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ABSTRACT
In this article, we introduce a numerical technique for solving a class ofmulti-term variable-order
fractional differential equation. Themethoddependsonestablishinga shifted Jacobi operational
matrix (SJOM) of fractional variable-order derivatives. By using the constructed (SJOM) in com-
bination with the collocation technique, the main problem is reduced to an algebraic system
of equations that can be solved numerically. The bound of the error estimate for the suggested
method is investigated. Numerical examples are introduced to illustrate the applicability, gener-
ality, and accuracy of the proposed technique. Moreover, many physical applications problems
that have the multi-term variable-order fractional differential equation formulae such as the
damped mechanical oscillator problem and Bagley-Torvik equation can be solved via the pre-
sented method. Furthermore, the proposed method will be considered as a generalization of
many numerical techniques.
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1. Introduction

In the past few decades, the fractional calculus hasmas-
sive contributions in scientific fields [1–3]. Therefore,
it plays the main role for modelling many problems
via in studying the fractional-order differential equa-
tions and its applications in different areas [4–7]. These
applications are used in several fields of engineering
and science such as biology [8], dynamics [9], physics
[10,11], medicine [12], fluid [13] and others [14–16].
For these reasons, there have been a great number of
essential works for studying the fractional-order differ-
ential equations, see [17–27]. Moreover, the fractional
variable-order calculus is considered as a regular filter
to supply an influential mathematical building for the
description of the dynamical problems in the complex
form [28,29]. In addition to this essential introduction
of fractional applications, no one can deny the scientific
research revolution for many physical and mathemati-
cal problems that described through nonlinear models
(see for instance [30–39]).

In all modelled problems via the fractional differen-
tial equations (FDEs), the main concern of the math-
ematician researchers is to obtain the analytical or
the numerical solutions for these equations. But, in

many problems, obtaining the exact solution is more
complicated. Consequently, there are great efforts of
researchers to acquire accurate techniques for gain-
ing a numerical solution for FDEs. Various techniques
have been dragged special interest, such as in [40–42].
Also, one of the most familiar methods that is used is
the spectral methods which lead to accurate approx-
imate solutions because their basis is considered as a
linear combination of the orthogonal polynomials (see,
[43–45]).

Moreover, the spectral methods for solving the
fractional-orderdifferential equationsbasicallydepends
on a set of orthogonal polynomials. One of these poly-
nomials is the classical Jacobi polynomials that indi-
cated by P(α,β)

n (x) (n ≥ 0, α > −1 & β > −1), [46].
Jacobi polynomials have been used extensively in prac-
tical applications and mathematical analysis because it
has the advantages of gaining the numerical solutions
in α and β parameters. Thus, it would be beneficial to
carry out a systematic study via Jacobi polynomials with
general indexes α and β and this clearly considered
one of the aims and the novelty of this manuscript in
addition to the extension of the time interval t ∈ [0, l].
Furthermore, in recent decades, numerical study for
VFDEs is widely used [47,48]. Therefore, it appeared a
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large number of techniques for obtaining the numerical
solution of these equations (see for instance [49–51].

Here, the basic idea of this article generalization of
the orthogonal polynomials in the base of solution by
introducing a new shifted Jacobi operational matrix
of the fractional derivative for solving numerically the
multi-term variable-order FDEs in the following form:

Dμ(t)u(t) = F
(
t, u(t), Dγ1(t)u(t), Dγ2(t)u(t), . . . ,

Dγk(t)u(t)
)
, 0 < t ≤ l. (1)

where Dμ(t)u(t) and Dγi(t)u(t) (i = 1, 2, . . . , k) are the
variable-order fractional derivatives defined in the
Caputo sense.

Note that: if μ(t) and γi(t) (i = 1, 2, . . . , k) are con-
stants, then Equation (1) have the form:

Dμu(t) = F
(
t, u(t), Dγ1u(t), Dγ2u(t), . . . ,

Dγku(t)
)
, 0 < t ≤ l. (2)

Also note that: our new suggestion method consid-
ered as a generalization for every numerical solution
of the multi-term fractional-order problem that can be
solvedbymanypolynomials suchas all Chebyshevpoly-
nomials, Legendrepolynomials, Gegenbauer polynomi-
als, Lucas polynomials, Vieta- Lucas polynomials, and
Fibonacci polynomials.

In what follows: begin by reviewing certain defi-
nitions and properties of the variable-order fractional
derivatives in Section 2. In Section 3, the Jacobi polyno-
mials and their shifted ones are introduced in addition
to the matrix formula of the approximate solution via
the shifted Jacobi polynomials. In Section 4, the shifted
Jacobi operational matrix (SJOP) of the variable-order
derivatives is derived. In Section 5, the bound error
of the investigated method is obtained. The numerical
results of the suggestedmethod are obtained and com-
paredwith othermethods 6. Conclusions are obvious in
the last Section.

2. Preliminaries

In this preparative section, we introduce briefly main
required definitions of the Capout’s fractional deriva-
tive in variable-order functions which help us in what
follows.

