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Abstract: Mathematical delay modelling has a significant role in the different disciplines 
such as behavioural, social, physical, biological engineering, and bio-mathematical 
sciences. The present work describes mathematical formulation for the transmission 
mechanism of a novel coronavirus (COVID-19). Due to the unavailability of vaccines for 
the coronavirus worldwide, delay factors such as social distance, quarantine, travel 
restrictions, extended holidays, hospitalization, and isolation have contributed to 
controlling the coronavirus epidemic. We have analysed the reproduction number and its 
sensitivity to parameters. If, 𝐑𝐑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 < 𝟏𝟏  then this situation will help to eradicate the 
disease and if, 𝐑𝐑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 > 𝟏𝟏  the virus will spread rapidly in the human beings. Well- 
known theorems such as Routh Hurwitz criteria and Lasalle invariance principle have 
presented for stability. The local and global stabilizes for both equilibria of the model 
have also been presented. Also, we have analysed the effect of delay reason on the 
reproduction number. In the last, some very useful numerical consequences have 
presented in support of hypothetical analysis. 
 
Keywords: Coronavirus (COVID-19), delay mathematical model, reproduction number, 
sensitive analysis, stability analysis.  

1 Literature survey 
Human beings are mostly given the taste to master the environment of which they are 
apart. To control the environment, he has devised many ways and tools. However, he has 
restrained to some extent. These restrictions have saved him from demolishing and 
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violating the laws of nature. The most powerful forces among these are water, air, and 
soil. Abiding by the laws of nature, he can make his environment worth living for all 
people and other species on earth. For this purpose, man has introduced many deadly 
tools, weapons, and technical instruments. He also has discovered diseases, their origin, 
and their cure. He has been successful in coping with these disasters so far, but violating 
the laws of nature has paved way too many fatal disasters and epidemics. The first and 
second World Wars are vivid examples of killing and destruction. Self-supremacy and 
Xenophobia are the reasons behind this disaster. Fear, hatred, and insecurity have 
compelled them to violate the idea of cohabitation and dwelling in societies. Nationalism 
is a great step in this respect. With the spread of this idea, people have overcome 
Xenophobia and other such disasters. They have provided strength and security under the 
title of nationality. But they have failed in conceiving the idea that man is mortal. He can 
no longer stay with any concept in this word. He simply has to follow the laws of nature. 
Briefly speaking, in past decades, a vast amount of people died who were overindulged in 
sexual activities. Their violation from nature destroyed them thoroughly. It is a fact that 
nature does not allow us to eat and drink all types of fruit, vegetables, and drinks. It 
doesn’t even allow us to eat all types of animals and insects because they are harmful to 
human beings. We cannot interact with every creature. Nature has its lawful course for 
interaction. When we try to use nature against its course, we become prey to many deadly 
diseases like HIV, Ebola, Congo fever, Lassa fever, and Dengue, etc. All these diseases 
spread due to eating rats, bats, and interacting with other animals and insects. Presently, 
the world is suffering from coronavirus (COVID-19). This deadly virus has killed a 
massive amount of people in China, Italy, America, Iran, Pakistan, and many other 
countries in the world. It transmits from man to man and directly hits the respiratory 
system. People have tried to develop techniques and cure to save from this deadly virus 
but not to enough level. This virus is still causing deaths and destruction in Europe, Asia, 
and other continents. In the present paper, we are trying to give its mathematical data. In 
the last month of 2019, there were some cases that appeared of pneumonia with unknown 
origin in the capital city of province Hubei Wuhan, China. The number of people has 
died due to this fatal coronavirus all over the world. More than two hundred and six 
countries have convicted of the new coronavirus. Now the pandemic of coronavirus is a 
global issue announced by the World Health Organization (WHO). It was like pneumonia 
without clear symptoms. All techniques and measures proved ineffective. Further, it 
transmitted from man to man. It appears within ten days and is causing panic in Europe, 
North Africa, America, and Asia till now. The roundabout figure of casualties has 
reached up to 50,000. Tahir et al. [Tahir, Shah, Zaman et al. (2019)] have given an 
analysis of the deterministic model of the middle east respiratory syndrome (MERS) 
coronavirus. Zhao et al. [Zhao and Chen (2020)] have discussed the mathematical model 
of the outbreak of coronavirus in China. Shim et al. [Shim, Tariq, Choi et al. (2020)] have 
found the transmission of coronavirus in South Korea by using static analysis. Kucharski 
et al. [Kucharski, Russell, Diamond et al. (2020)] have presented optimal control 
strategies in the modeling of coronavirus. Jiang et al. [Jiang, Coffee, Bari et al. (2020)] 
have found data prediction of coronavirus by using artificial intelligence structure. Li et 
al. [Li, Chao and Zhang (2019)] have presented the modeling of emotion classification 
based on brain wave. Wang et al. [Wang, Li, Zou et al. (2020)] have found the classical 
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approaches in the net modeling of images. Shereen et al. [Shereen, Khan, Kazmi et al. 
(2020)] have presented features, origin, and transmission of coronaviruses. Yang et al. 
[Yang and Wang (2020)] have found compartments modeling for the novel coronavirus 
epidemic in Wuhan, China. Lin et al. [Lin, Zhao, Gao et al. (2020)] have presented the 
conceptual model of coronavirus in people and government reactions Mathematical 
modeling has an effective tool to study the dynamics of coronavirus model. Raza et al. 
[Raza, Rafiq, Baleanu et al. (2019)] have found a computational analysis of the stochastic 
HIV/AIDS model in the two sex populations. Arif et al. [Arif, Raza, Rafiq et al. (2019)] 
have presented the stochastic analysis of the hepatitis B virus with the migration effect of 
humans. Abodayeh et al. [Abodayeh, Arif, Raza et al. (2020)] investigated the dynamics 
of the stochastic foot and mouth disease in the animal population. In this analysis, we 
have derived reproduction several COVID-19, the given reproduction number has a 
significant role in the nonlinear dynamics, biological engineering, and many more. If the 
reproduction number is less than one, than its mean COVID-19 has controlled or 
controlling strategies are effective. Otherwise, if the reproduction number is greater than 
one than its mean COVID-19 has fluently increased and the virus is endemic. Actually, in 
this model, we have introduced delay reason. The role of delay reason is quarantine or 
place of isolation or vaccination etc. In common epidemiological models, if we controlled 
infection rate then disease becomes stable or control. In the current situation of COVID-
19, we can’t control infection or transmission rates of viruses. So, we just used the delay 
tactics to overcome the pandemic of corona virus-like as social distancing, quarantine, 
isolation, etc. Fortunately, the delay factors or delay tactics in the modeling are 
independent of all other types of transmissions rates. Overall world, the only control 
strategies of COVID-19 are social distancing and isolations, etc. For the importance or 
impact of delay reason, we have introduced the delay differential equations model from 
the biological engineering and nonlinear dynamical problems. 
The strategy of our paper is as follows: In Section 2, we have discussed the formulation, 
the equilibrium of the model. In Section 3, we discussed the local stability of the model. 
In Section 4, we have discussed the global stability of the model. In Section 5, we 
discussed numerical consequences for the support of the theoretical analysis of the 
model. In Section 6, conclusion and future guidance have presented. 

