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Abstract: This article studies dark, bright, trigonometric
and rational optical soliton solutions to the perturbed
nonlinear Schrödinger–Hirota equation (PNLSHE). Hence,
we have examined two cases: first, restrictions have been
done to the third-order (TOD) (γ) as constraint relation, and
the coupling coefficients (σ) is obtained as well as the
velocity of the soliton by adopting the traveling wave
hypothesis. Second, the TOD and the coupling coefficients
are non-zero value, sending back to the PNLSHE, which has
been studied in refs. [4,10,16] recently. By employing two

relevant integration technics such as the auxiliary equation
and the modified auxiliary equation method, miscellaneous
optical solitary wave is obtianed, which is in agreement
with the outcomes collected by the previous studies [4,16].
These results help in obtaining nonlinear optical fibers in
the future.

Keywords: optical solitons, perturbed nonlinear
Schrödinger-Hirota equation.

1 Introduction

Investigation of optical solitons have decidedly gained
momentum in the field of the solitary waves. Review of
various solutions have been made to the nonlinear
Schrödinger equations with low group velocity disper-
sion, dispersion terms, Kerr nonlinearities, spatiotem-
poral dispersion, self-steepening, etc. Habitually, these
results are qualifying combo solitons, chirped free and
chirped solitons, and dark combo soliton [1–10,16–24]. If
the applications of these results are numerous, but
communication by optic fibers is one of them. Moreover,
solitons have revolutionized the communication system
through the wave guides more recently. It is undoubt-
edly that the soliton constitutes the pillar of data transfer
and communication at unimaginable distances.

However, all the strength of the optical system lies
on well-known effects, which at the same time constitute
conditions restrictions. Most of the time, pulse propaga-
tion in optical fibers can be concerned by group velocity
dispersion (GVD), nonlinearity and polarization mode
dispersion. Regarding nonlinearity effect, it is observed a
wide class such Kerr effect, Raman scattering, Brilouin
scattering just to a few.

To date, we find in the literature a variety of
mathematical methods that have facilitated the construc-
tion of traveling wave solutions, such as the auxiliary
equation method [2,3], the sine-Gordon expansion method
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[4], the simplest equation approach [5], the modified
auxiliary equation [6], the sine-cosine method [7], new the
(G′/G)-expansion method [8,9], the sine-Gordon expan-
sion [10], Homotopy perturbation Sumudu transform
method [11–14], computational algorithm [15] and so on.

Recently, a wide class of model have been used to
investigate optical solitons in optic fibers, such as Chen-
Lee-Liu model [27], Fokas–Lenells equation [28] and
Klein–Gordon–Zakharov equations [29,30]. The various
fibers are usually monomode, multimode, twin-core and
multiple-core couplers with different types of nonlinea-
rities (i.e., Kerr, power law, parabolic law and dual-power
law). Alongside these models, the famous nonlinear
Schrödinger equation has also experienced an ascent in
the search for optical solitons. The nonlinear Schrödin-
ger’s equation is also known for its virtue in the study of
elementary and specific propagation of dispersive and
nonlinear waves. In the following section, the dimension-
less form of the PNLSHE with spatiotemporal dispersion
and Kerr law nonlinearity will be presented as well as the
physical terms and coefficients that it abounds.

2 Nonlinear Schrödinger–Hirota
equation with Kerr law
nonlinearity

The PNLSHE that reflect pulse propagation in a
dispersive optical fibers [18] was treated analytically by
refs. [4,16,17]. As a result, dark, dark-bright, new type of
jacobian elliptic function solutions and inclosed optical
solitons have been retrieved. It is expressed in the
following form:

+ + + | | + [ + | | ]

= [ + (| | ) + (| | ) ]

iq aq bq cq q i γq σ q q
i q λ q q ν q q .

t xx xt xxx x

x x x

2 2

2 2 (1)

In view of the real involvement of optical solitons in the
transport of information, the challenge is to build
reliable and stable exact optical solitons to perform the
transcontinental transportation of data. The challenge in
this article is to seek analytical solutions that can lead to
direct application in optical fibers. Hence, the model is
the dimensionless couple of the dispersive nonlinear
Schrodinger–Hirota equation that was recently used by
Inc et al. [4].