Definition 2.1 ([19,48]): The Caputo variable-order
fractional derivatives definition for the function u(t) ∈
Cm[0, b] can be defined as:

Dμ(t)u(t) = 1
�(1 − μ(t))

∫ t

0+

u′(τ )

(t − τ)μ(t)
dτ

+ u(0+) − u(0−)

�(1 − μ(t))
t−μ(t). (3)

At the beginning time and 0 < μ(t) < 1, we have:

Definition 2.2 ([19,48]):

Dμ(t)u(t) = 1
�(1 − μ(t))

∫ t

0+

u′(τ )

(t − τ)μ(t)
dτ . (4)

Also,

Dμ(t)(a h(t) + b q(t)) = a Dμ(t)h(t) + b Dμ(t)q(t). (5)

whereaandb constant amounts. According toEquation
(3), as in [19,48] we have:

Dμ(t) C = 0, C is a constant. (6)

Dμ(t) tm

=
⎧⎨
⎩
0, form = 0,

�(m + 1)
�(m + 1 − μ(t))

tm−μ(t), form = 1, 2, . . . .

(7)

3. Jacobi polynomials and their properties

The beginning of this section by introducing essential
basic facts of the Jacobi polynomials and their shifted
ones, in addition to deriving some important tools that
help us for developing the suggested method.

3.1. Jacobi polynomials and their shifted ones

The well-known Jacobi polynomials, P(α,β)
n (x), are

orthogonal polynomials of degree n in x defined on
[−1, 1] as the following analytical form [46]:

P(α,β)
n (x) =

n∑
i=0

�(α + n + 1)�(α + β + n + i + 1)

�(α + β + n + 1)�(α + i + 1)
�(i + 1)�(n − i + 1)

×
(
x − 1
2

)i

, (8)

these polynomials given in Equation (8) can be gener-
ated by:

aα,β
1,n P(α,β)

n (x)

= aα,β
2,n P(α,β)

n−1 (x) − aα,β
3,n P(α,β)

n−2 (x), n = 2, 3, . . . . (9)

where

aα,β
1,n = 2n(α + β + n)(α + β + 2n − 2),

aα,β
2,n = (α + β + 2n − 1)

× (
α2 − β2 + (α + β + 2n)(α + β + 2n − 2)x

)
,

aα,β
3,n = 2(α + n − 1)(β + n − 1)(α + β + 2n).

(10)

With the starting values

P(α,β)
0 (x) = 1 and P(α,β)

1 (x)

= 1
2

[
(α + β + 2) x + (α − β)

]
. (11)

For using thepolynomials of Equation (8) on the interval
t ∈ [0, l], modification of the variable x = (2t/l − 1) will
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be implemented. Hence, we have so-called the shifted
Jacobi polynomials P(α,β)

n (2t/l − 1) which indicated by
P∗(α,β)
n (t). Thus, the analytical formula for these polyno-

mials is given by:

P∗(α,β)
n (t)

=
n∑
i=0

(−1)n−i�(n + β + 1)�(n + i + α + β + 1)

�(i + β + 1)�(n + α + β + 1)
�(n − i + 1)�(i + 1)li

xi,

(12)

where

P∗(α,β)
n (0) = (−1)i

�(n + β + 1)
�(β + 1)�(n + 1)

and

P∗(α,β)
n (l) = �(n + α + 1)

�(α + 1)�(n + 1)
. (13)

Also, P∗(α,β)
n (t) can be obtained via the recurrence rela-

tion:

bα,β
1,n P∗(α,β)

n (t)

= bα,β
2,n P∗(α,β)

n−1 (t) − bα,β
3,n P∗(α,β)

n−2 (t), n = 2, 3, . . . .

(14)

Where

bα,β
1,n = 2n(α + β + n)(α + β + 2n − 2),

bα,β
2,n = (α + β + 2n − 1)

[
α2 − β2 + (α + β + 2n)

× (α + β + 2n − 2)
(
2t
l

− 1
)]

,

bα,β
3,n = 2(α + n − 1)(β + n − 1)(α + β + 2n).

(15)
With the starting values

P∗(α,β)
0 (t) = 1 and

P∗(α,β)
1 (t) = (α + β + 2)

t

l
− (β + 1). (16)

Moreover,P∗(α,β)
n (t) satisfy theorthogonality relationon

[0, l] as:

〈P∗(α,β)
n (t), P∗(α,β)

m (t)〉

=
∫ l

0
P∗(α,β)
n (t)P∗(α,β)

m (t) ω(α,β) dt = hn

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, n 	= m,
lα+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)�(n + 1)

�(n + α + β + 1)

, n = m.

(17)

where ω(α,β) = xβ(l − x)α is the weight function of
P∗(α,β)
n (t).
Furthermore, since the shifted Jacobi polynomials

that are given in Equation (12) with general indexes

(α > −1 & β > −1). Then can claim of these polyno-
mials; the most usually used orthogonal polynomials
in numerical methods; the shifted Legendre polynomi-
als L∗

n(t); the shiftedGegenbauer polynomialsG∗(α,β)
n (t).

