article, we have applied the Mohand transform
with decomposition procedure for the analytical treatment of
time fractional KDV equation. The Mohand Transform is one
of the new integral transform use for the analytical treatment
of different physical phenomena are molded by Differential
Equations (DEs) of integer order or Fractional Partial Differential
Equations (FPDEs). Recently, Kumar and Viswanathan used
Mohand transform and solved the mechanics and electrical
circuit problems [37]. Aggarwal have Comparatively Studied
Mohand and Aboodh transforms for the solution of differential
equations. The numerical applications reflect that both the
transforms (Mohand and Aboodh transforms) are closely related
to each other [38]. Sudhanshu Aggarwal have also discussed the
comparative study of Mohand and Laplace transforms, Mohand
and Sumudu transforms, Mohand and Mahgoub transforms
[39–41]. Sudhanshu Aggarwal have successfully discussed the
Mohand transform of Bessels functions of zero, one and two
orders, which is very useful for solving many equations in
cylindrical or spherical coordinates such as heat equation, wave
equation etc. [42]. The exact solution of second kinds of linear
Volterra integral equations get by using Mohand transform. It is
claimed that Mohand transform take very little time and has no
large computational work [43].Mohand transform have also used
the for solution of Abel’s integral equation. The obtained results
show that Mohand transform is a powerful integral transform
for handling Abel’s integral equation [44]. The remaining section
of the paper are managed as follows. In the second section, we
present some related definitions of fractional calculus and basic
concepts of Mohand transform. The third section presents the
implementation the proposed methodology. The four section
represent different models of KDV equation are examined
separately and plotted. Finally, we depict our conclusions.

PRELIMINARIES CONCEPTS

In this section, we present some basic necessary definitions
and preliminaries concepts related to fractional calculus and
Mohand transform.

DEFINITION

Mohand transform first time was define by Mohand and
Mahgoub of the function u(ℑ) for ℑ ≥ 0 in the year 2017. The
Mohand transform which is represented by M(.) for a function
u(τ ) is define as [45]

M{u(ℑ)} = R(υ) = υ2
∫ ∞

0
u(ℑ)e−υℑdℑ, k1 ≤ υ ≤ k2, (2)

The Mohand transform of a function u(ℑ) is R(υ) then u(ℑ) is
called the inverse of R(υ) which is expressed as.

M−1{R(υ)} = u(ℑ), M−1 is inverse Mohand operator. (3)

DEFINITION

Mohand transform for nth derivatives [46]

M{un(ℑ)} = υnR(υ)− υn+1u(0)− υnu′(0)− · · · − υ2un−1(0),

(4)

DEFINITION

Mohand transform for fractional order derivatives [46]

R{uγ (ℑ)} = υγR(υ)−

n− 1
∑

k= 0

uk(0)

υk−(γ+1)
, 0 < γ ≤ n, (5)

DEFINITION

Caputo operator of fractional partial derivative [47]

Dγτ g(χ ,ℑ) =















∂ng(χ ,ℑ)

∂ℑn
, γ = n ∈ N,

1

Ŵ(n− γ )

∫ ℑ

0 (ℑ − φ)n−γ−1gn(φ)∂φ, n− 1 < γ < n

(6)

2. IMPLEMENTATION OF MOHAND
TRANSFORM

In this section we have considered the time fractional KDVmodel
in the form

∂γ u(χ ,ℑ)

∂ℑγ
+ κu(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+ λ

∂3u(χ ,ℑ)

∂χ3
= ψ(χ ,ℑ),

0 < γ ≤ 1, (7)

with initial source

u(χ , 0) = u(χ).

where, κ and λ are real numbers.
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Applying Mohand transform [45]

M

{

∂γ u(χ ,ℑ)

∂ℑγ
+ κu(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+ λ

∂3u(χ ,ℑ)

∂χ3

}

= M
{

ψ(χ ,ℑ)
}

, 0 < γ ≤ 1, (8)

by using the transform property, we can simplify as

υγ {R(υ)− υu(0)} + M

{

κu(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
+ λ

∂3u(x, τ )

∂x3

}

= M
{

ψ(x, τ )
}

, (9)

after some evaluation, Equation (8) simplified as

R(υ) = υu(0)+
1

υγ
M

{

−κu(x, τ )
∂u(x, τ )

∂x
− λ

∂3u(χ ,ℑ)