2 Formulation of model 
In this paper, we have considered the dynamics of coronavirus pandemic model with the 
seafood market versus humans. The whole population has represented with 𝑁𝑁𝑝𝑝(𝑡𝑡) and 
divided into the five compartments as follows: For any time t, the susceptible humans 
presented with 𝑆𝑆𝑝𝑝(𝑡𝑡) , exposed humans presented with 𝐸𝐸𝑝𝑝(𝑡𝑡) , symptomatic infected 
humans presented with 𝐼𝐼𝑝𝑝(𝑡𝑡), asymptomatic infected presented with 𝐴𝐴𝑝𝑝(𝑡𝑡) and recovered 
humans presented with 𝑅𝑅𝑝𝑝(𝑡𝑡). The seafood market (reservoir) has represented with 𝑀𝑀(𝑡𝑡). 
Simply the dynamics of humans and reservoir have described through the nonlinear delay 
differential equations as shown in Fig. 1. 
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Figure 1: Flow map of COVID-19 delay model 

The limits of the delay model have described as follows: 𝜋𝜋𝑝𝑝 is the recruitment rate of 
humans, 𝜇𝜇𝑝𝑝 is the mortality rate with natural incidences or due to virus infection, 𝜂𝜂1 is the 
virus getting a rate of susceptible humans from asymptomatic humans, 𝜂𝜂2 is the virus 
getting a rate of susceptible humans from symptomatic humans, 𝜂𝜂3 is interaction rate of 
susceptible humans with reservoir or seafood place or market, 𝜔𝜔 is the interaction rate of 
symptomatic infected and exposed humans, 𝜔𝜔4 is the interaction rate in which exposed 
humans becomes asymptomatic infected humans, 𝜔𝜔1 is the rate of asymptotic carriers 
who visit the seafood market, 𝜔𝜔2 is the rate of symptomatic carriers who visit the seafood 
market, 𝜔𝜔𝑝𝑝 is the rate of quarantine or isolation or vaccination of asymptomatic infected 
humans, 𝜔𝜔3 is the rate of quarantine or isolation or vaccination of symptomatic infected 
humans and 𝜋𝜋  is the rate at which virus removed from the seafood market. The 
coronavirus pandemic model has based on the following assumptions: the seafood market 
is enough source of the virus, considering two ways of dispersion of virus as 
symptomatic and asymptomatic carriers who visit the seafood place or market and the 
interaction rate of susceptible humans with the seafood market. Without loss of generality, 
all types of other interactions with the seafood market have ignored. After getting the 
virus from the seafood market, asymptomatic and symptomatic carriers, the susceptible 
humans can have interaction with other human compartments. The system of delay 
differential equations of the model as follows: 
𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝜋𝜋𝑝𝑝 − �𝜂𝜂1𝐴𝐴𝑝𝑝(𝑡𝑡 − 𝜏𝜏) + 𝜂𝜂2𝐼𝐼𝑝𝑝(𝑡𝑡 − 𝜏𝜏)� 𝑆𝑆𝑝𝑝(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑆𝑆𝑝𝑝(𝑡𝑡)𝑀𝑀(𝑡𝑡) − 𝜇𝜇𝑝𝑝𝑆𝑆𝑝𝑝(𝑡𝑡). (1) 
𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

= �𝜂𝜂1𝐴𝐴𝑝𝑝(𝑡𝑡 − 𝜏𝜏) + 𝜂𝜂2𝐼𝐼𝑝𝑝(𝑡𝑡 − 𝜏𝜏)� 𝑆𝑆𝑝𝑝(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂3𝑆𝑆𝑝𝑝(𝑡𝑡)𝑀𝑀(𝑡𝑡) −𝜔𝜔𝐸𝐸𝑝𝑝(𝑡𝑡) −
𝜔𝜔4𝐸𝐸𝑝𝑝(𝑡𝑡) − 𝜇𝜇𝑝𝑝𝐸𝐸𝑝𝑝(𝑡𝑡).                 (2) 
𝑑𝑑𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝐸𝐸𝑝𝑝(𝑡𝑡) −𝜔𝜔3𝐼𝐼𝑝𝑝(𝑡𝑡) − 𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝(𝑡𝑡).               (3) 
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𝑑𝑑𝐴𝐴𝑝𝑝
𝑑𝑑𝑑𝑑

=  𝜔𝜔4𝐸𝐸𝑝𝑝(𝑡𝑡) −𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝(𝑡𝑡) − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝(𝑡𝑡).               (4) 
𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝(𝑡𝑡) + 𝜔𝜔3𝐼𝐼𝑝𝑝(𝑡𝑡) − 𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝(𝑡𝑡).               (5) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔2𝐼𝐼𝑝𝑝(𝑡𝑡) + 𝜔𝜔1𝐴𝐴𝑝𝑝(𝑡𝑡) − 𝜋𝜋𝜋𝜋(𝑡𝑡).               (6) 

The initial conditions 𝜙𝜙 = (𝜙𝜙1,𝜙𝜙2,𝜙𝜙3,𝜙𝜙4,𝜙𝜙5)  of Eqs. (1) to (5) are defined in the 
Banach space as 𝐶𝐶+ = �𝜙𝜙𝜙𝜙𝜙𝜙[−𝜏𝜏, 0], 𝑅𝑅+5 : 𝜙𝜙1(0) = 𝑆𝑆𝑝𝑝(0),𝜙𝜙2(0) = 𝐸𝐸𝑝𝑝(0),𝜙𝜙3(0) =
𝐼𝐼𝑝𝑝(0),𝜙𝜙4(0) = 𝐴𝐴𝑝𝑝(0),𝜙𝜙5(0) = 𝑅𝑅𝑝𝑝(0)�, 
where, 𝑅𝑅+5 = {𝑆𝑆𝑝𝑝,𝐸𝐸𝑝𝑝, 𝐼𝐼𝑝𝑝,𝐴𝐴𝑝𝑝,𝑅𝑅𝑝𝑝𝜖𝜖𝑅𝑅5: 𝑆𝑆𝑝𝑝 ≥ 0,𝐸𝐸𝑝𝑝 ≥ 0, 𝐼𝐼𝑝𝑝 ≥ 0,𝐴𝐴𝑝𝑝 ≥ 0,𝑅𝑅𝑝𝑝 ≥ 0 }. 
We assume 𝜙𝜙𝑖𝑖(0) > 0, (𝑖𝑖 = 1, 2, 3, 4, 5) due to biological meanings. The total dynamics 
of Eqs. (1) to (6) has obtained by adding the first five equations as follows: 
𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐴𝐴𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

≤ 𝜋𝜋𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑁𝑁𝑝𝑝 and 𝑆𝑆𝑝𝑝 + 𝐸𝐸𝑝𝑝 + 𝐼𝐼𝑝𝑝 + 𝐴𝐴𝑝𝑝 + 𝑅𝑅𝑝𝑝 = 𝑁𝑁𝑝𝑝. 
𝑑𝑑𝑁𝑁𝑝𝑝
𝑑𝑑𝑑𝑑

≤ 𝜋𝜋𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑁𝑁𝑝𝑝. 

The feasible region of Eqs. (1) to (6) as follows: 
Γ = {𝑆𝑆𝑝𝑝(𝑡𝑡),𝐸𝐸𝑝𝑝(𝑡𝑡), 𝐼𝐼𝑝𝑝(𝑡𝑡),𝐴𝐴𝑝𝑝(𝑡𝑡),𝑅𝑅𝑝𝑝(𝑡𝑡)𝜖𝜖𝑅𝑅+5 : 𝑁𝑁𝑝𝑝(𝑡𝑡) ≤ 𝜋𝜋𝑝𝑝

𝜇𝜇𝑝𝑝
,𝑀𝑀𝜖𝜖𝑅𝑅+}. 

The initial value problem, 𝜙𝜙′ = 𝜋𝜋𝑝𝑝 − 𝜇𝜇𝑝𝑝𝜙𝜙 , with 𝜙𝜙(0) = 𝑁𝑁𝑝𝑝(0)  has solution 𝜙𝜙(𝑡𝑡) =
𝑘𝑘1𝑒𝑒−𝜇𝜇𝑝𝑝𝑡𝑡 + 𝜋𝜋𝑝𝑝

𝜇𝜇𝑝𝑝
 and lim

𝑡𝑡⟶∞
𝜙𝜙(𝑡𝑡) = 𝜋𝜋𝑝𝑝

𝜇𝜇𝑝𝑝
. Therefore, 𝑁𝑁𝑝𝑝(𝑡𝑡) ≤ 𝜙𝜙(𝑡𝑡)  which shows that 

lim
𝑡𝑡⟶∞

𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑝𝑝(𝑡𝑡) ≤ 𝜋𝜋𝑝𝑝
𝜇𝜇𝑝𝑝

. Thus, all solutions of Eqs. (1) to (6) lies in the feasible region Γ. 

The feasible region is positive and bounded for Eqs. (1) to (6). Hence, the region Γ is 
positive invariant. 

