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Abstract: In this article, a numerical model for a Brusselator
advection–reaction–diffusion (BARD) system by using an
elegant numerical scheme is developed. The consistency
and stability of the proposed scheme is demonstrated.
Positivity preserving property of the proposed scheme is
also verified. The designed scheme is compared with the
two well-known existing classical schemes to validate the
certain physical properties of the continuous system. A test
problem is also furnished for simulations to support our
claim. Prior to computations, the existence and uniqueness
of solutions for more generic problems is investigated. In
the underlying system, the nonlinearities depend not only
on the desired solution but also on the advection term that
reflects the pivotal importance of the study.

Keywords: advection, diffusion, reaction, consistency,
stability, structure preserving, equi-continuity

1 Introduction

Nonlinear partial differential equations describe the various
physical phenomena in applied sciences. So more
researchers are directed to find the solutions of these equa-
tions in recent years. Nowadays, reaction diffusion systems of
partial differential equations have launched multitudinous
applications in chemical and biological phenomena to
finance, physics, medicine, genetics, weather predictions
and so on [1–6]. In this paper, we are engrossed to analyze
the mathematical models, which comprise the mixture of
advection, diffusion and reaction in the framework of partial
differential equations. The advection–reaction–diffusion
equation is one of the most pertinent areas in the applied
mathematics, like chemical reactions in chemistry, biology,
meteorology, epidemiology, fluid dynamics, and other fields
of applied sciences. The inclusion of the combination of these
three components in a mathematical model of partial
differential equations puts a strong impact on the theory of
partial differential equations and gives a rise to rethink the
corresponding models in the light of the physical properties
of a governing phenomenon [7–11]. Most of the mathematical
models associated with the mixture of the reactive and
advective processes can be observed in various directions in
real life, for instance, in meteorological pollution control
models, dynamics of age-structured population and pro-
blems consisting of the enhancement of oil recovery,
etc. [12–16].

If u(x,t) and v(x,t) are the concentrations of two chemical
species, then the terms ∂

∂

u
x
and ∂

∂

v
x
represent the advection of

the concentration of quantities u and v, respectively, by the
velocity field [17]. Clearly, the terms ∂

∂

u
x

2

2 and ∂

∂

v
x

2

2 represent the
diffusion (random movement of species) of the concentration
of u and v, respectively, in one dimension, which describe
the random movement of Ref. [18]. Often, the exact solutions
of an advection–reaction–diffusion problem are not available

Naveed Shahid, Nauman Ahmed: Department of Mathematics,
University of Management and Technology, Lahore, Pakistan;
Department of Mathematics and Statistics, The University of
Lahore, Lahore, Pakistan, e-mail: naveedpc75@gmail.com,
nauman.ahmd01@gmail.com



* Corresponding author: Dumitru Baleanu, Department of
Mathematics, Cankaya University, 06530, Balgat, Ankara, Turkey;
Institute of Space Sciences, Magurele-Bucharest, Romania;
Department of Medical Research, China Medical University
Hospital, China Medical University, Taichung, Taiwan,
e-mail: dumitru.baleanu@gmail.com

Ali Saleh Alshomrani: Faculty of Science, Department Mathematics,
King Abdulaziz University, Jeddah, Saudi Arabia,
e-mail: aszalshomrani@kau.edu.sa
Muhammad Sajid Iqbal: Department of Mathematics and Statistics,
The University of Lahore, Lahore, Pakistan,
e-mail: sajid606@gmail.com
Muhammad Aziz-ur Rehman: Department of Mathematics,
University of Management and Technology, Lahore,
Pakistan, e-mail: aziz.rehman@umt.edu.pk
Tahira Sumbal Shaikh: Department of Mathematics,
Lahore College for Women University, Lahore, Pakistan,
e-mail: tahira.sumbal@lcwu.edu.pk
Muhammad Rafiq: Faculty of Engineering, University of Central
Punjab, Lahore, Pakistan, e-mail: m.rafiq@ucp.edu.pk

Open Physics 2020; 18: 112–125

Open Access. © 2020 Naveed Shahid et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
Public License.

https://doi.org/10.1515/phys-2020-0011
mailto:naveedpc75@gmail.com
mailto:nauman.ahmd01@gmail.com
mailto:dumitru.baleanu@gmail.com
mailto:aszalshomrani@kau.edu.sa
mailto:sajid606@gmail.com
mailto:aziz.rehman@umt.edu.pk
mailto:tahira.sumbal@lcwu.edu.pk
mailto:m.rafiq@ucp.edu.pk


when such systems are nonlinear in nature, so one
encounters a number of complications to gauge their
approximations. We are then bound to find the approximate
solutions of the corresponding problem. In spite of all these,
we face great complications when the system of advection–
reaction–diffusion equations is nonlinear.