∂χ3

}

+
1

υγ
M

{

ψ(χ ,ℑ)
}

, (10)

by applying inverse Mohand transform

u(χ ,ℑ) = υu(0)+M−1

{

1

υγ
M

{

−κu(χ ,ℑ)
∂u(χ ,ℑ)

∂χ

−λ
∂3u(χ ,ℑ)

∂χ3

}

+
1

υγ
M

{

ψ(χ ,ℑ)
}

}

. (11)

Finally we obtain the recursive general relation as

u0(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

ψ(χ ,ℑ)
}

}

m = 0

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

−κum(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−λ
∂3um(χ ,ℑ)

∂χ3

}}

, m ≥ 0. (12)

THEOREM

Letχ andY be two Banach spaces andT :χ → Y be a contractive
nonlinear operator, such that for all u; u∗ ∈;χ , ||T(u)−T(u∗)|| ≤
K||u− u∗||, 0 < K < 1 [48].

Then, in view of Banach contraction theorem, T has a unique
fixed point u, such that Tu = u: Let us write the generated series
(12), by the Mohand decomposition method as

χm = T(χm−1), χm−1 =

m− 1
∑

j= 1

uj, j = 0, 1, 2, · · ·

and supposed that χ0 = u0 ∈ Sp(u), where Sp(u) = {u∗ ∈

χ : ||u− u∗|| < p} then, we have

(B1)χm ∈ Sp(u)

(B2) lim
m→∞

χn = u.

Proof
(B1) In view of mathematical induction form = 1, we have

||χ1 − u1|| = ||T(χ0 − T(u))|| ≤ K||u0 − u||.

Let the result is true form− 1, then

||χm−1 − u|| ≤ Km−1||u0 − u||.

We have

||χm−u|| = ||T(χm−1−T(u))|| ≤ K||χm−1−u|| ≤ Km||u0−u||.

Hence, using (B1), we have

||χm − u|| ≤ Km||u0 − u|| ≤ Kmp < p,

which implies that χm ∈ Sp(u).
(B2): Since ||χm − u|| ≤ Km||u0 − u|| and as a limm→∞

Km = 0.
Therefore; we have limm→∞ ||un − u|| = 0 ⇒ limm→∞

un = u.

3. APPLICATIONS AND DISCUSSION

Here, we have implemented theMohand transform on some time
fractional KVD equations.

Example 4.1: Consider the third order time fractional KVD
equation [49]

∂γ u(χ ,ℑ)

∂ℑγ
+ 6u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(13)

with initial source

u(χ , 0) = χ .

Taking Mohand transform of Equation (12), we get

υγ {R(υ)− υu(0)} = M

{

−6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(14)

after some evaluation, Equation (13) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

−6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(15)

by applying inverse Mohand transform, we get

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

−6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(16)

thus, by using recursive scheme of Equation (11), we get

Frontiers in Physics | www.frontiersin.org 3 January 2020 | Volume 7 | Article 244

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shah et al. Fractional View Analysis of Third Order

u0(χ ,ℑ) = u(0) = χ , (17)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

−6um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, m = 0, 1, · · · . (18)

From the recursive formula (17),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

−6u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) = −6χ
ℑγ

γ !
, (19)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

−6u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

−6u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,

u2(χ ,ℑ) = 72χ
ℑ2γ

(2γ )!
, (20)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

−6u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ

−6u1(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ
− 6u2(χ ,ℑ)

∂u0(χ ,ℑ)

∂χ

−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) = −864χ
ℑ3γ

(3γ )!
− 216χ(2γ )!

ℑ3γ

(3γ )!γ !γ !
, (21)

Similarly for m = 3, we can get

u4(χ ,ℑ) = 10368χ
ℑ4γ

(4γ )!
+ 2592χ(2γ )!

ℑ4γ

(4γ )!γ !

+5184χ(3γ )!
ℑ4γ

(4γ )!(2γ )!γ !
, (22)

...

The Mohand transform solution for example 4.1 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)

+u4(χ ,ℑ)+ · · · . (23)

u(χ ,ℑ) = χ − 6x
ℑγ

γ !
+ 72χ

ℑ2γ

(2γ )!
− 864χ

ℑ3γ

(3γ )!

−216χ(2γ )!
ℑ3γ

(3γ )!γ !γ !
+ 10368χ

ℑ4γ

(4γ )!