2.1 Equilibrium points 
The Eqs. (1) to (6) admit two equilibrium states in the feasible region Γ. A COVID free 
equilibrium of the models (1-6) as follows: 
 𝐶𝐶1 = �𝑆𝑆𝑝𝑝1,𝐸𝐸𝑝𝑝1, 𝐼𝐼𝑝𝑝1,𝐴𝐴𝑝𝑝1,𝑅𝑅𝑝𝑝1� = (𝜋𝜋𝑝𝑝

𝜇𝜇𝑝𝑝
, 0,0,0,0). 

Also, COVID present equilibrium of the Eqs. (1) to (6) as follows:  
𝐶𝐶2 = �𝑆𝑆𝑝𝑝∗,𝐸𝐸𝑝𝑝∗, 𝐼𝐼𝑝𝑝∗,𝐴𝐴𝑝𝑝∗,𝑅𝑅𝑝𝑝∗�. 
where,  

𝑆𝑆𝑝𝑝∗ = 𝜋𝜋�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝��𝜔𝜔3+𝜇𝜇𝑝𝑝�(𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝)
𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝��𝜂𝜂2𝜋𝜋𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏+𝜂𝜂3𝜔𝜔2�+𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�(𝜂𝜂1𝜋𝜋𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏+𝜔𝜔1)

, 𝐸𝐸𝑝𝑝∗ = 𝜋𝜋𝑝𝑝−𝜇𝜇𝑝𝑝𝑆𝑆𝑝𝑝∗

𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝
 , 𝐼𝐼𝑝𝑝∗ = 𝜔𝜔𝐸𝐸𝑝𝑝∗

𝜔𝜔3+𝜇𝜇𝑝𝑝
 , 

𝐴𝐴𝑝𝑝∗ = 𝜔𝜔4𝐸𝐸𝑝𝑝∗

𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝
 and 𝑅𝑅𝑝𝑝∗ = 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝∗+𝜔𝜔3𝐼𝐼𝑝𝑝∗

𝜇𝜇𝑝𝑝
. 

2.2 Reproduction number 
The reproduction number find the extinction and persistence of the virus in the 
population. If 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1 , then shows the extinction of viruses in population and 
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1 , then shows the persistence of virus in the population. Driekmann et al. 



 
 
 
230                                                                             CMC, vol.65, no.1, pp.225-241, 2020 

[Driekmann, Heesterbeek and Roberts (2009)] have presented the next-generation matrix 
method for compartment models. We have considered the infectious and recovered 
compartment from the Eqs. (1) to (6) and by using COVID free equilibrium as follows: 

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑝𝑝 ,

𝐼𝐼𝑝𝑝′

𝐴𝐴𝑝𝑝′

𝑅𝑅𝑝𝑝′⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡0

𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
𝜇𝜇𝑝𝑝

𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
𝜇𝜇𝑝𝑝

0

0 0 0 0
0 0 0 0
0 0 0 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑝𝑝
𝐼𝐼𝑝𝑝
𝐴𝐴𝑝𝑝
𝑅𝑅𝑝𝑝⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝 0 0 0

−𝜔𝜔 𝜔𝜔3 + 𝜇𝜇𝑝𝑝 0 0
−𝜔𝜔4 0 𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝 0

0 −𝜔𝜔𝑝𝑝 −𝜔𝜔3 𝜇𝜇𝑝𝑝⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑝𝑝
𝐼𝐼𝑝𝑝
𝐴𝐴𝑝𝑝
𝑅𝑅𝑝𝑝⎦
⎥
⎥
⎥
⎤
. 

where, 𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡0

𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
𝜇𝜇𝑝𝑝

𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
𝜇𝜇𝑝𝑝

0

0 0 0 0
0 0 0 0
0 0 0 0⎦

⎥
⎥
⎥
⎤
 and  

𝑉𝑉 =

⎣
⎢
⎢
⎢
⎡
𝜔𝜔 +𝜔𝜔4 + 𝜇𝜇𝑝𝑝 0 0 0

−𝜔𝜔 𝜔𝜔3 + 𝜇𝜇𝑝𝑝 0 0
−𝜔𝜔4 0 𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝 0

0 −𝜔𝜔𝑝𝑝 −𝜔𝜔3 𝜇𝜇𝑝𝑝⎦
⎥
⎥
⎥
⎤
. 

𝐹𝐹𝑉𝑉−1 =

⎣
⎢
⎢
⎢
⎡

[𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�]𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
�𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝��𝜔𝜔3+𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝

𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
�𝜔𝜔3+𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝

𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏𝜋𝜋𝑝𝑝
�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝

0

0 0 0 0
0 0 0 0
0 0 0 0⎦

⎥
⎥
⎥
⎤
. 

The spectral radius of 𝐹𝐹𝑉𝑉−1 is denoted as 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = [𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�]𝜋𝜋𝑝𝑝
�𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝��𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝��𝜔𝜔3+𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝

𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏. 

2.3 Sensitivity analysis 
To test the sensitivity of the reproduction number in each of its parameters: 

𝐴𝐴𝜂𝜂1 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜂𝜂1
𝜂𝜂1

= 𝜂𝜂1
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜂𝜂1

=  𝜂𝜂1𝜔𝜔4�𝜔𝜔2+𝜇𝜇𝑝𝑝�
𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�

> 0. 

𝐴𝐴𝜂𝜂2 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜂𝜂2
𝜂𝜂2

= 𝜂𝜂2
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜂𝜂2

= 𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�
𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�

> 0. 

𝐴𝐴𝜔𝜔3 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜔𝜔3
𝜔𝜔3

= 𝜔𝜔3
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜔𝜔3

= − 𝜂𝜂2𝜔𝜔𝜔𝜔3�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�
�𝜔𝜔3+𝜇𝜇𝑝𝑝��𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝��

< 0. 
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𝐴𝐴𝜔𝜔𝑝𝑝 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜔𝜔𝑝𝑝
𝜔𝜔𝑝𝑝

= 𝜔𝜔𝑝𝑝

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜔𝜔𝑝𝑝

= − 𝜂𝜂1𝜔𝜔𝑝𝑝𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�
�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝��𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝��

< 0. 

𝐴𝐴𝜋𝜋𝑝𝑝 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜋𝜋𝑝𝑝
𝜋𝜋𝑝𝑝

= 𝜋𝜋𝑝𝑝
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜋𝜋𝑝𝑝

= 1 > 0. 

𝐴𝐴𝜔𝜔 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜕𝜕
𝜔𝜔

= 𝜔𝜔
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜕𝜕

= 𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�
𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�

− 𝜔𝜔
𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝

> 0; 

𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝� > 𝜔𝜔. 

𝐴𝐴𝜔𝜔4 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜔𝜔4
𝜔𝜔4

= 𝜔𝜔4
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜔𝜔4

= − 𝜔𝜔4𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�
�𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝��𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝��

+

𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝��𝜔𝜔+𝜇𝜇𝑝𝑝�
�𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝�[𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�]

< 0; 

 𝜂𝜂1𝜔𝜔4�𝜔𝜔3 + 𝜇𝜇𝑝𝑝��𝜔𝜔 + 𝜇𝜇𝑝𝑝� < 𝜔𝜔4𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝�. 