In addition to the shifted Chebyshev polynomials of
the first, second, third and fourth kinds which denoted
by T∗

n (t), U∗
n(t), V

∗
n (t) and W∗

n(t), respectively. All these
orthogonal polynomials are contacted with P∗(α,β)

n (t)
through the relations:

L∗
n(t) = P∗(0,0)

n (t),

G∗(α,β)
n (t) = �(n + 1)�(α + 1

2 )

�(n + α + 1
2 )

P
∗(α− 1

2 ,β− 1
2 )

n (t),

T∗
n (t) = �(n + 1)�( 12 )

�(n + 1
2 )

P
∗(− 1

2 ,− 1
2 )

n (t),

U∗
n(t) = �(n + 2)�( 12 )

2�(n + 3
2 )

P
∗( 12 ,

1
2 )

n (t),

V∗
n (t) = 22n[�(n + 1)]2

�(2n + 1)
P

∗(− 1
2 ,

1
2 )

n (t),

W∗
n(t) = 22n[�(n + 1)]2

�(2n + 1)
P

∗( 12 ,− 1
2 )

n (t).

(18)

3.2. Function approximation via shifted Jacobi
polynomials

The function u(t) ∈ L2
ω(α,β) [0, l] can be expanded as the

following expression: [46]

u(t) =
∞∑
i=0

ci P
∗(α,β)
i (t), (19)

where ci are the coefficients of the series. Hence, by
taking n−terms of the series in Equation (19) we obtain:

un(t) =
n∑
i=0

ci P
∗(α,β)
i (t) = CTφ(t). (20)

where in Equation (20) φ(t) = [P∗(α,β)
0 (t), P∗(α,β)

1 (t), . . . ,

P∗(α,β)
n (t)]T and C = [c0, c1, . . . , cn]T is a vector and it’s

enters elements have values given by

ci = 1
hi

∫ l

0
u(t) P∗(α,β)

i (t) ω(α,β) dt, i = 0, 1, 2, . . . , n.

(21)
Now, if we suppose

R(t) = [1, t, t2, . . . , tn]T . (22)

Then, according to Equation (22), the vector φ(t) can be
expressed as:

φ(t) = A(α,β) R(t). (23)
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where A(α,β) is (n + 1) × (n + 1) of Equation (23) is a
square matrix that specified by:

(ai,j)0≤i,j≤n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−i

�(n + β + 1)�

(n + i + α + β + 1)

�(i + β + 1)�

(n + α + β + 1)

�(n − i + 1)�(i + 1)li

, i ≥ j,

0, otherwise.

(24)

For instance, if n = 4, α = β = 0 then A (matrix of
shifted Legendre polynomials) is given by:

A(0,0) = 1
li

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
−1 2 0 0 0
1 −6 6 0 0

−1 12 −30 20 0
1 −20 90 −140 70

⎞
⎟⎟⎟⎟⎠ .

Therefore, using Equation (23), we obtain

R(t) = A−1
(α,β) φ(t). (25)

Remark 3.1: For obtaining the square matrix A for all
other orthogonal polynomials that related to the shifted
Jacobi polynomials such as shifted Legendre poly-
nomials, shifted Gegenbauer polynomials and shifted
Chebyshev polynomials of all kinds, the coefficient of
these polynomials according to the relation given in
Equation (18) must be taken into consideration.

For example, ifn = 4,α = 1
2 ,β = −1

2 then the square
matrix A that derived in Equation (24) became (matrix
of the fourth kind shifted Chebyshev polynomials) as
follows:

A( 12 ,− 1
2 ) = 1

li

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
−1 4 0 0 0
1 −12 16 0 0

−1 24 −80 64 0
1 −40 240 −448 256

⎞
⎟⎟⎟⎟⎠ .

(26)

4. Shifted Jacobi polynomials operational
matrix (SJOM)

The shifted Jacobi operational matrix of fractional
variable-order for supporting the numerical solution of
the main problem will be investigated in this section.
Hence, the problem will be transformed into the alge-
braic system of equations which solved numerically at
the collocation points.

Firstly, Dμ(t)φ(t) can be deduced as the following:
since φ(t) = A(α,β) R(t), then we obtain

Dμ(t)φ(t) = Dμ(t)(A(α,β) R(t))

= A(α,β) D
μ(t)[1, t, t2, . . . , tn]T . (27)

Using Equation (7) in Equation (27), we obtain:

Dμ(t)φ(t)

= A(α,β)

[
0,

�(2)
�(2 − μ(t))

t(1−μ(t)),

�(3)
�(3 − μ(t))

t(2−μ(t)), . . . ,

�(n + 1)
�(n + 1 − μ(t))

t(n−μ(t))
]T

= A(α,β)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0
�(2)

�(2 − μ(t))
t−μ(t) 0

0 0
�(3)

�(3− μ(t))
t−μ(t)

...
...