+2592χ(2γ )!
ℑ4γ

(4γ )!γ !
+ 5184χ(3γ )!

ℑ4γ

(4γ )!(2γ )!γ !
+ · · · .

(24)

For particular case γ = 1, the Mohand transform solution
become as

u(x, τ ) = χ(1− 6ℑ + 36ℑ2 − 216ℑ3 + 1296ℑ4 + · · · ). (25)

The calculated result provide the exact solution in the close form

u(χ ,ℑ) =
χ

1+ 6ℑ
. (26)

Example 4.2: Consider the third order time fractional KVD
equation [50]

∂γ u(χ ,ℑ)

∂ℑγ
+ u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(27)

with initial source

u(χ , 0) = 1− χ .

Taking Mohand transform of Equation (26)

υγ {R(υ)− υu(0)} = M

{

−u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(28)

after some evaluation, Equation (27) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

−u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(29)

taking inverse Mohand transform of Equation (28)

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

−u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(30)

by using the recursive scheme Equation (11), we get

u0(χ ,ℑ) = u(0) = 1− χ , (31)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

−um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, (32)

From the recursive formula (31),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

−u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) = (1− χ)
ℑγ

γ !
, (33)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

−u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

−u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,
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u2(χ ,ℑ) = 2(1− χ)
ℑ2γ

(2γ )!
, (34)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

−u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ

−u1(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ
− u2(χ ,ℑ)

∂u0(χ ,ℑ)

∂χ

−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) = 6(1− χ)
ℑ3γ

(3γ )!
. (35)

...

The Mohand transform solution for example 3.2 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)+ .. (36)

u(χ ,ℑ) = 1− χ + (1− χ)
ℑγ

γ !
+ 2(1− χ)

ℑ2γ

(2γ )!

+6(1− χ)
ℑ3γ

(3γ )!
+ · · · . (37)

For particular case γ = 1, the Mohand transform solution
become as

u(χ ,ℑ) = 1− χ(1+ ℑ+ ℑ2 + ℑ3 + · · · ). (38)

The calculated result provide the exact solution in the close form

u(χ ,ℑ) =
1− χ

1− ℑ
. (39)

Example 4.3 Consider the third order time fractional KVD
equation [6]

∂γ u(χ ,ℑ)

∂ℑγ
− 6u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(40)

with initial source

u(χ , 0) = 6χ .

Taking Mohand transform of Equation (39)

υγ {R(υ)− υu(0)} = M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(41)
after some evaluation, Equation (40) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(42)

by applying inverse Mohand transform, we get

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(43)

thus, by using recursive scheme of Equation (11),
we get

u0(χ ,ℑ) = u(0) = 6χ (44)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

6um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, m = 0, 1, · · · . (45)

From the recursive formula (44),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) = 216χ
ℑγ

γ !
, (46)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

+ 6u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,

u2(χ ,ℑ) = 15552χ
ℑ2γ

(2γ )!
, (47)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ
+ 6u1(χ ,ℑ)

∂u1(χ ,ℑ)

∂χ

+6u2(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) = 1119744χ
ℑ3γ

(3γ )!
+ 279936χ(2γ )!

ℑ3γ

(3γ )!γ !γ !
, (48)

...

The Mohand transform solution for example 4.3 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)+ · · · . (49)

u(χ ,ℑ) = 6χ + 216χ
ℑγ

γ !
+ 15552χ

ℑ2γ

(2γ )!
+

1119744χ
ℑ3γ

(3γ )!
+ 279936χ(2γ )!

ℑ3γ

(3γ )!γ !γ !
+ · · · . (50)

For particular case γ = 1, the Mohand transform solution
become as

u(χ ,ℑ) = 6χ(1+ 36ℑ + 1296ℑ2 + 46656ℑ3 + · · · ). (51)

Frontiers in Physics | www.frontiersin.org 5 January 2020 | Volume 7 | Article 244

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shah et al. Fractional View Analysis of Third Order

The calculated result provide the exact solution in the close form

u(χ ,ℑ) =
6χ

1− 36ℑ
. (52)

Example 4.4 Consider the third order time fractional KVD
equation [6]

∂γ u(χ ,ℑ)

∂ℑγ
− 6u(χ ,ℑ)

∂u(χ ,ℑ)

∂χ
+
∂3u(χ ,ℑ)

∂χ3
= 0, 0 < γ ≤ 1,

(53)

with initial source

u(χ , 0) =
6

χ2
.

