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ABSTRACT
We introduce the theory of optical spherical Heisenberg ferromagnetic spin of timelike spherical
normal magnetic flows of particles by the spherical frame in de Sitter space. Also, the concept of
timelike spherical normal magnetic particles is investigated, which may have evolution equa-
tions. Afterward, we reveal new relationships with some integrability conditions for timelike
spherical normal magnetic flows in de-Sitter space. In addition, we obtain total phases for spher-
ical normal magnetic flows. We also acquire perturbed solutions of the nonlinear Schrödinger’s
equation that governs the propagation of solitons in de-Sitter space S

2
1. Finally, we provide some

numerical simulations to supplement the analytical outcomes.
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1. Introduction

Nonlinear evolution equations appear in many differ-
ent disciplines including fluid mechanics, optical, solid-
state and plasma physics. Exact solutions of these equa-
tions are highly important and useful for researchers.
Because any general method applicable to obtain exact
solutions of all evolution equations is not available,
researchers developed and employed many different
solution techniques, e.g. [1–8], each of which is mostly
applicable only for special cases.

Recently, the concept of nonlinear transformation
equation classification experience in applied differen-
tial geometry is established as geometric fluid flow.
This flow can be attained over curvature or binormal
flux of space curves corresponding time potential. Cur-
vature evolution involves that a particle flows on the
order of normal field comparable to its curvatures.
The present description of the transformation equation
involves various remarkable symmetrical partial differ-
ential equation classifications. The above-mentioned
equation classifications are primarily restricted as ordi-
nary mean curvature flows, some curvature flow, sur-
face propagation flow and Willmore flow [9–14].

A comprehensive analysis struggle has been estab-
lished to evaluate some magnetic particles and their
spherical fluid flows. Comparatively, experts presented

that some elastic particles are attained just as one of
the solving families of the Lorentz force equation. This
design a connection to some possible physical devel-
opment, specifically, the Hall issue and the basic elastic
concept. Additionally, magnetic particles are utilized to
solve some issues [15–17].

Space curves have different uses on diverse organi-
zations of technology just like slim vortex filament in
fluid flow, twisted optical fibre, rotate designs in the
magnetic string, crystal development, and fire entrance
distribution, very much functions have been analyzed
by means of a lot of experts [18–23]. Also, this topic is
commonly studied with some solutions [24,25].

The de-Sitter space is a famous and proper model
in mathematical physics, and it has been investigating
under a comprehensive range of distinct perspectives.
In the mathematical point of view, DSs S

2
1 is identified

to be the Lorentzian sphere in the Lorentzian spacetime
with positive curvature. This feature of the DSs provides
a decent pattern to explore spherical geometry. In the
physical context, it has a key role in the theory of gen-
eral relativity since it is one of the vacuum solutions of
field equations. In the cosmological sight, solutions of
formulas of Einstein by apositive cosmological constant
are constructed in de Sitter metric, which models an
expanding universe [26–28].
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The paper is organized as follows: Firstly, we intro-
duce scheme of optical Heisenberg ferromagnetic spin
of timelike spherical normal magnetic flows of particles
by the spherical frame in DSs. Secondly, the concept
of timelike spherical normal magnetic particles is inves-
tigated, which may have evolution equations. After-
wards, we reveal new relationships some integrability
conditions for timelike spherical normalmagnetic flows
in de Sitter space. Finally, we obtain total phases for
spherical normal magnetic flows.

1.1. The geometry of the de-Sitter space S2
1

In this part, we present fundamental definitions of
the spherical geometry of the Lorentzian space form,
which corresponds to a DSs S

2
1. Here, we go into detail

about the geometrical understanding of the DSs in
order to comprehend the mathematical method that
we improve to define magnetic curves in the S

2
1.

Let R
k+1
1 be a (k + 1)-dimensional vector space

equipped with the Lorentzian metric

h (, ) = −da21 + da22 + · · · + da2k+1.