𝐴𝐴𝜇𝜇𝑝𝑝 =
𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜇𝜇𝑝𝑝
𝜇𝜇𝑝𝑝

= 𝜇𝜇𝑝𝑝
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜕𝜕𝜇𝜇𝑝𝑝

= − �𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜇𝜇𝑝𝑝+𝛼𝛼𝛼𝛼𝛼𝛼𝜇𝜇𝑝𝑝+𝛼𝛼𝛼𝛼𝛼𝛼𝜇𝜇𝑝𝑝+𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼�−(𝜂𝜂2𝜔𝜔+𝜂𝜂1𝜔𝜔4)𝛽𝛽𝛽𝛽𝛽𝛽𝜇𝜇𝑝𝑝
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼

< 0; 

�𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜇𝜇𝑝𝑝 + 𝛼𝛼𝛼𝛼𝛼𝛼𝜇𝜇𝑝𝑝 + 𝛼𝛼𝛼𝛼𝛼𝛼𝜇𝜇𝑝𝑝 + 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼� > (𝜂𝜂2𝜔𝜔 + 𝜂𝜂1𝜔𝜔4)𝛽𝛽𝛽𝛽𝛽𝛽𝜇𝜇𝑝𝑝 
where, ∝= 𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝� + 𝜂𝜂1𝜔𝜔4�𝜔𝜔3 + 𝜇𝜇𝑝𝑝�, 𝛽𝛽 = �𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝�, 𝛾𝛾 = �𝜔𝜔𝑝𝑝 +
𝜇𝜇𝑝𝑝� 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿 = �𝜔𝜔3 + 𝜇𝜇𝑝𝑝�. 
The sensitive parameter of the model is 𝜂𝜂1, 𝜂𝜂2 and 𝜔𝜔. It has concluded that the direct 
ratio is among 𝜂𝜂1, 𝜂𝜂2, 𝜔𝜔 and reproduction number 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. This means that an increase in 
sensitive parameters will eventually increase the number of reproduction and vice versa. 
Also, the rest of the parameters are insensitive. It has concluded that the inverse ratio are 
insensitive parameters and the reproduction number 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. This means increasing the 
parameters, eventually reducing the number of reproduction and vice versa. 

3 Local stability 
For the local stability at both equilibria of the model, we will prove the following well-
known results as follows: 
Theorem: For given 𝜏𝜏 > 0, the Eqs. (1) to (6) is said to be locally asymptotical stable 
(LAS) at COVID free equilibrium 𝐶𝐶1 = �𝑆𝑆𝑝𝑝1,𝐸𝐸𝑝𝑝1, 𝐼𝐼𝑝𝑝1,𝐴𝐴𝑝𝑝1,𝑅𝑅𝑝𝑝1�, which is contained in 
region Γ if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1. Otherwise the Eqs. (1) to (6) is unstable if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1. 
Proof: The Jacobean matrix for the Eqs. (1) to (6) at 𝐶𝐶1 as follows: 
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𝐽𝐽(𝐶𝐶1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝜇𝜇𝑝𝑝 0

−𝜂𝜂2𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
      

−𝜂𝜂1𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
     0

0 −(𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝)   
𝜂𝜂2𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
         

𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
          0

0
0
0

𝜔𝜔
𝜔𝜔4
0

    −�𝜔𝜔3 + 𝜇𝜇𝑝𝑝�        0           0
              0             −(𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝)  0

        𝜔𝜔3                    𝜔𝜔𝑝𝑝           −𝜇𝜇𝑝𝑝 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The following eigen values of Jacobean matrix 𝐽𝐽(𝐶𝐶1) are obtained: 
𝜆𝜆1 = −𝜇𝜇𝑝𝑝 < 0, 𝜆𝜆2 = −𝜇𝜇𝑝𝑝 < 0. 

|𝐽𝐽(𝐶𝐶1) − 𝜆𝜆𝜆𝜆| = ��
−�𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝� − 𝜆𝜆  𝜂𝜂2𝜋𝜋𝑝𝑝𝑒𝑒

−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝

𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝

𝜔𝜔 −�𝜔𝜔3 + 𝜇𝜇𝑝𝑝� − 𝜆𝜆 0
𝜔𝜔4 0 −(𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝) − 𝜆𝜆

�� = 0. 

Put 𝑎𝑎1 = �𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝�,  𝑎𝑎2 = �𝜔𝜔3 + 𝜇𝜇𝑝𝑝�,  𝑎𝑎3 = 𝜂𝜂2𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
,  𝑎𝑎4 = 𝜂𝜂1𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
, 𝑎𝑎5 =

�𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝�. 

|𝐽𝐽(𝐶𝐶1) − 𝜆𝜆𝜆𝜆| = �
−𝑎𝑎1 − 𝜆𝜆 𝑎𝑎3 𝑎𝑎4

𝜔𝜔 −𝑎𝑎2 − 𝜆𝜆 0
𝜔𝜔4 0 −𝑎𝑎5 − 𝜆𝜆

� = 0 

𝜆𝜆3 + (𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎5)𝜆𝜆2 + (𝑎𝑎1𝑎𝑎2 + 𝑎𝑎1𝑎𝑎5 + 𝑎𝑎2𝑎𝑎5 − 𝜔𝜔𝑎𝑎3 − 𝜔𝜔4𝑎𝑎4)𝜆𝜆 + (𝑎𝑎1𝑎𝑎2𝑎𝑎5 −
𝜔𝜔𝑎𝑎3𝑎𝑎5 − 𝜔𝜔4𝑎𝑎2𝑎𝑎4) = 0. 
By using the Routh-Hurwitz Criterion of 3rd order polynomial as, 
(𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎5) > 0,  
(𝑎𝑎1𝑎𝑎2𝑎𝑎5 − 𝜔𝜔𝑎𝑎3𝑎𝑎5 − 𝜔𝜔4𝑎𝑎2𝑎𝑎4) > 0, if 
𝜔𝜔𝑎𝑎3𝑎𝑎5+𝜔𝜔4𝑎𝑎2𝑎𝑎4

𝑎𝑎1𝑎𝑎2𝑎𝑎5
< 1 , by putting substitute values, we have 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

[𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�]𝜋𝜋𝑝𝑝
�𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝��𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝��𝜔𝜔3+𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝

𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 < 1 

and (𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎5)(𝑎𝑎1𝑎𝑎2 + 𝑎𝑎1𝑎𝑎5 + 𝑎𝑎2𝑎𝑎5 − 𝜔𝜔𝑎𝑎3 − 𝜔𝜔4𝑎𝑎4) > (𝑎𝑎1𝑎𝑎2𝑎𝑎5 − 𝜔𝜔𝑎𝑎3𝑎𝑎5 −
𝜔𝜔4𝑎𝑎2𝑎𝑎4), if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1. 
So, all eigenvalues are negative. Hence, by Routh Hurwitz criteria 𝐶𝐶1  is locally 
asymptotical stable (LAS). 
If 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1, that is  
[𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝�+𝜂𝜂1𝜔𝜔4�𝜔𝜔3+𝜇𝜇𝑝𝑝�]𝜋𝜋𝑝𝑝
�𝜔𝜔+𝜔𝜔4+𝜇𝜇𝑝𝑝��𝜔𝜔𝑝𝑝+𝜇𝜇𝑝𝑝��𝜔𝜔3+𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝

𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 > 1. 

𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝� + 𝜂𝜂1𝜔𝜔4�𝜔𝜔3 + 𝜇𝜇𝑝𝑝�]𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 > �𝜔𝜔 +𝜔𝜔4 + 𝜇𝜇𝑝𝑝��𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝��𝜔𝜔3 + 𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝. 

−�𝜔𝜔 +𝜔𝜔4 + 𝜇𝜇𝑝𝑝��𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝��𝜔𝜔3 + 𝜇𝜇𝑝𝑝�𝜇𝜇𝑝𝑝 + 𝜂𝜂2𝜔𝜔�𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝� + 𝜂𝜂1𝜔𝜔4�𝜔𝜔3 +
𝜇𝜇𝑝𝑝�]𝜋𝜋𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 > 0. 
Then 𝜆𝜆3,𝜆𝜆4,𝜆𝜆5 > 0. Hence, 𝐶𝐶1 is unstable. 
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Theorem: For given 𝜏𝜏 > 0, the Eqs. (1) to (6) is said to be locally asymptotical stable 
(LAS) at COVID present equilibrium 𝐶𝐶2 = �𝑆𝑆𝑝𝑝∗,𝐸𝐸𝑝𝑝∗, 𝐼𝐼𝑝𝑝∗,𝐴𝐴𝑝𝑝∗,𝑅𝑅𝑝𝑝∗�, which is contained 
in region Γ if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1. Otherwise, the Eqs. (1) to (6) is unstable if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1. 
Proof: The Jacobean matrix for the Eqs. (1) to (6) at 𝐶𝐶2 as follows: 