...
0 0 0

. . . 0

. . . 0

. . . 0
...

...

. . .
�(n + 1)

�(n + 1 − μ(t))
t−μ(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
t
t2

...
tn

⎤
⎥⎥⎥⎥⎥⎦

= A(α,β) G(t) R(t). (28)

Where

G(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0
�(2)

�(2 − μ(t))
t−μ(t) 0

0 0
�(3)

�(3 − μ(t))
t−μ(t)

...
...

...
0 0 0

. . . 0

. . . 0

. . . 0
...

...

. . .
�(n + 1)

�(n + 1 − μ(t))
t−μ(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (29)

Using Equation (25), we have

Dμ(t)φ(t) = A(α,β) G(t) A−1
(α,β) φ(t). (30)

A(α,β) G(t) A−1
(α,β) is the operational matrix of Dμ(t)φ(t).

Now, we can obtain the fractional variable order the
approximated function that given in Equation (20) as
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the following:

Dμ(t)u(t) � Dμ(t)(CTφ(t)) = CTDμ(t)φ(t)

= CTA(α,β) G(t) A−1
(α,β) φ(t).

(31)

Secondly, Dγi(t) φ(t), i = 1, 2, . . . , k can be obtained by
follow the same way that proposed for obtaining the
(SJOP) of Dμ(t) φ(t), as follows:

Dγi(t) φ(t) = (A(α,β) Qi(t) A
−1
(α,β)) φ(t). (32)

Where

Qi(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0
�(2)

�(2 − γi(t))
t−γi(t) 0

0 0
�(3)

�(3 − γi(t))
t−γi(t)

...
...

...
0 0 0

. . . 0

. . . 0

. . . 0
...

...

. . .
�(n + 1)

�(n + 1 − γi(t))
t−γi(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (33)

The square matrix A(α,β) Qi(t) A
−1
(α,β) is the operational

matrix of Dγi(t) φ(t). Therefore,

Dγi u(t) � Dγi(t)(CTφ(t)) = CTDγi(t)φ(t)

= CT (A(α,β) Qi(t) A
−1
(α,β)) φ(t).

(34)

Via, Equations (31) and (34), then Equation (1) converted
to:

CTA(α,β) G(t) A−1
(α,β) φ(t)

= F[t, CTφ(t),CT (A(α,β) Q1(t) A
−1
(α,β)) φ(t),

· · · , CT (A(α,β) Qk(t) A
−1
(α,β)) φ(t)], 0 ≤ t ≤ l.

(35)
Now, using ti = l(2i + 1)/(2n + 2), i = 0, 1, . . . , n. Then
Equation (35) can be turned into the following system:

CTA(α,β) G(ti) A
−1
(α,β) φ(ti)

= F[ti, CTφ(ti),CT (A(α,β) Q1(ti) A
−1
(α,β)) φ(ti),

· · · , CT (A(α,β) Qk(ti) A
−1
(α,β)) φ(ti)].

(36)

Here, the system in Equation (36) in addition to the
initial and boundary conditions can be solved numer-
ically to determine the unknown vector C. Hence, the
numerical solution that defined in Equation (20) can be
calculated.

5. Error estimate

Theorem 5.1: Consider u(t) ∈ [0, l] be n-th times con-
tinuously differentiable and un(t) be the best square
approaches of u(t) given in Equation (20) then,we claim

‖u(t) − un(t)‖ ≤ MHn+1

(n + 1)!

√
I, (37)

where

M = max
t∈[0,l]

u(n+1)(t), H = max {l − t0, t0} and

I =
∫ l

0
tβ(l − t)α dt. (38)

Proof: Using Taylor expansion for u(t) as follows:

u(t) = u(t0) + (t − t0)u
′(t0) + · · · + (t − t0)n

n!
u(n)(t0)

+ (t − t0)n+1

(n + 1)!
u(n+1)(ξ), (39)

where t0 ∈ [0, l] and ξ ∈]t0, t[. Assume

ũn(t) = u(t0) + (t − t0)u
′(t0) + · · · + (t − t0)n

n!
u(n)(t0),

(40)
then

‖u(t) − ũn(t)‖ =
∣∣∣∣ (t − t0)n+1

(n + 1)!
u(n+1)(ξ)

∣∣∣∣ . (41)

According to, un(t) that given in Equation (20), we
obtain

‖u(t) − un(t)‖2

≤ ‖u(t) − ũn(t)‖2

=
∫ l

0
ω(α,β)[u(t) − ũn(t)]2 dt

=
∫ l

0
ω(α,β)

[
(t − t0)n+1

(n + 1)!
u(n+1)(ξ)

]2
dt

≤ M2

[(n + 1)!]2

∫ l

0
ω(α,β)

[
(t − t0)

n+1]2 dt. (42)

Now, let H = max {l − t0, t0}, thus Equation (42) can
rewritten as:

‖u(t) − un(t)‖2 ≤ M2[(H)n+1]2

[(n + 1)!]2

∫ l

0
ω(α,β) dt. (43)

Since, ω(α,β) = tβ(l − t)α then,

‖u(t) − un(t)‖2 ≤ M2[(H)n+1]2

[(n + 1)!]2

∫ l

0
tβ(l − t)α dt. (44)

Hence, the proof is completed. �

Corollary 5.1: Using Equation (37) in case ofα = β = 0,
then I = l. This implies that we can obtain the error bound
in case of using the shifted Legendre polynomials [50].
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Corollary 5.2: Via Equation (37) if α = β = 1
2 , then

I = l2π/8 which is in complete agreement with the error
bound that obtained via the second kind shifted Cheby-
shev polynomials which introduced by Liu and et al. [48].