In this case, (Rk+1
1 , h(, )) is namedbyMinkowski (k + 1)-

space. The pseudo vector product of a1, a2, . . . , ak ∈
R
k+1
1 is described to be

a1 × a2× · · · × ak =

⎡
⎢⎢⎢⎢⎢⎢⎣

−u1 u2 · · · uk+1

a11 a21 · · · ak+1
1

a12 a22 · · · ak+1
2

...
...

...
...

a1k a2k · · · ak+1
k

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where ai = {a1i , a2i , · · · , ak+1
i } and {u1, u2, · · · , uk+1}

is the canonical basis of R
k+1
1 [29]. A non-zero vec-

tor a ∈ R
k+1
1 is called timelike, lightlike or spacelike if

h(a, a) < 0, h(a, a) = 0 or h(a, a) > 0. Thus, one can
give thenorm functionof thea ∈ R

k+1
1 byusing the sign

function as follows.

‖a‖ =
√
sign (a) (a, a),

where

sign (a) =
⎧⎨
⎩
1, a is spacelike,
0, a is lightlike,

−1, a is timelike.

Let δ : I → S
2
1 be a regular unit speed timelike spherical

particle, that is it is arclength parametrized and suf-
ficiently smooth. Hence, Sabban or spherical frame is
defined along with the particle δ as follows.

∇ϑδ = T

∇ϑT = δ + εN

∇ϑN = εT,

where∇ is a derivative connection and ε = det(δ, T, T′)
is geodesic curvature of particle [10]. Also, pseudo vec-
tor products are

δ = T × N, T = δ×N, N = δ×T.

2. Timelike spherical normal magnetic curves
of the de-Sitter space S

2
1

In this division, we attempt to explore the impacts of
pseudo Riemannian geometry, in particular, de-Sitter
spacetime S

2
1, on themotion of a charged particle mov-

ing on some magnetic field, which is supposed to har-
monize a timelike spherical particle lying fully in S

2
1,

extracted from Lorentz equation.

Definition 2.1: Let δ : I → S
2
1 be a regular unit speed

timelike spherical particle in deSitter space and G be the
magnetic fieldonS

2
1. Timelike sphericalmagneticparticles

are established by the Lorentz force:

∇ϑT = � (T) = G×N.

For advance references, we recall these timelike spherical
magnetic particles as an N-magnetic particle.

Proposition 2.2: Let δ : I → S
2
1 be a regular unit speed

timelike spherical particle in deSitter space and G be the
magnetic field onS

2
1. Then,N-magnetic particle of Lorentz

force� with themagnetic field G is signed by

�(δ) = κT,

�(T) = κδ + εN,

�(N) = εT,

GN = εδ − κN,

whereκ = h(�(T), δ).

Let δ(s, t) is the evolution of N-magnetic particle in
DSs with time. Flow of δ can easily be obtained by

∇tδ = �1T + �2N,

where �1,�2 are potentials.
Firstly, we have

∇ϑ∇tδ = �1δ +
(

∂�1

∂ϑ
+�2ε

)
T +

(
∂�2

∂ϑ
+ �1ε

)
N.

Lemma 2.3: Time derivatives of spherical frame are pro-
duced by

∇tδ = �1T + �2N,

∇tT = �1δ +
(

∂�2

∂ϑ
+ �1ε

)
N,

∇tN =
(

∂�2

∂ϑ
+ �1ε

)
T−�2δ.
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Theorem2.4: Flows for Lorentz forcesofδ-magneticpar-
ticle with spherical frame are presented by

∇t�(δ) = κ�1δ + ∂

∂t
κT+κ

(
∂�2

∂ϑ
+ �1ε

)
N,

∇t�(T) =
(

∂κ

∂t
−ε�2

)
δ +

(
κ�1 + ε

(
∂�2

∂ϑ

+ �1ε)) T +
(

∂ε

∂t
+ κ�2

)
N,

∇t�(N) = ε�1δ + ∂

∂t
εT+ε

(
∂�2

∂ϑ
+ �1ε

)
N,

∇tGN =
(

∂

∂t
ε+κ�2

)
δ +

(
ε�1 − κ

(
∂�2

∂ϑ

+ �1ε)) T +
(

ε�2 − ∂κ

∂t

)
N,

where π = h(�(δ),N).