+ + + | | + [ + | | ]

= [ + (| | ) + (| | ) ]

iψ aψ bψ cq q i γψ σ q ψ
i ψ λ q q ν q q ,

t xx xt xxx x

x x x

2 2

2 2 (2)

+ + + | | + [ + | | ]

= [ + (| | ) + (| | ) ]

iq aq bq cψ ψ i γq σ ψ q
i q λ ψ ψ ν ψ ψ ,

t xx xt xxx x

x x x

2 2

2 2 (3)

where ( )q x t, and ( )ψ x t, are the complex envelop of the
the electric field. x and t are the propagation distance
and time depends variables, respectively. The para-
meters a accounts for normal or anomalous GVD at the
carrier frequency, b and c are spatiotemporal coefficient
and nonlinearity term, respectively. γ accounts for the
third-order dispersion (TOD), λ and ν denotes the self-
steepening and self frequency shift, respectively, and σ
is a coupling parameter. Therewith, the Kerr nonlinearity
term in the set of equations (2) and (3) comes from the
fact that a light wave in an optical fiber fronts nonlinear
effects owing to the nonharmonic movement of electrons
coming from an external electric field.

The model of PNLSHE will help to obtain an optical
pulse through an optical fiber and will provoke the
nonlinear birefringence. Moreover, this event will be
used to eliminate low-intensity socle occurring when
pulses are squeezed by utilizing a fiber-grating super-
charger [25]. The nonlinear birefringence produced by an
intense pulse can aid to modify the shape of the
resulting pulse, even in lake of a pump pulse. This is
justified in view of that during its transmission via a
combination of fiber and polarizer mostly belong on the
intensity. It is important that fibers deliver light without
modifying their condition of polarization. Those fibers
are called polarization-preserving or polarization-reten-
tion fibers. Nowadays, mixed polarization solitons have
gained a lot of attention in nonlinear fiber optics. It
became possible to look for closely exact solutions to the
couple of PNLHSE, which describes wave propagation
along an optical fiber.

To achieve the main goal of this study, Section 3
employs a transformation hypothesis to equations (2)
and (3). Also, two integration algorithms such as the
auxiliary equation and the modified auxiliary equation
methods are apllied, which will drive to optical solitons.

3 Soliton-like solutions

To unearth soliton-like solutions to the set of equations
(2) and (3), this section presents traveling-wave hypoth-
esis to obtain nonlinear ordinary equation of the
perturbed NLSHE. The followings are the expressions
of the wave solution:

( ) = ( )
[ ( )]ψ x t ϕ ξ e, ,i θ x t

1
, (4)
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( ) = ( )
[ ( )]q x t ϕ ξ e, ,i θ x t

2
, (5)

where = −ξ x vt and ( ) = − + +θ x t κx ωt θ, 0. v is a speed
of the wave, κ is the wave number, ω represents the
frequency of the soliton and θ0 is the phase constant.

Inserting equations (4) and (5) into equations (2) and
(3) gives the real parts:

( − − − − ) + ( − + ) ″

+ ( − − ) + =

bκω ω κ aκ κ γ ϕ a bv κγ ϕ
c κλ ν ϕ κσϕ ϕ

3
3 2 0,

2 3
2 2

1
3

1
2

2
(6)

( − − − − ) + ( − + ) ″

+ ( − − ) + =

bκω ω κ aκ κ γ ϕ a bv κγ ϕ
c κλ ν ϕ κσϕ ϕ

3
3 2 0,

2 3
1 1

2
3

2
2

1
(7)

thence, the imaginary parts are as follows:

(− − + + − − ) ′

− ( + ) ′ + ′ + ′′′ =

v aκ bκv bω κ σ ϕ
λ ν ϕ ϕ σϕ ϕ γϕ
2 3 1

3 2 0.

2
2

1
2

1 1
2

2 1
(8)

(− − + + − − ) ′

− ( + ) ′ + ′ + ′′′ =

v aκ bκv bω κ σ ϕ
λ ν ϕ ϕ σϕ ϕ γϕ
2 3 1

3 2 0.