𝐽𝐽(𝐶𝐶2) =

⎣
⎢
⎢
⎢
⎡
−𝑏𝑏1 0 −𝑏𝑏2 −𝑏𝑏3  0
𝑏𝑏4 −𝑏𝑏6  𝑏𝑏2      𝑏𝑏3  0
0
0
0

𝜔𝜔
𝜔𝜔4
0

−𝑏𝑏5
0
𝜔𝜔3

      0
−𝑏𝑏7
𝜔𝜔𝑝𝑝

 0
 0
−𝜇𝜇𝑝𝑝⎦

⎥
⎥
⎥
⎤

. 

where,  
𝑏𝑏1 = �𝜂𝜂1𝐴𝐴𝑝𝑝∗ + 𝜂𝜂2𝐼𝐼𝑝𝑝∗�𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂3𝑀𝑀∗ + 𝜇𝜇𝑝𝑝  , 𝑏𝑏2 = 𝜂𝜂2𝑆𝑆𝑝𝑝∗𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏   , 𝑏𝑏3 = 𝜂𝜂1𝑆𝑆𝑝𝑝∗𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 ,𝑏𝑏4 =
�𝜂𝜂1𝐴𝐴𝑝𝑝∗ + 𝜂𝜂2𝐼𝐼𝑝𝑝∗�𝑆𝑆𝑝𝑝∗𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏,𝑏𝑏5 = 𝜔𝜔3 + 𝜇𝜇𝑝𝑝  , 𝑏𝑏6 = 𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝  , 𝑏𝑏7 = 𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝. 
The following eigen values of Jacobean matrix 𝐽𝐽(𝐶𝐶2) are obtained: 
𝜆𝜆1 = −𝜇𝜇𝑝𝑝 < 0 and  

|𝐽𝐽(𝐶𝐶2)− 𝜆𝜆𝜆𝜆| = �

−𝑏𝑏1 − 𝜆𝜆 0 −𝑏𝑏2    −𝑏𝑏3
𝑏𝑏4 −𝑏𝑏6 − 𝜆𝜆 𝑏𝑏2          𝑏𝑏3
0
0

𝜔𝜔
𝜔𝜔4

−𝑏𝑏5 − 𝜆𝜆   0
      0   −𝑏𝑏7 − 𝜆𝜆

� = 0. 

𝜆𝜆4 + (𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏5 + 𝑏𝑏6 + 𝑏𝑏7)𝜆𝜆3 + (𝑏𝑏7(𝑏𝑏1 + 𝑏𝑏2) + (𝑏𝑏1 + 𝑏𝑏7)(𝑏𝑏5 + 𝑏𝑏6) + 𝑏𝑏5𝑏𝑏6 −
𝜔𝜔𝑏𝑏2 − 𝜔𝜔4𝑏𝑏3)𝜆𝜆2 + �(𝑏𝑏1 + 𝑏𝑏7)(𝑏𝑏5𝑏𝑏6 − 𝜔𝜔𝑏𝑏2) + 𝑏𝑏2(𝑏𝑏1 + 𝑏𝑏6)(1 + 𝑏𝑏7) + 𝑏𝑏1𝑏𝑏7(𝑏𝑏5 + 𝑏𝑏6) +
𝑏𝑏1𝑏𝑏2𝑏𝑏6 + 𝜔𝜔4𝑏𝑏3(𝑏𝑏4 − 𝑏𝑏5 − 𝑏𝑏1�𝜆𝜆 + (𝑏𝑏1𝑏𝑏2𝑏𝑏6𝑏𝑏7 + 𝑏𝑏1𝑏𝑏5𝑏𝑏6𝑏𝑏7 − 𝜔𝜔𝑏𝑏1𝑏𝑏2𝑏𝑏7 + 𝜔𝜔4𝑏𝑏3(𝑏𝑏4𝑏𝑏5 −
𝑏𝑏1𝑏𝑏5)) = 0. 
So, 𝑚𝑚0𝜆𝜆4 + 𝑚𝑚1𝜆𝜆3 +𝑚𝑚2𝜆𝜆2 + 𝑚𝑚3𝜆𝜆 + 𝑚𝑚4 = 0. 
where, 𝑚𝑚1 = (𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏5 + 𝑏𝑏6 + 𝑏𝑏7), 
𝑚𝑚2 = (𝑏𝑏7(𝑏𝑏1 + 𝑏𝑏2) + (𝑏𝑏1 + 𝑏𝑏7)(𝑏𝑏5 + 𝑏𝑏6) + 𝑏𝑏5𝑏𝑏6 − 𝜔𝜔𝑏𝑏2 − 𝜔𝜔4𝑏𝑏3), 
𝑚𝑚3 = �(𝑏𝑏1 + 𝑏𝑏7)(𝑏𝑏5𝑏𝑏6 − 𝜔𝜔𝑏𝑏2) + 𝑏𝑏2(𝑏𝑏1 + 𝑏𝑏6)(1 + 𝑏𝑏7) + 𝑏𝑏1𝑏𝑏7(𝑏𝑏5 + 𝑏𝑏6) + 𝑏𝑏1𝑏𝑏2𝑏𝑏6 +
𝜔𝜔4𝑏𝑏3(𝑏𝑏4 − 𝑏𝑏5 − 𝑏𝑏1�,  
𝑚𝑚4 = (𝑏𝑏1𝑏𝑏2𝑏𝑏6𝑏𝑏7 + 𝑏𝑏1𝑏𝑏5𝑏𝑏6𝑏𝑏7 − 𝜔𝜔𝑏𝑏1𝑏𝑏2𝑏𝑏7 + 𝜔𝜔4𝑏𝑏3(𝑏𝑏4𝑏𝑏5 − 𝑏𝑏1𝑏𝑏5)). 
By using the Routh-Hurwitz Criterion of 4th order polynomial as, 
𝑚𝑚0 > 0, 𝑚𝑚1 > 0, 𝑚𝑚1𝑚𝑚2 −𝑚𝑚0𝑚𝑚3 > 0, 
(𝑚𝑚1𝑚𝑚2 −𝑚𝑚0𝑚𝑚3)𝑚𝑚3 −𝑚𝑚1

2𝑚𝑚4 > 0 and 𝑚𝑚4 > 0 only if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1. 
So, its eigenvalue is negative. Hence, by Routh Hurwitz criteria 𝐶𝐶2 is locally asymptotical 
stable (LAS). 

4 Global stability 
For the global stability at both equilibria of the model, we will prove the following well-
known results as follows: 
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Theorem: For given 𝜏𝜏 > 0 , the system Eq. (1) to Eq. (6) is said to be globally 
asymptotical stable (GAS) at COVID free equilibrium 𝐶𝐶1 = �𝑆𝑆𝑝𝑝1,𝐸𝐸𝑝𝑝1, 𝐼𝐼𝑝𝑝1,𝐴𝐴𝑝𝑝1,𝑅𝑅𝑝𝑝1� , 
which is contained in region Γ if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1. Otherwise unstable. 
Proof: We have considered the Volterra- type Lyapunov function 𝑈𝑈:Γ → 𝑅𝑅 defined as 
follows: 

𝑈𝑈 = �𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1 − 𝑆𝑆𝑝𝑝1𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆𝑝𝑝
𝑆𝑆𝑝𝑝1
� + 𝐸𝐸𝑝𝑝 + 𝐼𝐼𝑝𝑝 + 𝐴𝐴𝑝𝑝 + 𝑅𝑅𝑝𝑝.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑆𝑆𝑝𝑝1

𝑆𝑆𝑝𝑝
) 𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐴𝐴𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝
1

𝑆𝑆𝑝𝑝
� �𝜋𝜋𝑝𝑝 − �𝜂𝜂1𝐴𝐴𝑝𝑝 + 𝜂𝜂2𝐼𝐼𝑝𝑝�𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑆𝑆𝑝𝑝𝑀𝑀 − 𝜇𝜇𝑝𝑝𝑆𝑆𝑝𝑝�+ �𝜂𝜂1𝐴𝐴𝑝𝑝 +

𝜂𝜂2𝐼𝐼𝑝𝑝�𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂3𝑆𝑆𝑝𝑝𝑀𝑀 − 𝜔𝜔𝐸𝐸𝑝𝑝 − 𝜔𝜔4𝐸𝐸𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐸𝐸𝑝𝑝 + 𝜔𝜔𝐸𝐸𝑝𝑝 − 𝜔𝜔3𝐼𝐼𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝 +𝜔𝜔4𝐸𝐸𝑝𝑝 −
𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝 + 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝 +𝜔𝜔3𝐼𝐼𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1� �
𝜋𝜋𝑃𝑃
𝑆𝑆𝑝𝑝
− 𝜂𝜂1𝐴𝐴𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑀𝑀 − 𝜇𝜇𝑝𝑝� + 𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 +

𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐸𝐸𝑝𝑝 − −𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝. 