This article is organized as follows: Section 2 presents the
general problem of the advection–reaction–diffusion system
and results on existence of a solution for the proposed
model. Section 3 presents a Brusselator advection–reaction–-
diffusion (BARD) model. Here, we analyze the problem by
known numerical schemes: upwind implicit and Crank
Nicolson numerical scheme. In Section 4, we apply a newly
constructed scheme on BADR model and simulate the results
and observe the unconditional natural properties such as
consistency and stability of our proposed scheme. Also, the
results about positivity preserving algorithms are formulated.
Section 5 presents an example confirming the stated results.
Also, we observe the behavior of our constructed scheme
with the comparison of the other two schemes discussed
earlier in this section. Section 6 concludes this study with an
overview of the obtained results.

2 Existence of solutions

In this contemprary section, the existence of the solution
for the advection–reaction–diffusion system is discussed.
A couple of results for the existence of the solution to the
said system are established.

Consider a system of differential equations:

∂

∂
+

∂

∂
=

∂

∂
+ ( )

u
t

u
x

d u
x

f u v,1
2

2 1 (1)

∂

∂
+

∂

∂
=

∂

∂
+ ( )

v
t

v
x

d v
x

f u v, .2
2

2 2 (2)

To understand the mathematical analysis of the advection–
reaction–diffusion system system, which is a well-known
first-order nonlinear dynamical system of advection–
diffusion partial differential equations, we use the Schauder
fixed point theorem for the existence of the solution. An
important question in the existence theory is to guarantee if
the advection–reaction–diffusion system system possesses
some solutions. The junction of the fixed-point, operator
theory helps us to reduce the initial value problem for th
advection–reaction–diffusion system system in the corre-
sponding fixed point operator. Since both the partial
differential equations are of first order with respect to the

time variable t, it is quite simple to invert the differential
operator ∂/∂t. But before we reduce the given system to the
fixed-point problem, we rewrite equations (1) and (2) in a
more compact form, that is,

=
∂

∂
u F u v u

x
x. , , Δt 1 







(3)

=
∂

∂
v F u v v

x
x. , , Δ .t 2 







(4)

Here, it is important to note that both u and v being the
concentrations of the quantities should be nonnegative.
Importantly, the functions F1 and F2 on the right-hand side of
equations (3) and (4) can be nonlinear in not only the solu-
tion pair (u,v) but also the the first- and second-order space
derivatives ux, vx, uxx and vxx of the desired solution pair.

In view of the operator theory, equations (1) and (2)
can be written in the following form:

∫( ) = + ( )( )u x t u F u v u u τ x t, , , , , d
t

x xx0

0

1 (5)

∫( ) = + ( )( )v x t v F u v v v τ x t, , , , , d
t

x xx0

0

2 (6)

with setting F2(u, v, vx, vxx) ≡ F2.
Such inversion of the first-order partial derivatives is

obvious, but for the inversion of more general operators, one
may need special kernel functions. It is clear from equations
(5) and (6) that the solutions u and v depend on the same
functions appearing in the right-hand sides of the same
equations, respectively. So the operator theory allows us to
write equations (5) and (6) in an operator form [19–21]. But in
the case of a system of equations under the contemporary
study, we can rewrite them into the following single equation.

∫ ∫= + + ( )u u F u v F s s u u τ, d , , d .
t τ

x xx0

0

1 0

0

2















(7)

The integral equation (7) can be written as a fixed point
problem:

( ) = ( )Su t u t , (8)

where

( ( ) ( )) ∈ [ ] × [ ] =u t v t C a b C T X, , 0,2 1
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and let S:E → E be a self-mapping defined by

∫ ∫( ) = + + ( )Su t u F u v F s s u u τ, d , , d
t τ

x xx0

0

1 0

0

2















(9)

where E is supposed to be a Banach space.
We now establish a lemma, which shows the

compactness of S.

Lemma 2.1. Let S:E → E be any map defined by

∫ ∫( ) = + + ( )Su t u F u v F s s u u τ, d , , d
t τ

x xx0

0

1 0

0

2















(10)

with u(0) = u0 and suppose that

∫= + ( )k F u v F s s u umax , d , ,
τ

x xx1 0

0

2



























with 0 ≤ u ≤ N1, 0 ≤ v ≤ N2, where N1 and N2 are finite
positive numbers. Then, S is relatively compact.

Proof. Since both F1 and F2 are assumed to be nonnegative
and continuous functions, so, the operator S is continuous.
Let B be a bounded subset of E and there exists a number
N0 such that for any u ∈ B, we have

∥ ∥ ≤u N .0

Now, take
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⇒ ∥ ∥ ≤ | | +Su u tk0 (11)

hence, S(B) is uniformly bounded.
Next, we have to show the equi-continuity of S. For

each u ∈ B and for ε > 0 and t1,t2 ∈ [0,T] such that t1 < t2
then |t2 − t1| < δ and let =δ ε

k .