2
1

2
2

2 2
2

1 2
(9)

To unify the expressions of equations (6)–(9), we set
=i 1, 2 and =j 1, 2. So, equations (6)–(9) drop to the

following expression:

( − − − − ) + ( − + ) ″

+ ( − − ) + =

bκω ω κ aκ κ γ ϕ a bv κγ ϕ
c κλ ν ϕ κσϕ ϕ

3
3 2 0,

i i

j j i

2 3

3 2 (10)

and the imaginary parts are as follows:

(− − + + − − ) ′

− ( + ) ′ + ′ + ′′′ =

v aκ bκv bω κ σ ϕ
λ ν ϕ ϕ σϕ ϕ γϕ
2 3 1

3 2 0.
i

j i j j

2

2
1

2 (11)

Then, the two cases are presented here.

Case 1. Suppose ≠ ⇒ ≠i j ϕ ϕi j, later from equation (11),
the restrictions are made as follows:

= −λ ν2
3

, (12)

=γ 0, (13)
=σ 0, (14)

=

− −

−

≠v bω aκ
bκ

bκ2 1
1

, 1. (15)

Consequently, equation (10) becomes

+ ″ + =l ϕ l ϕ l ϕ 0,i i j0 1 2
3 (16)

= ( − − − )l bκω ω κ aκ0
2 , = ( − )l a bv1 , = + ( − )l c ν κ2 12 .

Inspecting equation (16), it depends on the coeffi-
cients GVD and Kerr nonlinearity related to the self-phase
modulation (SPM), which can produce an important

phenomenon on the pulse propagating along the optical
fibers such as cross-phase modulation. Suppose analytical
solution of equation (16) can be expressed as follows [2]:

∑= + ( ( ))

=

ϕ A A g ξ ,i
k

n

k
k

0
1

(17)

∑= + ( ( ))

=

ϕ B B g ξ ,j
k

n

k
k

0
1

(18)

and ( )g ξ fulfills the auxiliary equations given as
follows:

= ( + + + + )g C C g C g C g C g2 ,ξ 0 1 2
2

3
3

4
4 (19)

= + + +g C C g C g C g2 3 4 .ξξ 1 2 3
2

4
3 (20)

By applying the homogeneous balance principle be-
tween ″ϕi and ϕj

3 in equation (11), it is revealed
= =N N 1i j .

= + ( )ϕ A A g ξ ,i 0 1 (21)

= + ( )ϕ B B g ξ .j 0 1 (22)

Substituting equations (16) and (17) into equation (11)
and used together with equations (14) and (15), it
follows the system of equation expressed in terms
of ( ( ))g ξ k:

( ( )) + =g ξ l A C l B: 4 0,3
1 1 4 2 1

3

( ( ))) +g ξ l A C l B B: 3 3 ,2
1 1 3 2 0 1

2

( ( )) + + =g ξ l A l A C l B B: 2 3 0,1
0 1 1 1 2 2 0

2
1

( ( )) + + =g ξ l A l A C l B: 0.0
0 0 1 1 1 2 0

3

By using MAPLE, we obtian the following:

Result 1

=A 00 , =A A1 1, =B 0,0 = −
( + )B ,κσA B κσB l
l l1

2 1 0 0
2

0

2 0
= −C l

l2
1
2

0

1
,

= −C .l B
l A4

1
4

2 1
3

1 1

By using Result 1, the localized solutions are
constructed to equations (2) and (3), which are as
follows:

(i): = = =C C C 00 1 3 , for >C 02 and <C 04

( ) =

−

( ( − ))
( )ψ x t A C

C
h C x vt e, sec 2 .iθ x t

1,1 1
2

4
2

,







(23)

( ) =

−

( ( − ))
( )q x t B C

C
h C x vt e, sec 2 .iθ x t

1,1 1
2

4
2

,







(24)

(2i): =C C
C0 4
2
2

4
, and = =C C 01 3 , for < >C C0, 02 4
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( ) =

−

( − ( − ))
( )ψ x t A C

C
C x vt e,

2
tanh .iθ x t

1,2 1
2

4
2

,







(25)

( ) =

−

( − ( − ))
( )q x t B C

C
C x vt e,

2
tanh .iθ x t

1,2 1
2

4
2

,







(26)

Result 2

= −A ,l B
l0

2 0
3

0
= −A l B B

l C1
2 0 1

2

1 3
, = =B B B B,0 0 1 1, =C2

− + ,l B B l C
B l

1
2

30 1 0 1 3

1 1
=C .B C

B4
1
4

1 3

0

(3i): = =C C 00 1 , for >C 02 and >C 04 , combined
bright-dark optical solitons to SHE is revealed as follows:

( )

( )

( )

= +

−

×

( − )

( − )

( )

ψ x t

A A
C h C

C C C C

e

,

sec 2

2 tanh 2

,

x vt

x vt

iθ x t

1,3

0 1
2

2
2 2

2 4 2 2 3

,












(27)

( )

( )

( )

= +

−

( − )

( − )

( )

q x t

B B
C h C

C C C C
e

,

sec 2

2 tanh 2
.

x vt

x vt
iθ x t

1,3

0 1
2

2
2 2

2 4 2 2 3

,












(28)

(4i): = =C C 00 1 , for >C 02 and − >C C C4 03
2

2 4

( )

= +

( ( − ))

− − ( ( − ))

×
( )

ψ x t

A A
C h C x vt

C C C C h C x vt
e

,

2 sec 2
4 sec 2

,iθ x t

1,4

0 1
2 2

3
2

2 4 3 2

,
















(29)

( )

= +

( ( − ))

− − ( ( − ))

×
( )

q x t

B B
C h C x vt

C C C C h C x vt
e

,

2 sec 2
4 sec 2

.iθ x t

1,4

0 1
2 2

3
2

2 4 3 2

,
















(30)

(5i): = =C C 00 1 , for >C 02 and it is revealed that

( )

( )

( )

( )

= +

− −

×

( − )

( − )

( )

ψ x t

A A
C C h C

C C C C

e

,

sec 2

1 tanh 2

.

x vt

x vt

iθ x t

1,5

0 1
2 3

2
2 2

2 4 2 2

2
3
2

,
















(31)

( )

( )

( )

( )

= +

− −

×

( − )

( − )

( )

q x t

B B
C C h C

C C C C

e

,

sec 2

1 tanh 2

,

x vt

x vt

iθ x t

1,5

0 1
2 3

2
2 2

2 4 2 2

2
3
2

,
















(32)

where ( ) = − + +θ x t κx ωt θ, 0.

Case 2. Suppose = ⇔ = =i j ϕ ϕ ϕi j , consequently
equations (10) and (11) turn to

( − − − − ) + ( − + ) ″

+ ( − − + ) =

bκω ω κ aκ κ γ ϕ a bv κγ ϕ
c κλ ν κσ ϕ

3
3 2 0,

2 3

3 (33)

(− − + + − − ) ′

− ( + ) ′ + ′ + ′″ =

v aκ bκv bω κ σ ϕ
λ ν ϕ ϕ σϕ ϕ γϕ
2 3 1

3 2 0.

2

2 2 (34)

After integration of equation (34) and taking zero as the
value of the integration constant:

+ + ″ =l ϕ l ϕ γϕ 0,0 3
3 (35)

where = − − + + − −l v aκ bκv bω κ σ2 3 10
2 ; = − ( +l σ3

1
3

+ )λ ν3 2 .

In this study, we take into account the TOD, and
then the low GVD appears without much effect in
front of it. So the balance between nonlinearity and
(TOD) dispersion can probably lead to stable soliton
solutions.

In general, the TOD becomes more important than
the GVD when the dispersion shift is considered in the
fiber [26]. Without doubt, taking into account the TOD
parameter could give another flavor to the results. It is
certain that the expected results (solitons) can guide the
dimension to be done on the optic fibers, thus for more
adequate applications.

To adopt the traveling-wave solution to equations
(28) and (30), the following whole series form is
used:

∑( ) = + ( + )

=

( ) − ( )ϕ ξ A A K B K ,
i

n

i
if ξ

i
if ξ

0
1

(36)

where A1, Bi and K are arbitrary constants and ( )f ξ
satisfies the following ODE:

′( ) =

+ +

( )

− ( ) ( )

f ξ β αK μK
Kln

,
f ξ f ξ

(37)

where α, β and μ are reals constants to be determined,
with >K 0 and ≠K 1 [6].