Since, 𝐶𝐶1 = �𝑆𝑆𝑝𝑝1,𝐸𝐸𝑝𝑝1, 𝐼𝐼𝑝𝑝1,𝐴𝐴𝑝𝑝1,𝑅𝑅𝑝𝑝1� is an COVID free equilibrium, so for Eqs. (1) to (6), 
𝑑𝑑𝑀𝑀1

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑆𝑆𝑝𝑝1

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐸𝐸𝑝𝑝1

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐼𝐼𝑝𝑝1

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐴𝐴𝑝𝑝1

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑅𝑅𝑝𝑝1

𝑑𝑑𝑑𝑑
= 0, gives 

𝜇𝜇𝑝𝑝 = 𝜋𝜋𝑃𝑃
𝑆𝑆𝑝𝑝1

− 𝜂𝜂1𝐴𝐴𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑀𝑀1  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1� �
𝜋𝜋𝑃𝑃
𝑆𝑆𝑝𝑝
− 𝜂𝜂1𝐴𝐴𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑀𝑀 − 𝜋𝜋𝑃𝑃

𝑆𝑆𝑝𝑝1
+ 𝜂𝜂1𝐴𝐴𝑝𝑝1𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 +

𝜂𝜂2𝐼𝐼𝑝𝑝1𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂3𝑀𝑀1� − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝 �1 −
𝜂𝜂1𝑆𝑆𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
� − 𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝 �1−

𝜂𝜂2𝑆𝑆𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
� − 𝜇𝜇𝑝𝑝𝐸𝐸𝑝𝑝 −

𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜋𝜋𝑃𝑃�𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝1�
𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝1

− 𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1��𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝1� − 𝜂𝜂2𝐼𝐼𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1��𝐼𝐼𝑝𝑝 −

𝐼𝐼𝑝𝑝1� − 𝜂𝜂3(𝑀𝑀−𝑀𝑀1)�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1� − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝 �1−
𝜂𝜂1𝑆𝑆𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
� − 𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝 �1 −

𝜂𝜂2𝑆𝑆𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
� −

𝜇𝜇𝑝𝑝𝐸𝐸𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜋𝜋𝑃𝑃�𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝1�
2

𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝1
− 𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1��𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝1� − 𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1��𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑝𝑝1� −

𝜂𝜂3(𝑀𝑀−𝑀𝑀1)�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝1� − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝 �1 −
𝜂𝜂1𝑆𝑆𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
� − 𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝 �1 −

𝜂𝜂2𝑆𝑆𝑝𝑝1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝜇𝜇𝑝𝑝
� − 𝜇𝜇𝑝𝑝𝐸𝐸𝑝𝑝 −

𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝. 

⇒ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 0 for 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1 , and  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0  only if    𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝1,    𝐸𝐸𝑝𝑝 = 𝐼𝐼𝑝𝑝 = 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑝𝑝 = 0. 

Therefore, the only trajectory of the Eqs. (1) to (6) on which 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 is 𝐶𝐶1. Hence, by 
Lasalle’s invariance principle, 𝐶𝐶1 is globally asymptotically stable (GAS) in Γ. 
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Theorem: For given 𝜏𝜏 > 0, the Eqs. (1) to (6) is said to be globally asymptotical stable 
(GAS) at COVID present equilibrium 𝐶𝐶2 = �𝑆𝑆𝑝𝑝∗,𝐸𝐸𝑝𝑝∗, 𝐼𝐼𝑝𝑝∗,𝐴𝐴𝑝𝑝∗,𝑅𝑅𝑝𝑝∗�, which is contained 
in region Γ if 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1. Otherwise unstable. 
Proof: We have considered the Volterra-type Lyapunov function 𝑉𝑉: Γ → 𝑅𝑅 defined as follows: 

V= 𝐾𝐾1 �𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗ − 𝑆𝑆𝑝𝑝∗𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆𝑝𝑝
𝑆𝑆𝑝𝑝∗
� + 𝐾𝐾2 �𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑝𝑝∗ − 𝐸𝐸𝑝𝑝∗𝑙𝑙𝑙𝑙𝑙𝑙

𝐸𝐸𝑝𝑝
𝐸𝐸𝑝𝑝∗
� + 𝐾𝐾3 �𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑝𝑝∗ −

𝐼𝐼𝑝𝑝∗𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼𝑝𝑝∗

𝐼𝐼𝑝𝑝∗
� + 𝐾𝐾4 �𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝∗ − 𝐴𝐴𝑝𝑝∗𝑙𝑙𝑙𝑙𝑙𝑙

𝐴𝐴𝑝𝑝
𝐴𝐴𝑝𝑝∗
� + 𝐾𝐾5 �𝑅𝑅𝑝𝑝 − 𝑅𝑅𝑝𝑝∗ − 𝑅𝑅𝑝𝑝∗𝑙𝑙𝑙𝑙𝑙𝑙

𝑅𝑅𝑝𝑝
𝑅𝑅𝑝𝑝∗
�. 

where, 𝐾𝐾𝑖𝑖: (𝑖𝑖 = 1, 2, 3, 4, 5) are positive constants to be chosen later. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾1(1 − 𝑆𝑆𝑝𝑝∗

𝑆𝑆𝑝𝑝
) 𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝐾𝐾2(1− 𝐸𝐸𝑝𝑝∗

𝐸𝐸𝑝𝑝
) 𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝐾𝐾3(1− 𝐼𝐼𝑝𝑝∗

𝐼𝐼𝑝𝑝
) 𝑑𝑑𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝐾𝐾4(1 − 𝐴𝐴𝑝𝑝∗

𝐴𝐴𝑝𝑝
) 𝑑𝑑𝐴𝐴𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝐾𝐾5(1 −
𝑅𝑅𝑝𝑝∗

𝑅𝑅𝑝𝑝
) 𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾1
�𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝∗�

𝑆𝑆𝑝𝑝
�𝜋𝜋𝑃𝑃 − 𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑆𝑆𝑝𝑝�+

𝐾𝐾2
�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

𝐸𝐸𝑝𝑝
�𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 + 𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝 − �𝜔𝜔 +𝜔𝜔4 + 𝜇𝜇𝑝𝑝�𝐸𝐸𝑝𝑝� +

𝐾𝐾3 �
𝐼𝐼𝑝𝑝−𝐼𝐼𝑝𝑝∗

𝐼𝐼𝑝𝑝
� �𝜔𝜔𝐸𝐸𝑝𝑝 − 𝜔𝜔3𝐼𝐼𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐼𝐼𝑝𝑝�+ 𝐾𝐾4 �

𝐴𝐴𝑝𝑝−𝐴𝐴𝑝𝑝∗

𝐴𝐴𝑝𝑝
� �𝜔𝜔4𝐸𝐸𝑝𝑝 − 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝 − 𝜇𝜇𝑝𝑝𝐴𝐴𝑝𝑝�+

𝐾𝐾5 �
𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝∗

𝑅𝑅𝑝𝑝
� �𝜔𝜔3𝐼𝐼𝑝𝑝 + 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝 − 𝜇𝜇𝑝𝑝𝑅𝑅𝑝𝑝�. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾1�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗� �
𝜋𝜋𝑃𝑃
𝑆𝑆𝑝𝑝
− 𝜂𝜂1𝐴𝐴𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑀𝑀 − 𝜇𝜇𝑝𝑝�+ 𝐾𝐾2�𝐸𝐸𝑝𝑝 −

𝐸𝐸𝑝𝑝∗� �
𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝
+ 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝
+ 𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝

𝐸𝐸𝑝𝑝
− �𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝�� + 𝐾𝐾3�𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑝𝑝∗� �

𝜔𝜔𝐸𝐸𝑝𝑝
𝐼𝐼𝑝𝑝

−

�𝜔𝜔3 + 𝜇𝜇𝑝𝑝�� +  𝐾𝐾4�𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝∗� �
𝜔𝜔4𝐸𝐸𝑝𝑝
𝐴𝐴𝑝𝑝

− �𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝�� +  𝐾𝐾5�𝑅𝑅𝑝𝑝 − 𝑅𝑅𝑝𝑝∗� �
𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝
𝑅𝑅𝑝𝑝

+ 𝜔𝜔3𝐼𝐼𝑝𝑝
𝑅𝑅𝑝𝑝

− 𝜇𝜇𝑝𝑝�. 