Corollary 5.3: Using Equation (37) in case ofα = 1
2 ,β =

−1
2 , then I = lπ/2 which is in complete agreement with
the error bound that obtained via the fourth kind shifted
Chebyshev polynomials which investigated by Nagy and
et al. [49].

Remark 5.1: The error bound that obtained by all
orthogonal related functions with the shifted Jacobi
polynomials can be obtained by using the suggested
technique.

6. Numerical experiments

To illustrate the accuracy, applicability, andgenerality of
thepresentedmethod, several test examples are carried
out in our hand section. Also, these examples support
our theoretical discussion and givemore general results
where the indexesof the shifted Jacobi polynomialsα,β
carried out the results at different values of them. For
comparing our computational results, the maximum
absolute error Emax between the analytical and numer-
ical solutions will be used. Where Emax defined as the
following:

Emax = max
i=0,1,...,n

|u(ti) − un(ti)|,

ti = l(2i + 1)
(2n + 2)

, i = 0, 1, . . . , n. (45)

Example 6.1 ([48,49]): Consider the multi-term frac-
tional variable-order differential equation

a Dμ(t)u(t) + b(t) Dγ1(t)u(t) + c(t) Dγ2(t)u(t) + e(t)

Dγ3(t)u(t) + k(t) u(t) = g(t), u(0) = 2,

u′(0) = 0, t ∈ [0, l]. (46)

Where

a = 1, b(t) = t
1
2 , c(t) = t

1
3 ,

e(t) = t
1
4 , k(t) = t

1
5 ,

g(t) = −a
t2−μ(t)

�(3 − μ(t))
− b(t)

t2−γ1(t)

�(3 − γ1(t))

− c(t)
t2−γ2(t)

�(3 − γ2(t))

− e(t)
t2−γ3(t)

�(3 − γ3(t))
+ k(t) (2 − t2

2
).

(47)

The analytical solution is u(t) = (2 − t2/2). This exam-
ple will be solved in different cases as follows:

Table 1. c0, c1 and c2 at distinct values of α and β for Exam-
ple 6.1 Case 1.

α β c0 c1 c2

0 0 1.833333333333333 −0.25 −0.083333333333333
1 1 1.84375 −0.25 −0.09375
0.5 0.5 1.84375 −0.125 −0.03125

−0.5 0.5 1.6875 −0.15625 −0.03125
0.5 −0.5 1.93750 −0.09375 −0.03125

Case 1: Consider the fractional variable-order param-
eters defined as the following:

μ(t) = 2 t, γ1(t) = t

3
, γ2(t) = t

4
, γ3(t) = t

5
.

(48)

Through the investigated technology in Section 4 with
(n + 1) finite terms of the approximate solution that
given in Equation (20) then we obtain

aCTA(α,β)G(t)A−1
(α,β)φ(t) + b(t)CTA(α,β)Q1(t)A

−1
(α,β)φ(t)

+ c(t)CTA(α,β)Q2(t)A
−1
(α,β)φ(t)

+ e(t)CTA(α,β)Q3(t)A
−1
(α,β)φ(t)

+ k(t)φ(t) = g(t). (49)

Here, using the collection points ti that defined in
Equation (45) for solving numerically the system of
equations that given in Equation (49) via the collocation
method. Then, we claim

aCTA(α,β)G(ti)A
−1
(α,β)φ(ti)

+ b(ti)C
TA(α,β)Q1(ti)A

−1
(α,β)φ(ti)

+ c(ti)C
TA(α,β)Q2(ti)A

−1
(α,β)φ(ti)

+ e(ti)C
TA(α,β)Q3(ti)A

−1
(α,β)φ(ti)

+ k(ti)φ(ti) = g(ti), i = 0, 1, . . . , n. (50)

Hence, the system of Equations (50) solved numeri-
cally via Newton’s iteration method and the vector C =
[c0, c1, . . . , cn]T is obtained. Therefore, the numerical
solution in Equation (20) is calculated.