Taking into account the tenet on ϕ3 and ″ϕ in
equations (28) and (30), lets glean = =N N 11 2 . Hence,

( ) = + +
( ) − ( )ϕ ξ A A K B K ,f ξ f ξ

0 1 1 (38)

Substitute equations (33) and (32) into equations (28)
and (30), the system of equations is obtained:

( ( )) + =K ξ γμ A A l: 2 0,f 6 2
1 1

3
3

( ( )) + =K ξ βγμA A A l: 3 3 0,f 5
1 0 1

2
3
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( ( )) + + + +

=

K ξ αγμA β γA A A l A B l A l: 2 3 3

0,

f 4
1

2
1 0

2
1 3 1

2
1 3 1 0

( ( )) + + + + =K ξ αβγA βγμB A l A A B l A l: 6 0,f 3
1 1 0

3
3 0 1 1 3 0 0

( ( )) + + + + =K ξ αγμB β γB A B l A B l B l: 2 3 3 0,f 2
1

2
1 0

2
1 3 1 1

2
3 1 0

( ( )) + =K ξ αβγB A B l: 3 3 0,f 1
1 0 1

2
3

( ( )) + =K ξ γB α l B: 2 0.f 0
1

2
3 1

3

Using MAPLE as a calculation tool, the following results
emerge.

Set 1: =
( − )

A βl
l αμ β0 4

0

3 2 , =A αA
β1

2 0 , = −
−

γ .l
αμ β

2
4

0
2

Set 2: =
( − )

A βl
l ασ β0 4

0

3 2 , =B σA
β1

2 0 , = −
−

γ .l
αμ β

2
4

0
2

By using Set 1, it is gained to equations (2) and (3),
(6i): For − <β αμ4 02 and ≠μ 0, we gain trigono-

metric functions solutions

( )

( )

= +

− + − −

×

( − )

( )

ψ x t

A A
β αμ β αμ β

μ

e

,

4 tan 4

2

.

x vt

θ x t

2,0

0 1

2 2
2

,






























(39)

or

( )

( )

= + −

− − +

×

( − )

( )

ψ x t

A A
αμ β αμ β β

μ

e

,

4 cot 4

2

.

x vt

iθ x t

2,1

0 1

2 2
2

,






























(40)

(7i): For − >β αμ4 02 and ≠μ 0, we gain the
following soliton solutions:

Figure 1: The plot of the bright solitons | ( )|ψ x t,1,3
2 at (a) =C 0.04482 , =C 0.28253 , =C 0.67994 , = ×A 1.147 100

−7, =A 20.00081 ,
= = =a b v1, 0.0152, 0.00015; (b) =C 0.04782 , =C 0.05643 , =C 0.10884 , = ×A 5.7287 100

−7, =A 20.00081 , =a 1, =b 0.0152;
(c) =C 0.04482 , =C 0.28253 , =C 0.67994 , = ×A 1.147 100

−7, =A 20.00081 , =a 1, =b 0.0152, =v 0.0025; and (d) =C 0.04472 ,
=C 0.00713 , =C 0.00174 , = ×A 1.147 100

−7, =A 20.00081 , =a 1, =b 0.0152, =v 0.0075, respectively.
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( )

( )

= + −

− + − + +

×

( − )

( )

ψ x t

A A
αμ β αμ β β

μ

e

,

4 tanh 4 x vt

iθ x t

2,2

0 1

2 2
2

,






























(41)

or bright soliton solutions

( )

( )

= + −

− + − + +

×

( − )

( )

ψ x t

A A
αμ β αμ β β

σ

e

,

4 coth 4

2

.

x vt

iθ x t

2,3

0 1

2 2
2

,






























(42)

(8i): For − =β αμ4 02 and ≠μ 0, the following
solution is recovered:

( ) = + −

( − ) +

( − )

( )ψ x t A A
αμ x vt

μ x vt
e,

1
.iθ x t

2,4 0 1
,

















(43)

From Set 2, the following solitary wave solutions are
obtained.

(9i): For − <β αμ4 02 and ≠μ 0, the following
trigonometric function solutions are obtained:

( )

( )

= +

− + − −

×

( − )

( )

ψ x t

A B μ
β αμ β αμ β

e

,

2
4 tan 4

,

x vt

iθ x t

2,11

0
1

2 2
2

,












(44)

or

( )

( )

= −

+ − −

×

( − )

( )

ψ x t

A B μ
β αμ β αμ β

e

,

2
4 cot 4

.

x vt

iθ x t

2,22

0
1

2 2
2

,












(45)

Figure 2: The plot of analytical solutions | ( )|ψ x t,1,5
2 at (a) =C 0.00752 , =C 0.00533 , =C 0.00174 , = ×A −5.9001 100