3. Results and geometric presentation

3.1. Heisenberg ferromagnetic spin for�(δ)

Theorem3.1: SphericalHeisenberg ferromagnetic chain
condition of�(δ) are given by

κ�1 =
((

∂

∂ϑ

(
ε + ∂π

∂ϑ

)
+ πε2

)

−π

(
1 + ∂

∂ϑ
(πε) +

(
ε + ∂π

∂ϑ

)
ε

)))
,

∂κ

∂t
= −κ

2ε,

κ

(
∂�2

∂ϑ
+ �1ε

)
= −πε.

Proof: By definition of ferromagnetic chain, we get

∇t�(δ) = �(δ) × ∇2
ϑ�(δ).

Firstly, we have

�(δ) × ∇2
ϑ�(δ)

=
((

∂

∂ϑ

(
ε + ∂π

∂ϑ

)
+ πε2

)
−π

(
1 + ∂

∂ϑ
(πε)

+
(

ε + ∂π

∂ϑ

)
ε

)))
δ − κ

2εT − πεN.

Then, it is easy to see that

κ�1 =
((

∂

∂ϑ

(
ε + ∂π

∂ϑ

)
+ πε2

)

− π

(
1 + ∂

∂ϑ
(πε) +

(
ε + ∂π

∂ϑ

)
ε

)))
,

∂κ

∂t
= −κ

2ε,

κ

(
∂�2

∂ϑ
+ �1ε

)
= −πε.

Total phase with Lorentz force�(δ) is expressed by

	�(δ) =
∫∫

�(δ) · ∇ϑ�(δ) × ∇t�(δ)d
.

�

Theorem 3.2: Total phase of Lorentz force �(δ) is pre-
sented by

	�(δ) =
∫∫ (

−κ

(
κ
2
(
∂�2

∂ϑ
+ �1ε

)
− εκ

2�1

))
d
.

Proof: Some calculations, we have

∇ϑ�(δ) × ∇t�(δ)

=
(

∂κ

∂ϑ
κ

(
∂�2

∂ϑ
+ �1ε

)
−κε

∂κ

∂t

)
δ

+
(

κ
2
(

∂�2

∂ϑ
+ �1ε

)
− εκ

2�1

)
T

+
(

κ
∂κ

∂t
− ∂κ

∂ϑ
κ�1

)
N.

Anholonomy density of �(δ) is given by

ρ�(δ) = −κ

(
κ
2
(

∂�2

∂ϑ
+ �1ε

)
− εκ

2�1

)
.

Also, we present

	�(δ) =
∫∫ (

−κ

(
κ
2
(
∂�2

∂ϑ
+ �1ε

)
− εκ

2�1

))
d
.

�

By anholonomy density with ferromagnetic model is
obtained

�(δ) × ∇2
ϑ�(δ)

=
(
κε2π2

2−πε
∂κ

∂ϑ

)
δ−

(
κε

((
∂

∂ϑ

(
ε+∂π

∂ϑ

)
+πε2

)

− π

(
1+ ∂

∂ϑ
(πε)+

(
ε+∂π

∂ϑ

)
ε

)))
+ πκε

)
T

−
(

∂κ

∂ϑ

((
∂

∂ϑ

(
ε + ∂π

∂ϑ

)
+ πε2

)

− π

(
1+ ∂

∂ϑ
(πε)+

(
ε+∂π

∂ϑ

)
ε

)))
+π2

2 εκ

)
N.

By this way, we conclude

ρFR
�(δ) = κ

(
κε

((
∂

∂ϑ

(
ε + ∂π

∂ϑ

)
+ πε2

)

−π

(
1 + ∂

∂ϑ
(πε) +

(
ε + ∂π

∂ϑ

)
ε

)))
+ πκε

)
.