Since, 𝐶𝐶2 = �𝑆𝑆𝑝𝑝∗,𝐸𝐸𝑝𝑝∗, 𝐼𝐼𝑝𝑝∗,𝐴𝐴𝑝𝑝∗,𝑅𝑅𝑝𝑝∗� is an COVID present equilibrium, so for Eqs. (1) to (6), 
𝑑𝑑𝑆𝑆𝑝𝑝∗

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐸𝐸𝑝𝑝∗

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐼𝐼𝑝𝑝∗

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐴𝐴𝑝𝑝∗

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑅𝑅𝑝𝑝∗

𝑑𝑑𝑑𝑑
= 0, gives 

𝜇𝜇𝑝𝑝 = 𝜋𝜋𝑃𝑃
𝑆𝑆𝑝𝑝
− 𝜂𝜂1𝐴𝐴𝑝𝑝∗𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝∗ − 𝜂𝜂3𝑀𝑀∗ , 𝜔𝜔 + 𝜔𝜔4 + 𝜇𝜇𝑝𝑝 = 𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝∗
+ 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝∗
+

𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝
𝐸𝐸𝑝𝑝∗

, 𝜔𝜔3 + 𝜇𝜇𝑝𝑝 = 𝜔𝜔𝐸𝐸𝑝𝑝
𝐼𝐼𝑝𝑝∗

, 𝜔𝜔𝑝𝑝 + 𝜇𝜇𝑝𝑝 = 𝜔𝜔4𝐸𝐸𝑝𝑝
𝐴𝐴𝑝𝑝∗

, 𝜇𝜇𝑝𝑝 = 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝
𝑅𝑅𝑝𝑝∗

+ 𝜔𝜔3𝐼𝐼𝑝𝑝
𝑅𝑅𝑝𝑝∗

. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾1�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗� �
𝜋𝜋𝑃𝑃
𝑆𝑆𝑝𝑝
− 𝜂𝜂1𝐴𝐴𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂2𝐼𝐼𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 − 𝜂𝜂3𝑀𝑀 − 𝜋𝜋𝑃𝑃

𝑆𝑆𝑝𝑝
+ 𝜂𝜂1𝐴𝐴𝑝𝑝∗𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏 +

𝜂𝜂2𝐼𝐼𝑝𝑝∗ + 𝜂𝜂3𝑀𝑀∗�+ 𝐾𝐾2�𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑝𝑝∗� �
𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝
+ 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝
+ 𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝

𝐸𝐸𝑝𝑝
− 𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝∗
−

𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏

𝐸𝐸𝑝𝑝∗
− 𝜂𝜂3𝑀𝑀𝑆𝑆𝑝𝑝

𝐸𝐸𝑝𝑝∗
� + 𝐾𝐾3�𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑝𝑝∗� �

𝜔𝜔𝐸𝐸𝑝𝑝
𝐼𝐼𝑝𝑝

− 𝜔𝜔𝐸𝐸𝑝𝑝
𝐼𝐼𝑝𝑝∗
� +  𝐾𝐾4�𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝∗� �

𝜔𝜔4𝐸𝐸𝑝𝑝
𝐴𝐴𝑝𝑝

− 𝜔𝜔4𝐸𝐸𝑝𝑝
𝐴𝐴𝑝𝑝∗

� +

𝐾𝐾5�𝑅𝑅𝑝𝑝 − 𝑅𝑅𝑝𝑝∗� �
𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝
𝑅𝑅𝑝𝑝

+ 𝜔𝜔3𝐼𝐼𝑝𝑝
𝑅𝑅𝑝𝑝

− 𝜔𝜔𝑝𝑝𝐴𝐴𝑝𝑝
𝑅𝑅𝑝𝑝∗

− 𝜔𝜔3𝐼𝐼𝑝𝑝
𝑅𝑅𝑝𝑝∗

�. 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐾𝐾1
𝜋𝜋𝑃𝑃�𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝∗�

2

𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝∗
− 𝐾𝐾1𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗��𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝∗ � − 𝐾𝐾1𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗��𝐼𝐼𝑝𝑝 −

𝐼𝐼𝑝𝑝∗� − 𝐾𝐾1𝜂𝜂3(𝑀𝑀−𝑀𝑀∗)�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗� − 𝐾𝐾2
𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
− 𝐾𝐾2

𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�
2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
−

𝐾𝐾2
𝜂𝜂3 𝑆𝑆𝑝𝑝𝑀𝑀�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
−  𝐾𝐾3

𝜔𝜔𝐸𝐸𝑝𝑝�𝐼𝐼𝑝𝑝−𝐼𝐼𝑝𝑝∗�
2

𝐼𝐼𝑝𝑝𝐼𝐼𝑝𝑝∗
−  𝐾𝐾4

𝜔𝜔4𝐸𝐸𝑝𝑝�𝐴𝐴𝑝𝑝−𝐴𝐴𝑝𝑝∗�
2

𝐴𝐴𝑝𝑝𝐴𝐴𝑝𝑝∗
−  𝐾𝐾5

𝜔𝜔𝐴𝐴𝑝𝑝�𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝∗�
2

𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝∗
−

𝐾𝐾5
𝜔𝜔3𝐼𝐼𝑝𝑝�𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝∗�

2

𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝∗
  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐾𝐾1 �
𝜋𝜋𝑃𝑃�𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝∗�

2

𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝∗
+ 𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗��𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝∗ � + 𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗��𝐼𝐼𝑝𝑝 −

𝐼𝐼𝑝𝑝∗�+ 𝜂𝜂3(𝑀𝑀−𝑀𝑀∗)�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗�� − 𝐾𝐾2 �
𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
+ 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
+

𝜂𝜂3 𝑆𝑆𝑝𝑝𝑀𝑀�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�
2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
� −  𝐾𝐾3

𝜔𝜔𝐸𝐸𝑝𝑝�𝐼𝐼𝑝𝑝−𝐼𝐼𝑝𝑝∗�
2

𝐼𝐼𝑝𝑝𝐼𝐼𝑝𝑝∗
−  𝐾𝐾4

𝜔𝜔4𝐸𝐸𝑝𝑝�𝐴𝐴𝑝𝑝−𝐴𝐴𝑝𝑝∗�
2

𝐴𝐴𝑝𝑝𝐴𝐴𝑝𝑝∗
−  𝐾𝐾5 �

𝜔𝜔𝐴𝐴𝑝𝑝�𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝∗�
2

𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝∗
+

𝜔𝜔3𝐼𝐼𝑝𝑝�𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝∗�
2

𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝∗
�. 