−5, =A 10.0081 ,
= = =B B v0.0021, 0.8001, 0.00750 1 ; (b) =C 0.00752 , =C 0.00533 , =C 0.00174 , = ×A −5.9001 100

−5, =A 10.0081 ,
= = =B B v0.0021, 0.8001, 0.0750 1 ; (c) =C 0.00752 , =C 0.00533 , =C 0.00174 , = ×A −5.9001 100

−5, =A 10.0081 ,
= = =B B v0.0021, 0.8001, 1.0750 1 ; and (d) =C 0.00752 , =C 0.00533 , =C 0.00174 , = ×A −5.9001 100

−5, =A 10.0081 ,
= = =B B v0.0021, 0.8001, 1.750 1 , respectively.
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(10i): For − >β αμ4 02 and ≠μ 0, we obtian
uncovered dark soliton solutions:

( )

( )

= −

− + − + +

×

( − )

( )

ψ x t

A B μ
αμ β αμ β β

e

,

2
4 tanh 4

,

x vt

iθ x t

2,33

0
1

2 2
2

,












(46)

or bright soliton solutions

( )

( )

= −

− + − + +

×

( − )

( )

ψ x t

A B μ
αμ β αμ β β

e

,

2
4 coth 4

.

x vt

iθ x t

2,44

0
1

2 2
2

,












(47)

(11i): For − =β αμ4 02 and ≠μ 0, the following
solutions are obtained:

( ) = −

( − )

( − ) +

( )ψ x t A B μ x vt
αμ x vt

e,
1

.iθ x t
2,55 0

1 ,







(48)

4 Results and discussion

Figure 1 shows a graphical illustration of the bright
soliton (Figure 1(a)) and the one that seem to be like
bright solitons (Figure 1(b–d)). Figure 2 shows the fusion
bright and dark solitons. The bright soliton is known as
the first-order soliton, which is concerning by a balance
effect producing by the second-order dispersion (GVD)
and Kerr nonlinearity (SPM) in an anomalous regime. To
suit this result, the third-order dispersion is negligible (γ
= 0) and that circumscribes better the details obtained on
constraint relating to these parameters in equation (13).

Figure 3: Depict soliton solution of | ( )|ψ x t,2,2
2 at (a) =α −2.007, =β 2.7, =A 0.04020 , =A 370.6771 ; (b) =α 2.00072, =β 0.59,

=A 0.04020 , =A 370.6771 ; (c) =α 2.00072, =β 0.51, =A 0.04020 , =A 370.6771 ; and (d) =α 2.007, =β 0.59, =A 0.04020 ,
=A 370.6771 , respectively.
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Definitively it is emerged that the predictions done on the
boundary conditions of an amplitude, which must not
tend toward a zero value, are illustrated through the
obtained graphically solutions (Figures 1 and 2). By
adopting the modified auxiliary equation, it revealed
multiple kink, anti-kink, kink and double kink-like
soliton solutions (Figure 3(a–d)). Moreover, the obtained
analytical results plotted in Figure 1 illustrate one, two
and three optical solitons like optical solitons moleculesr.

5 Conclusion

The main aim of this article is to obtain optical solitons
that could satisfy the constraint conditions posed on the
different parameters of the PNLSHE. Hence, the third-
order dispersion term was initially considered negligible
(i.e., γ = 0). Bright and dark optical solitons have been
successfully obtained. However, the search for these
results took into account two important factors, namely,
the second-order dispersion (GVD) and the Kerr non-
linearity, which gave rise to SPM. To consolidate the
results obtained, the TOD, the SPM and the GVD were
taken into account. Thus, relevant results such as
multiple kink-like solitons solutions, kink, anti-kink
like soliton solutions and double kink-like soliton have
emerged. Compared to refs. [4,16,17], the obtained
results point out the behavior of an optical soliton in
the absence of TOD and also the valuable effect of TOD
dispersion. Besides, two and three optical solitons
emerge by adopting the auxiliary equation method.
Without incertitude, these results will have physical
explaination in the context of soliton molecules. In the
feature, we will be more interested in birefringence
aspect and cross-phase modulation to build soliton
pulses compression and ultrashort optical pulses. For
applications of the fractional differential equations, the
readers can refer to refs. [30–39].

We need to investigate some new type optical
solitons and modulation instability analysis of some
fractional NLSE type equations in the future.
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