Therefore, we can express

	FR
�(δ) =

∫∫ (
κ

(
κε

((
∂

∂ϑ

(
ε + ∂π

∂ϑ

)
+ πε2

)

−π

(
1+ ∂

∂ϑ
(πε)+

(
ε+∂π

∂ϑ

)
ε

)))
+πκε

))
d
.

Spherical anholonomy density and spherical flow lines
in the centre of the quadrupole spherical magnet with
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Figure 1. Anholonomy density and spherical normal magnetic flow with�(δ).

Lorentz force �(δ). By this force, spherical density is
given by the particle-tracing algorithm in Figure 1.

3.2. Heisenberg ferromagnetic model for�(T)

Theorem3.3: SphericalHeisenberg ferromagnetic chain
condition of�(T) are given by

∂κ

∂t
−ε�2 = −ε

(
∂

∂ϑ

(
κ + ε2

)

+ ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
,

κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

)
= κ

(
∂

∂ϑ

∂ε

∂ϑ
+ ε(κ + ε2)

)

− ε

(
∂2κ

∂ϑ2 + (κ + ε2)

)
,

∂ε

∂t
+ κ�2 = κ

(
∂

∂ϑ
(κ + ε2)

+ + ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
.

Proof: Ferromagnetic chain is given by

∇t�(T) = �(T) × ∇2
ϑ�(T).

Firstly,

∇2
ϑ�(T) =

(
∂2κ

∂ϑ2 + (κ + ε2)

)
δ

+
(

∂

∂ϑ
(κ + ε2) + ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
T

+
(

∂

∂ϑ

∂ε

∂ϑ
+ ε(κ + ε2)

)
N.

Also, we have

�(T) × ∇2
ϑ�(T)

= −ε

(
∂

∂ϑ
(κ + ε2) + ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
δ

+
(

κ

(
∂

∂ϑ

∂ε

∂ϑ
+ ε(κ + ε2)

)

−ε

(
∂2κ

∂ϑ2 + (κ + ε2)

))
T

+ κ

(
∂

∂ϑ
(κ + ε2) + ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
N.

Moreover, from above equation, we have

∇t�(T) =
(
∂κ

∂t
−ε�2

)
δ+

(
κ�1+ε

(
∂�2

∂ϑ
+ �1ε

))
T

+
(

∂ε

∂t
+ κ�2

)
N.

By some short calculations yields

∂κ

∂t
−ε�2 = −ε

(
∂

∂ϑ
(κ + ε2)

+ ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
,

κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

)
= κ

(
∂

∂ϑ

∂ε

∂ϑ
+ ε

(
κ + ε2

))

− ε

(
∂2κ

∂ϑ2 + (κ + ε2)

)
,

∂ε

∂t
+ κ�2 = κ

(
∂

∂ϑ
(κ + ε2)

+ ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)
.

�

Theorem 3.4: Total phase of Lorentz force �(T) is pre-
sented by

	�(T) =
∫∫ (

κ

(
(κ + ε2)

(
∂ε

∂t
+ κ�2

)

− ∂ε

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

)))

+ ε

(
∂κ

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

))

− (κ + ε2)

(
∂κ

∂t
−ε�2

)))
d
.
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Proof: First, we express

∇ϑ�(T) × ∇t�(T)

=
(

(κ + ε2)

(
∂ε

∂t
+ κ�2

)

− ∂ε

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

)))
δ

+
(

∂κ

∂ϑ

(
∂ε

∂t
+ κ�2

)
− ∂ε

∂ϑ

(
∂κ

∂t
−ε�2

))
T

+
(

∂κ

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

))

−(κ + ε2)

(
∂κ

∂t
−ε�2

))
N.

Then

ρ�(T) = κ

(
(κ + ε2)

(
∂ε

∂t
+ κ�2

)

− ∂ε

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

)))

+ ε

(
∂κ

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

))

− (κ + ε2)

(
∂κ

∂t
−ε�2

))
.