Now, solving the algebraic system of Equations (50)
with n = 2 and l = 1. Thus, we can write

un(t) =
2∑

i=0

ci P
∗(α,β)
i (t) =

(
2 − t2

2

)
. (51)

Table of the numerical results will not be presented in
Case 1 because the exact solution is obtained. The three
unknown coefficients with several choices of α and β

are presented in Table 1 (Figure 1).
Moreover, Table 2 shows Emax that obtained via

the suggested method in the case of α = β = 0 and
those given in [48] with several values of l and n for
the fractional variable-orderderivativesμ(t), γ1(t), γ2(t)
and γ3(t) that given in Case 1. From these results, we
can deduce that these results identically the analytical
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Figure 1. Exact solution and numerical solutions (left Figure), absolute error (right Figure) for Example 6.1 Case 1 in case of n = 2,
l = 1, and α = β = 0.

Table 2. Comparison Emax between technique given in [48] and proposed technique at α = β = 0 for Example 6.1 Case 1 with
disjoint of l and n.

Method in [48] Our proposed method

l n = 3 n = 4 n = 5 n = 3 n = 4 n = 5

1 0 2.2204 × 10−16 2.2204 × 10−16 0 0 0
2 0 4.4409 × 10−16 1.3323 × 10−15 0 0 0
4 2.2204 × 10−16 3.5527 × 10−15 3.1974 × 10−14 0 0 0

solution and more accurate than these results that
obtained by Liu and et al. [48]. Also, the method in
[48] depends on the second kind shifted Chebyshev
polynomials which consider as a particular case of
our suggested technique that depends on the shifted
Jacobi polynomials. Furthermore, as seen from Table 3,
the vector CT = [c0, c1, . . . , cn] obtained is mainly com-
posed of three terms, namely, [c0, c1, c2]. Also, Emax at
l = 1 and distinct choices of n,α and β for the fractional
variable-order derivatives μ(t), γ1(t), γ2(t) and γ3(t) is
shown in the same Table. Table 3, shows achieving a
full agreement with the analytical solution of the given
problem via a few terms of P∗(α,β)

n (t).

Remark 6.1: If α = 1
2 ,β = −1

2 and l = 1, 2&4, then the
numerical results that obtained by our technique for

Example 6.1 Case 1 is in complete agreement with the
results that obtained by authors in [49].

Case 2: In the case of:

μ = 2, γ1 = 1.234, γ2 = 1, γ3 = 0.333. (52)

This case considered as a particular case of Case 1
because the multi-term fractional variable-order differ-
ential equation that given in Equation (46) becomes
multi-term constant-order fractional differential
equation.

Table 4 gives Emax that gained through the intro-
duced technique for Example 6.1 Case 2 at distinct val-
ues of n, α = β = 0 and l = 1. From the first look at
Table 4, the suggested gives highly accurate results
comparing with others [40,44,48]. Table 5, presented

Table 3. Computational results of Example 6.1 Case 1 for disjoint choices of α and β at l = 1..

n α β CT Emax

3 [1.8333,−0.2500,−0.0833, 0.0000] 0
4 0 0 [1.8333,−0.2500,−0.0833, 0.0000,−0.0000] 0
5 [1.8333,−0.2500,−0.0833, 0.0000,−0.0000, 0.0000] 0
6 [1.8333,−0.2500,−0.0833, 0.0000,−0.0000, 0.0000, 0.0000] 0
3 [1.8438,−0.2500,−0.0938,−0.0000] 0
4 1 1 [1.8438,−0.2500,−0.0938, 0.0000,−0.0000] 0
5 [1.8438,−0.2500,−0.0938, 0.0000,−0.0000, 0.0000] 0
6 [1.8438,−0.2500,−0.0938,−0.0000,−0.0000,−0.0000, 0.0000] 0
3 [1.8438,−0.1250,−0.0313, 0.0000] 0
4 1

2
1
2 [1.8438,−0.1250,−0.0313, 0.0000, 0.0000] 0

5 [1.8438,−0.1250,−0.0313, 0.0000,−0.0000, 0.0000] 0
6 [1.8438,−0.1250,−0.0313, 0.0000, 0.0000, 0.0000,−0.0000] 0
3 [1.9375,−0.0937,−0.0312, 0.0000] 0
4 1

2
−1
2 [1.9375,−0.0938,−0.0313, 0.0000,−0.0000] 0

5 [1.9375,−0.0937,−0.0312, 0.0000,−0.0000, 0.0000] 0
6 [1.9375,−0.0937,−0.0312, 0.0000, 0.0000,−0.0000, 0.0000] 3.997 × 10−14



970 A. A. EL-SAYED ET AL.

Table 4. Comparison the Emax for the methods that were given in [40,44,48], and the proposed technique for Example 6.1 Case 2
where l = 1 α = −0.5 and β = 0.5.

Method in [40] Method in [44] Method in [48] Ours α = β = 0

n Emax n Emax n Emax n Emax

10 0.023659 5 6.88384 × 10−5 3 4.4409 × 10−16 2 0
100 0.000986 10 3.00351 × 10−6 4 1.4633 × 10−13 3 0
1000 0.000044 20 1.67837 × 10−7 5 3.2743 × 10−12 4 0

40 1.02241 × 10−8 6 1.0725 × 10−13 5 0

Table 5. Comparison Emax between results in [48] and our results at α = −β = −1
2 for Example 6.1 Case 2 with disjoint choices of l

and n.