Taking Mohand transform of Equation (52)

υγ {R(υ)− υu(0)} = M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}

,

(54)

after some evaluation, Equation (53) is simplified as

R(υ) = υu(0)+
1

υγ

{

M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

,

(55)

by applying inverse Mohand transform, we get

u(χ ,ℑ) = u(0)+M−1

{

1

υγ
M

{

6u(χ ,ℑ)
∂u(χ ,ℑ)

∂χ
−
∂3u(χ ,ℑ)

∂χ3

}}

.

(56)

Thus, by using recursive scheme of Equation (11), we get

u0(χ ,ℑ) = u(0) =
6

χ2
, (57)

um+1(χ ,ℑ) = M−1

{

1

υγ
M

{

6um(χ ,ℑ)
∂um(χ ,ℑ)

∂χ

−
∂3um(χ ,ℑ)

∂χ3

}}

, m = 0, 1, · · · . (58)

FIGURE 1 | Represents the exact and analytical solution of example 4.1.

FIGURE 2 | Represents the solution at different fractional order.
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From the recursive formula (44),
for m = 0

u1(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u0(χ ,ℑ)

∂χ3

}}

,

u1(χ ,ℑ) =
−288

χ5

ℑγ

γ !
, (59)

for m = 1

u2(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ

+6u1(χ ,ℑ)
∂u0(χ ,ℑ)

∂χ
−
∂3u1(χ ,ℑ)

∂χ3

}}

,

u2(χ ,ℑ) =
12096

χ8

ℑ2γ

(2γ )!
, (60)

for m = 2

u3(χ ,ℑ) = M−1

{

1

υγ
M

{

6u0(χ ,ℑ)
∂u2(χ ,ℑ)

∂χ

+6u1(χ ,ℑ)
∂u1(χ ,ℑ)

∂χ
+ 6u2(χ ,ℑ)

∂u0(χ ,ℑ)

∂χ

−
∂3u2(χ ,ℑ)

∂χ3

}}

,

u3(χ ,ℑ) =
4354560

χ11

ℑ3γ

(3γ )!
−

2488320

χ11
(2γ )!

ℑ3γ

(3γ )!γ !γ !
, (61)

...

The Mohand transform solution for example 4.3 is

u(χ ,ℑ) = u0(χ ,ℑ)+ u1(χ ,ℑ)+ u2(χ ,ℑ)+ u3(χ ,ℑ)+ .. (62)

u(χ ,ℑ) =
6

χ2
−

288

χ5

ℑγ

γ !
+

12096

χ8

ℑ2γ

(2γ )!
+

4354560

χ11

ℑ3γ

(3γ )!

−
2488320

χ11
(2γ )!

ℑ3γ

(3γ )!γ !γ !
. (63)

For particular case γ = 1, the Mohand transform solution
become as

u(χ ,ℑ) =
6

χ2
−

288

χ5
ℑ +

6048

χ8
ℑ2 −

103680

χ11
ℑ3 + · · · . (64)

The calculated result converge to the exact solution in the
close form

u(χ ,ℑ) =
6χ(χ3 − 24ℑ)

(χ3 + 12ℑ)2
. (65)

FIGURE 3 | Represents the exact and analytical solution of example 4.2.
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FIGURE 4 | Represents the exact and analytical solution of example 4.3.

FIGURE 5 | Represents the solution of example 4.3 at γ = 0.75, γ = 0.5.

4. RESULTS AND DISCUSSION

In Figure 1, the exact and analytical solutions of example 4.1 are
presented. The solution-graph have confirmed that the obtained
results are in good contact with the exact solutions of example
4.1. In Figure 2, the fractional-order solutions are calculated
at fractional-order γ = 1, 0.9, 0.7, and 0.5. The solutions
graphs are expressed in both two and three dimensions. The
convergence phenomena can be observed from Figure 2. The
similar implementation and results can be seen in Figures 3–7
for example 4.3 and 4.4 also. In Table 1, the results of MDM
are compared with the results of HPTM which provide identical
results. It is observed that the proposed method has the sufficient
accuracy and rate of convergence to the exact solutions of
the problems. It is also investigated that the proposed method

provided the simple and straightforward implementation for all
examples 1, 2, 3, and 4. These investigations of results have
confirmed that the present method can be extended to other
fractional-order problems arising in science and engineering.