From phase, we obtain

	�(T) =
∫∫ (

κ

(
(κ + ε2)

(
∂ε

∂t
+ κ�2

)

− ∂ε

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

)))

+ ε

(
∂κ

∂ϑ

(
κ�1 + ε

(
∂�2

∂ϑ
+ �1ε

))

−(κ + ε2)

(
∂κ

∂t
−ε�2

)))
d
.

Using ferromagnetic spin for �(T), we get

ρFR
�(T) = κ

(
(κ + ε2)κ

(
∂

∂ϑ
(κ + ε2) + ∂ε

∂ϑ
ε + ∂κ

∂ϑ

)

− ∂ε

∂ϑ

(
κ

(
∂

∂ϑ

∂ε

∂ϑ
+ ε(κ + ε2)

)

− ε

(
∂2κ

∂ϑ2 + (κ + ε2)

)))

+ ε

(
(κ + ε2)ε

(
∂

∂ϑ
(κ + ε2)

+ ∂ε

∂ϑ
ε+∂κ

∂ϑ

)
+∂κ

∂ϑ

(
κ

(
∂

∂ϑ

∂ε

∂ϑ
+ε(κ + ε2)

)

− ε

(
∂2κ

∂ϑ2 + (κ + ε2)

)))

Finally, total phase can be given by

	FR
�(T) =

∫∫
(κ

(
(κ + ε2)κ

(
∂

∂ϑ
(κ+ε2)+ ∂ε

∂ϑ
ε+∂κ

∂ϑ

)

− ∂ε

∂ϑ

(
κ

(
∂

∂ϑ

∂ε

∂ϑ
+ ε(κ + ε2)

)

− ε

(
∂2κ

∂ϑ2 + (κ + ε2)

)))

+ ε

(
(κ + ε2)ε

(
∂

∂ϑ
(κ + ε2)

+ ∂ε

∂ϑ
ε+∂κ

∂ϑ

)
+∂κ

∂ϑ

(
κ

(
∂

∂ϑ

∂ε

∂ϑ
+ε(κ + ε2)

)

− ε

(
∂2κ

∂ϑ2 + (κ + ε2)

))))
d
.

Spherical anholonomy density and spherical flow lines
in the centre of the quadrupole spherical magnet with
Lorentz force �(T). By this force, spherical density is
given by the particle-tracing algorithm in Figure 2.

�

3.3. Heisenberg ferromagnetic model for�(N)

Theorem3.5: SphericalHeisenberg ferromagnetic chain
condition of�(N) are given by

3
∂ε

∂ϑ
ε = �1,

2
∂ε

∂ϑ
=

(
∂�2

∂ϑ
+ �1ε

)
.

Proof: From spherical frame, we get

∇2
ϑ�(N) =

(
∂2ε

∂ϑ2+ε + ε3
)
T+2

∂ε

∂ϑ
δ + 3

∂ε

∂ϑ
εN.

Since

�(N) × ∇2
ϑ�(N) = 3

∂ε

∂ϑ
ε2δ + 2ε

∂ε

∂ϑ
N.

We instantly calculate

3
∂ε

∂ϑ
ε = �1,

2
∂ε

∂ϑ
=

(
∂�2

∂ϑ
+ �1ε

)
.

�

Theorem 3.6: Total phase of Lorentz force �(N) is pre-
sented by

	�(N) =
∫∫ (

−π

((
∂ε

∂ϑ
− π

)
(ε

(
∂χ2

∂ϑ
+ χ1ε

)

− πχ2)−ε2
(

∂ε

∂t
− πχ1

))
δ

)
d
.
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Figure 2. Anholonomy density and spherical normal magnetic flow with�(T).

Figure 3. Anholonomy density and spherical normal magnetic flow with�(N).