Method in [48] Proposed method

l n = 3 n = 4 n = 5 n = 3 n = 4 n = 5

2 8.8818 × 10−16 9.1038 × 10−15 2.2959 × 10−13 0 0 4.8849 × 10−14

4 8.8818 × 10−16 1.0214 × 10−14 7.3275 × 10−15 0 0 1.9007 × 10−13

the comparison of Emax between numerical results
given in [48] andourmethodatα = −β = −1

2 for Exam-
ple 6.1 Case 2with different values of l and n. The values
of Emax are better than that given in [48], in addition to
the extension the interval from [0, 1] to [0, 2] and [0, 4]
which is not solved in [44].Moreover, Figure 2 shows the
analytical and the approximate solutions (left figure),
the absolute error (right figure) for Example 6.1 Case 2
at n = 5, l = 6 and α = β = 0. These results in a whole
compact with the numerical results in [50].

Remark 6.2: At α = 1
2 ,β = −1

2 and l = 1, 2 & 4, numer-
ical results that obtained by our technique coincidence
with the results that obtained by the authors in [49].
Moreover, we can obtain numerical results in Case 2
for several choices of the indexes (α,β) at disjoint val-
ues of n and the length of the interval [0, l]. These
results approximately give the analytic solution. More-
over when the values of the fractional parametes are
integeres or more than one, we must have this into
our accounts in the calculting of the square A (became
matrix of the ordinary differentiate in the integer case).

Example 6.2: Assume the following equation:

a Dμ(t)u(t) + b Dγ (t)u(t) + c u(t)

= g(t), u(0) = u0, u′(0) = u1, t ∈ [0, l]. (53)

This example will take several forms depends on the
known coefficients a, b and c, the initial conditions
u0, u1, the known function g(t), and the variable of frac-
tional order derivativesμ(t), γ (t) as the following cases:

Case 1: [49] Suppose that

a = 1, b = 2, c = 4, u0 = u1 = 0,

μ(t) = 2t, γ (t) = 1 + t

2
,

g(t) = �(3)
�(3 − μ(t))

t2−μ(t)

+ 2�(3)
�(3 − γ (t))

t2−γ (t) + 4t2.

(54)

Theanalytical solutionof Example6.2Case1 isu(t) = t2.
Now, take only three terms of the numerical series

of the solution and follow the same steps that followed

Figure 2. Exact solution and numerical solutions (left Figure), absolute error (right Figure) for Example 6.1 Case 2 in case of n = 5,
l = 6, and α = β = 0.
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Figure 3. Exact solution and numerical solutions of Example 6.2 Case 1 for different values of n, l and α = −β = 0.5.

Figure 4. Absolute error of Example 6.2 Case 1 for different values of n, l and α = −β = 0.5.

Table 6. c0, c1 and c2 of Example 6.2 Case 1 for several choices
of α and β at n = 2, l = 1.

α β c0 c1 c2

0 0 0.333333333333333 0.50 0.166666666666667
1 1 0.3125 0.50 0.1875
0.5 0.5 0.3125 0.250 0.0625
−0.5 0.5 0.6250 0.3125 0.0625
0.5 −0.5 0.1250 0.1875 0.0625

in example 6.1 then, we claim: Here, the approximate
solution

u2(t) =
2∑

i=0

ci P
∗(α,β)
n (t) = t2. (55)

Which is in full accordancewith the exact solution. Also,
Figures 3 and 4 support the results (Table 6).

Remark 6.3: If α = −β = 1
2 and l = 1, 2 & 4, the

numerical results that obtained by our technique for
Example 6.2 Case 1 is congruent to the results that
obtained by the authors in [49].

Case 2: [20,49] Suppose that

a = 1, b = −10, c = 1, u0 = 5,

u1 = 10, μ(t) = t + 2 exp(t)

7
, γ (t) = 1,

g(t) = 10

(
t2−μ(t)

�(3 − μ(t))
+ t1−μ(t)

�(2 − μ(t))

)

+ 5t2 − 90t − 95. (56)

The analytical solution of Example 6.2 Case 2 is u(t) =
5(1 + t)2.

Again, we apply the proposed technique that pro-
posed Section 4 and follows the same steps that fol-
lowed in Example 6.1, we have the numerical results of
this Example, Example 6.2, in this case (Case 2).