For 𝐾𝐾1 = 𝐾𝐾2 = 𝐾𝐾3 = 𝐾𝐾4 = 𝐾𝐾5 = 1, we have 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�𝜋𝜋𝑃𝑃�𝑆𝑆𝑝𝑝−𝑆𝑆𝑝𝑝
∗�
2

𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝∗
+ 𝜂𝜂1𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗��𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑝𝑝∗ � + 𝜂𝜂2𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗��𝐼𝐼𝑝𝑝 −

𝐼𝐼𝑝𝑝∗�+ 𝜂𝜂3(𝑀𝑀−𝑀𝑀∗)�𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝∗�� − �𝜂𝜂1𝐴𝐴𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒
−𝜇𝜇𝑝𝑝𝜏𝜏�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
+ 𝜂𝜂2𝐼𝐼𝑝𝑝𝑆𝑆𝑝𝑝𝑒𝑒−𝜇𝜇𝑝𝑝𝜏𝜏�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�

2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
+

𝜂𝜂3 𝑆𝑆𝑝𝑝𝑀𝑀�𝐸𝐸𝑝𝑝−𝐸𝐸𝑝𝑝∗�
2

𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝∗
� −  𝜔𝜔𝐸𝐸𝑝𝑝�𝐼𝐼𝑝𝑝−𝐼𝐼𝑝𝑝

∗�
2

𝐼𝐼𝑝𝑝𝐼𝐼𝑝𝑝∗
−  𝜔𝜔4𝐸𝐸𝑝𝑝�𝐴𝐴𝑝𝑝−𝐴𝐴𝑝𝑝∗�

2

𝐴𝐴𝑝𝑝𝐴𝐴𝑝𝑝∗
−  �𝜔𝜔𝐴𝐴𝑝𝑝�𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝

∗�
2

𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝∗
+ 𝜔𝜔3𝐼𝐼𝑝𝑝�𝑅𝑅𝑝𝑝−𝑅𝑅𝑝𝑝∗�

2

𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝∗
�  ≤ 0 

⇒  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 0 for 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1, and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 only if    𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝∗, 𝐼𝐼𝑝𝑝 = 𝐼𝐼𝑝𝑝∗,𝐴𝐴𝑝𝑝 = 𝐴𝐴𝑝𝑝∗,𝑅𝑅𝑝𝑝 = 𝑅𝑅𝑝𝑝∗. 

Therefore, the only trajectory of the Eqs. (1) to (6) on which 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 is 𝐶𝐶2. Hence, by 
Lasalle’s invariance principle, 𝐶𝐶2 is globally asymptotically stable (GAS) in Γ. 

5 Numerical consequences 
The numerical solution of Eqs. (1) to (5) is good agreement of the dynamical behavior of 
the model by using different values of the limits. Chen et al. [Chen, Rui, Wang et al. 
(2020)] have presented the description of limits as follows:  
 𝜋𝜋𝑠𝑠 = 0.5 , 𝜂𝜂1 = 0.05 , 𝜂𝜂2 = 0.05 , 𝜇𝜇𝑝𝑝 = 0.5 , 𝜔𝜔 = 0.00047876 , 𝜂𝜂3 = 0.000001231 , 
𝜔𝜔𝑝𝑝 = 0.854302 , 𝜔𝜔1 = 0.01 , 𝜔𝜔2 = 0.000398 , 𝜔𝜔3 = 0.09871 , 𝜔𝜔4 = 0.1243 , 𝜋𝜋 = 0.5 
for 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 1 . For 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1 ,  𝜋𝜋𝑠𝑠 = 0.5 , 𝜂𝜂1 = 1.05 , 𝜂𝜂2 = 1.05 , 𝜇𝜇𝑝𝑝 = 0.5 , 𝜔𝜔 =
1.00047876, 𝜂𝜂3 = 0.000001231, 𝜔𝜔𝑝𝑝 = 0.854302, 𝜔𝜔1 = 0.01, 𝜔𝜔2 = 0.000398, 𝜔𝜔3 =
0.09871 , 𝜔𝜔4 = 0.1243 , 𝜋𝜋 = 0.5 . by using different non-negative initial conditions 
𝑆𝑆𝑝𝑝(0) = 0.5, 𝐸𝐸𝑝𝑝(0) = 0.2, 𝐼𝐼𝑝𝑝(0) = 0.05, 𝐴𝐴𝑝𝑝(0) = 0.05, 𝑅𝑅𝑝𝑝(0) = 0.1, 𝑀𝑀(0) = 0.1. 
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In Fig. 2, we have plotted each compartment of the delay model without time delay 
reason for COVID free equilibrium. 

 
(a)                                       (b) 

 
      (c) 

Figure 2: Time plots of Eqs. (1) to (5) for different parameters as  𝜋𝜋𝑠𝑠 = 0.5,  𝜂𝜂1 = 0.05, 
𝜂𝜂2 = 0.05 , 𝜇𝜇𝑝𝑝 = 0.5 , 𝜔𝜔 = 0.00047876 , 𝜂𝜂3 = 0.000001231 , 𝜔𝜔𝑝𝑝 = 0.854302 , 𝜔𝜔1 =
0.01, 𝜔𝜔2 = 0.000398, 𝜔𝜔3 = 0.09871, 𝜔𝜔4 = 0.1243, 𝜋𝜋 = 0.5 , 𝜏𝜏 = 0 , by using initial 
conditions and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.0171 < 1 
In Fig. 3, we have plotted each compartment of the delay model without time delay 
reason for COVID present equilibrium. 

 
(a)                 (b) 
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      (c) 

Figure 3: Time plots of Eqs. (1) to (5) for different parameters as 𝜋𝜋𝑠𝑠 = 0.5, 𝜂𝜂1 = 1.05, 
𝜂𝜂2 = 1.05 , 𝜇𝜇𝑝𝑝 = 0.5 , 𝜔𝜔 = 1.00047876 , 𝜂𝜂3 = 0.000001231 , 𝜔𝜔𝑝𝑝 = 0.854302 , 𝜔𝜔1 =
0.01, 𝜔𝜔2 = 0.000398, 𝜔𝜔3 = 0.09871, 𝜔𝜔4 = 0.1243, 𝜋𝜋 = 0.5, 𝜏𝜏 = 0, by using the initial 
conditions and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.2171 > 1 

 
Figure 4: Time plots of Eqs. (1) to (5) for different parameters as 𝜋𝜋𝑠𝑠 = 0.5, 𝜂𝜂1 = 1.05, 
𝜂𝜂2 = 1.05 , 𝜇𝜇𝑝𝑝 = 0.5 , 𝜔𝜔 = 1.00047876 , 𝜂𝜂3 = 0.000001231 , 𝜔𝜔𝑝𝑝 = 0.854302 , 𝜔𝜔1 =
0.01, 𝜔𝜔2 = 0.000398, 𝜔𝜔3 = 0.09871, 𝜔𝜔4 = 0.1243, 𝜋𝜋 = 0.5, 𝜏𝜏 > 0, by using the initial 
conditions and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.2171 > 1 
In Fig. 4, we have observed the increase in delay tactics or delay term, the result is 
symptomatic infected humans reduce without any change in the transmission rate. Even 
though, we can see symptomatic infected humans exponentially decreases by the increase 
in delay tactics. Eventually, symptomatic infected humans become zero in Fig.4 when 𝜏𝜏 
=0.394. So, it means humans become corona free and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.9995 < 1. According 
to given real data, if we used delay tactics like social distancing, quarantine, travel 
restrictions, holiday extension, hospitalization and isolation for about one hundred and 
forty-three days (𝜏𝜏 = 0.394 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) then we can overcome the pandemic of coronavirus. 
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5.1 Effect of delay factor 
In Fig. 5, we have plotted the comparison of delay reason and reproduction number of 
coronavirus model. We have concluded that the increase in delay tactics can change 
coronavirus present equilibrium to corona free equilibrium, which is quite the delay 
reason or delay tactics in a pandemic of coronavirus can help to control and overcome it. 

 
Figure 5: Comparison of delay factor and reproduction number 

6 Conclusion and guidelines 
The nonlinear delay dynamical modelling is a suitable tool to study any pandemic. 
During, the outbreak of coronavirus cure or vaccination cannot report as soon. Due to 
worldwide disaster, there is only delay tactics like quarantine, isolation, social distancing, 
etc. have used as vaccination to overcome the pandemic of coronavirus. If we can use 
delay tactics about one hundred and forty-three days than symptomatic infected 
ultimately moves to zero and eventually, susceptible humans will increase with delayed 
factor. The inverse relationship holds between infected and susceptible humans. As future 
work, we can extend this idea to all epidemic diseases and other biological problems. 
Also, the delay effect could be introduced in stochastic epidemic models and stochastic 
fractional-order dynamical systems. We shall introduce the idea of a delay in non-
linearity coupled multiplex networks as presented by Zhou et al. [Zhou, Tan, Yu et al. 
(2019)]. Also, this analysis shall be extended in neural networking dynamics with fixed 
intervals as presented by Yu et al. [Yu, Liu, Xiao et al. (2019)]. 
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