5. CONCLUSION

The proposed method is considered to be one of the pre-eminent
and new analytical technique, to solve fractional order partial
differential equation. In current research article, the proposed
method is applied to solve fractional-order kortewege-De Vries
equations. The current method is constructed by using Mohand
transformation along with Adomian decomposition method.
The new hybrid method is very useful to handle the analytical
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FIGURE 6 | Represents the exact and analytical solution of example 4.4.

FIGURE 7 | Represents the solution of example 4.4 at γ = 0.75, γ = 0.5.

TABLE 1 | Comparison of MDM and HPTM [49] of example 1 at ℑ = 0.5.

MDM MDM MDM Absolute

error

Absolute

error

χ γ = 0.55 γ = 0.75 γ = 1 HPTM

(γ = 1)

MDM

(γ = 1)

0.1 0.0712628292 0.0893256192 0.0970873 7.86E-08 7.85E-08

0.2 0.1425256585 0.1786512385 0.1941746 1.57E-07 1.56E-07

0.3 0.2137884877 0.2679768577 0.2912619 2.35E-07 2.35E-07

0.4 0.2850513169 0.3573024770 0.3883492 3.14E-07 3.14E-07

0.5 0.3563141462 0.4466280962 0.4854365 3.93E-07 3.93E-07

0.6 0.4275769754 0.5359537154 0.5825238 4.71E-07 4.71E-07

0.7 0.4988398046 0.6252793347 0.6796111 5.50E-07 5.50E-07

0.8 0.5701026338 0.7146049539 0.7766984 6.29E-07 6.29E-07

0.9 0.6413654631 0.8039305732 0.8737857 7.07E-07 7.07E-07

1 0.7126282923 0.8932561924 0.9708730 7.86E-07 7.86E-07

solutions of fractional-order partial differential equations. To
verify, the validity of the suggested method some numerical
examples of time fractional third order KdV equations are

considered to solve it analytically. The solution graphs have
confirmed the validity and reliability of the suggested method
toward the solutions of other fractional-order non-linear partial
differential equations.
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43. Aggarwal S, Sharma N, Chauhan RṠolution of linear Volterra integral

equations of second kind using Mohand transform. Int J Res Adv Technol.

(2018) 6:3098–102.

44. Srivastava HM, Shah R, Khan H, Arif M. Some analytical and numerical

investigation of a family of fractional order Helmholtz equations in

two space dimensions. Math Methods Appl Sci. (2020) 43:199–212.

doi: 10.1002/mma.5846

45. Mohand M, Mahgoub A. The new integral transform Mohand Transform.

Adv Theor Appl Math. (2017) 12:113–20.

46. Aggarwal S, Mishra R, Chaudhary A. A comparative study of

Mohand and Elzaki transforms. Glob J Eng Sci Res. (2019) 6:

203–13.

47. Hilfer R, editor. Applications of Fractional Calculus in Physics. Singapore:

World Scientific (2000).

48. Shah K, Khalil H, Ali Khan R. Analytical solutions of fractional

order diffusion equations by natural transform method. Iran J

Sci Technol Trans A. (2018) 42:1479–90. doi: 10.1007/s40995-016-

0136-2

49. Eljaily MH, Elzaki TM. Homotopy perturbation transform method for

solving korteweg-devries (kdv) equation. Pure Appl Math J. (2015) 4:264–8.

doi: 10.11648/j.pamj.20150406.17

50. Sedeeg AKH. Homotopy perturbation transform method for solving

third order Korteweg De-Vries (KDV) Equation. AJAM. (2016) 4:247–51.

doi: 10.11648/j.ajam.20160405.16

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Shah, Farooq, Khan, Baleanu, Kumam and Arif. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physics | www.frontiersin.org 11 January 2020 | Volume 7 | Article 244

https://doi.org/10.1002/mma.5846
https://doi.org/10.1007/s40995-016-0136-2
https://doi.org/10.11648/j.pamj.20150406.17
https://doi.org/10.11648/j.ajam.20160405.16
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Fractional View Analysis of Third Order Kortewege-De Vries Equations, Using a New Analytical Technique
	1. Introduction
	Preliminaries Concepts
	Definition
	Definition
	Definition
	Definition
	2. Implementation of Mohand Transform
	Theorem
	Proof

	3. Applications and Discussion 
	4. Results and Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