The absolute error that obtained via the suggested
method for Example 6.2 Case 2 at α = β = 1 and n = 2
are given Table 7. By looking at Table 7, it transparent
that the claimed results through the proposed tech-
nique are more accurate than others [20,49]. Moreover,
the numerical results can be obtained for various values
of α and β .
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Table 7. Comparison Emax of the methods were given in
[20,49] and the suggested method for Example 6.2 Case 2 at
α = β = 1.

t ∈ [0, 1] In [20], n = 4 In [49], n = 2
The proposed
Method, n = 2

0.2 8.091305 × 10−12 1.818101 × 10−12 0
0.4 2.024535 × 10−9 1.817213 × 10−12 8.881784 × 10−16

0.6 9.564669 × 10−10 1.820765 × 10−12 1.776356 × 10−15

0.8 1.696030 × 10−10 1.818989 × 10−12 1.776356 × 10−15

1.0 1.734222 × 10−10 1.818989 × 10−12 0

Case 3: [10,49] (The damped mechanical oscillator)

a = 1, b = 2, c = 4, u0 = u1 = 0,

μ(t) = 2, γ (t) = 1, and g(t) = 2 + 4t + 4t2.
(57)

The exact solution of Example 6.2 Case 3 is u(t) = t2.
In this case, the physical system whose behaviour is

governed by an (ODE) given by:

a D2u(t) + b Du(t) + c u(t)

= g(t), u(0) = 0, u′(0) = 0, t ∈ [0, 1], (58)

where, a symbolize themass of the particle linked to the
spiral, b is a measurement of the power of the damper,
c refers to the spring stiffness, and g(t) is the applied
outer force. t time and u(t) is the displacement of the
mass from its rest position.

Now, using technique given in Section 4 at α = β =
0 and n = 2. Then the exact solution of the damped
mechanical oscillator Equation (58) that given in Case
3 of Example 6.2 is obtained. Also, we can claim the
numerical results of Example 6.2 Case 3 for several val-
ues of the indexes α,β such as α = β = 1, α = β = 1

2
and α = −β = ∓ 1

2 at n = 2. These results are compa-
rable with the exact solution.

Remark 6.4: If α = −β = 1
2 and n = 2, l = 1. Then,

the numerical results that obtained by our technique
for Example 6.2 Case 3 is coincident with the results
obtained by the authors in [49]. Therefore, the method
that introduced in paper [49] considered as a special
case of our suggested method in this article.

Case 4: [21] (Bagley-Torvik equation)
which arises in themodelling of themotion of a rigid

plate immersed in Newtonian fluid, it obtained in case

of:

a = b = c = 1, u0 = u1 = 0, μ(t) = 2,

γ (t) = 3
2
, and g(t) = t2 + 2 + 4√

π
t0.5. (59)

The exact solution of Example 6.2 case 4 is u(t) = t2.
The three unknown coefficients will be obtained in

Table 8. These unknowns are calculated by applying the
suggested method that proposed in Section 4 in the
case of n = 2.

Consequently, we can rewrite the approximate solu-
tion as

u2(t) = (
c0, c1, c2

)⎛⎜⎝
1

P∗(α,β)
1 (t)

P∗(α,β)
2 (t)

⎞
⎟⎠ = t2. (60)

Which is the exact solution.
It is clear that with the aid of Table 8, the exact solu-

tion for Example 6.2 Case 4 is obtained at n = 2, l = 1
via the steps of a solution by the introduced method.
Although, the best results of the same problem which
obtained by the authors given in [21] are 6 × 10−10 and
2 × 10−10. Moreover, the authors of the same refereed
article obtained the exact solution when n → ∞. It is
obvious that the suggested technique is more accurate
than other methods given in [21].

Remark 6.5: If α = β = 0 and l = 1. Then, the approx-
imate results that gained through the presented tech-
nique for Example 6.2 Case 4 is exactly like the results
that obtained by the authors in [43] which considered
as a special case of our suggested technique.

7. Conclusions

In this article, the operational matrix of shifted Jacobi
polynomials is investigated to solve the multi-term
FDEs and multi-term variable order FDEs numerically.
The basic idea behind this method is converted the
main problem into a system of algebraic equations
that can be solved numerically. Also, the presented
technique is applied for several choices of the indexes
(α,β) and disjoint fractional variable-order fractional
derivatives μ(t), γ (t) which implies us with the flexi-
bility to solve many fractional order problems. There-
fore, we enabled to solvemany different applications in
physics such as the damped mechanical oscillator and
Bagley-Torvic equation. Moreover, the error estimate

Table 8. c0, c1 and c2 of Example 6.2 Case 4 for several choices of α and β at n = 2, l = 1.

α β c0 c1 c2

0 0 0.333333333333329 0.500000000000003 0.166666666666667
1 1 0.312500000000004 0.499999999999991 0.187500000000001
0.5 0.5 0.312500000000000 0.249999999999998 0.06250

−0.5 0.5 0.624999999999996 0.312500000000002 0.06250
0.5 −0.5 0.1250 0.1875 0.0625
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has been discussed. Furthermore, numerical examples
are introduced in many cases for several choices of the
parameters of the original FDEs to demonstrate the
accuracy, efficiency, generality, and applicability of the
introduced technique. From the obtained results, only a
few termsof the shifted Jacobi polynomials are required
to acquire satisfactory results. Finally, in future work,
we can use the proposedmethod for solving non-linear
problems in one and two dimensional in addition to
the linear problems in two dimensional. All computed
numerical results obtained via the MATLAB program
and +e data used to support the findings of this study
are included within the article.
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