Proof: By cross product, we have

∇ϑ�(N) × ∇t�(N)

=
(

∂ε

∂ϑ
ε

(
∂�2

∂ϑ
+ �1ε

)
−ε2

∂ε

∂t

)
δ

+
(

ε2
(

∂�2

∂ϑ
+ �1ε

)
− ε3�1

)
T

+
(

ε
∂ε

∂t
− ∂ε

∂ϑ
ε�1

)
N.

Anholonomy density of �(N) is given by

ρ�(N) = −ε

(
ε2

(
∂�2

∂ϑ
+ �1ε

)
− ε3�1

)
.

Using density equation in phase, we obtain

	�(N) =
∫∫ (

−π

((
∂ε

∂ϑ
− π

) (
ε

(
∂χ2

∂ϑ
+ χ1ε

)

− πχ2) −ε2
(

∂ε

∂t
− πχ1

))
δ

)
d
.

By using spherical frame, we have

ρFR
�(N) = ε

(
2ε

∂ε

∂ϑ
+ 3

∂ε

∂ϑ
ε4

)
.

Since, we immediately arrive at

	FR
�(N) =

∫∫ (
ε

(
2ε

∂ε

∂ϑ
+ 3

∂ε

∂ϑ
ε4

))
d
.

Spherical anholonomy density and spherical flow lines
in the centre of the quadrupole spherical magnet with
Lorentz force �(N). By this force, spherical density is
given by the particle-tracing algorithm in Figure 3. �

4. Rational solutions for evolution equations
of Lorentz force vectors by travelling wave
hypothesis approach

In this section, we consider perturbed solutions of NLSE.
These solutions govern travelling soliton propagations
throughout Lorenz force field vectors in an optical
fibre with Figures 4 and 5. Travelling assumption is
used to determine analytical solutions. In order to sup-
port analytical solutions, numerical simulations are also
provided. Here we consider evolution equations of the
Lorentz force �(N) field vectors. Firstly, we have

3ε(ϑ , t)
∂ε(ϑ , t)

∂ϑ
= �1,
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2
∂ε(v, t)

∂ϑ
= ∂�2(ϑ , t)

∂ϑ
+ �1ε(ϑ , t). (1)

We consider the given below traveling wave transfor-
mation for Equations (1)

ε(ϑ , t) = u(φ),

�2(ϑ , t) = r(φ), φ = ϑ − Qt, (2)

where Q describes the speed of the wave
By placing Equation (2) into Equation (1), are

obtained as follows

− �1 + 3u(φ)u′(φ) = 0,

− �1u(φ) + 2u′(φ) − r′(φ) = 0. (3)

Solving Equations (3), we obtain that

u(φ) =
√
2�1φ

3
+ 2c1,

r(φ) = −2
3

√
2�1φ

3
+ 2c1(−3 + �1φ + 3c1) + c2.

(4)

Figure 4. The 3D graphic for the ε(ϑ , t) analytical solution (5)
of Equations (1) for�1 = 1.8, Q = 0.5, c1 = 1.

Figure 5. The 3Dgraphic for the�2(ϑ , t) analytical solution (5)
of Equations (1) for�1 = 1.8, Q = 0.5, c1 = c2 = 1.

FromEquations (4),weget the solutions of Equations (1)
as follows:

ε(ϑ , t) =
√
2�1(ϑ − Qt)

3
+ 2c1,

�2(ϑ , t) = −2
3

√
2�1(ϑ − Qt)

3
+ 2c1

× (−3 + �1(ϑ − Qt) + 3c1) + c2. (5)

5. Conclusion

Understanding the motion of curves is significant
in several physical events including vortex filaments
and Heisenberg spin chain dynamics. The connec-
tion between a certain class of the moving curves in
Euclidean space with certain integrable equations.

In this paper, we obtain optical Heisenberg ferro-
magnetic spin of timelike spherical magnetic flows of
particles by the spherical frame in de Sitter space. Also,
the concept of timelike spherical magnetic particles
is investigated, which may have evolution equations.
Finally, we obtain total phases for spherical magnetic
flows.
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