For this, let
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Clearly, |Siu(x,t1) − Siu(x,t2)| approaches zero as |t1 − t2| → 0.
This implies that Si is equicontinuous. By the Arzela Ascoli
theorem, there exists a subsequence ⊆S Si ij , so Sij converges

uniformly to a point x* ∈ C[0,T]. This shows that S(B) is
equicontinuous. Therefore, S is relatively compact.

Also, as S is in space of continuous functions, S:C
[0,T] → C[0,T] is self-map. F1 and F2 are nonnegative,
and u0 ≥ 0 because u0 represents the initial concentra-
tion that cannot be negative. That is,

∫ ∫( ) = + + ( ) ≥Su x t u F u v F s s u u τ, , d , , d 0.
t τ

x xx0

0

1 0

0

2















Hence, according to the statement of the Schauder fixed-
point theorem, the operator S has at least one fixed point
u(x,t) ∈ E, where t ∈ [0,T]. Hence, equation (1) has at
least one solution u(x,t) in C2[0,T].

Now we can establish a theorem for the existence of
the solution of equation (7).

Theorem 2.2. If u, v are twice continuously differentiable
with respect to the space variable x and continuously
differentiable with respect to time t, then the initial boundary
value problem for equations (1) and (2) are solvable by
the Schauder fixed point theorem for any continuous initial
values.
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2.1 Uniqueness of the solution

Theorem 2.2 guarantees the existence of the solution,
which itself gives importance to the considered problem
for physical purpose. For the uniqueness of the solution
of equations (1) and (2),

∫ ∫≡ ( ) = + + ( )S S x t u F u v F s s u u τ, , d , , d .u v

t τ

x xx
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Now suppose F1 is Lipschitz continuous in u, ux, uxx and

∫ ( )F s sd
t

0
2 . The operator S turns out to be contractive

under certain conditions on the bounds of the functions
F1 and F2. Suppose that the absolute value of the
integrand is bounded by

∥ − ∥ ( )× [ ]Lρ u u C Ω̄ c T
1 2

0,2 2

where ρ is the length of interval of continuity. Then for
the contractivity of S guarantees if

<

< =

Lρ

L
ρ

ρ T

1
1 , .

Finally, we establish the following theorem with unique
existence of solution.

Theorem 2.3. Let ∈ ( ) × [ ]u v C Ω̄ c T, 0,2 1 and then the
initial value problem (1) and (2) is uniquely solvable by
contraction mapping principle, provided the functions F1 and F2
satisfy the Lipschitz condition in functions u, v, ux, vx, uxx, vxx.

3 Numerical methods

The primary aim of the study of finite difference schemes
to find the solution of linear and nonlinear partial
differential equations is to discretize the given continuous
system by approximating the partial derivatives occurring
in the continuous formulations by the finite number of
function values at some selected finite number of points

in the domain. In this respect, Taylor’s series is the finest
way to obtain these approximations.

For the rest of the paper, let K and L be positive
integers and τ be any positive real number. To find the
approximate solution of system of equations (12) and (13)
in the spatial interval [a,b] over the time period [0,τ], we
make a partitions a = x0 < x1 < x2 < … < xL = b and 0 = t0 <
t1 < t2 < … < tK = τ of [a,b] and [0,τ] respectively, with the
norm =

−xΔ b a
L and =tΔ τ

K .
Let ui

n be the approximate value of the function u at
a grid point (xi,tn).

The generalized advection–reaction–diffusion model
is as follows:

∂

∂
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Au u v2
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2
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with initial and boundary conditions, i.e.,

( ) = ( )

( ) = ( )

∂ ( )

∂
=

∂ ( )

∂
=

∂ ( )

∂
=

∂ ( )

∂
=

u x f x
v x g x

u t
x

u t
t

v t
x

v t
t

, 0
,0
0, 1, 0

0, 1, 0

where u and v are the concentration of two different
reactants, A and B are constant terms representing constant
concentration during reaction operation, d1 and d2 are
diffusion coefficients and all A, B, d1, and d2 are positive
constants. The equilibrium point of the system (12) and (13) is

( )( ) =u v B, , A
B

⁎ ⁎ . Like most of the other mathematical

models, it is quit hard to find the exact solution of the
system (12) and (13), so we use some numerical methods to
solve it. It should be kept in mind that these numerical
schemes are effective, which preserve the basic physical
properties of the model. For instance, positivity preserving
and structural preserving are the most important physical
properties of the numerical schemes. Mickens in Ref. [22]
described the criteria of developing the structural preserving
finite difference schemes named as nonstandard finite
difference scheme. Twizell et al. in Ref. [23] examined the
attractive fixed points for the Brusselator model and
established a condition for the convergence of the concentra-
tion profile (u,v) to (u*,v*), that is, (u,v) → (u*,v*), which is
1 − A + B2 > 0. In this paper, we use a finite difference
scheme developed by Chen-Charpentier and Kojouharov [24],
which is unconditionally positivity preserving the scheme for
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the solution of advection reaction–diffusion equation. To
show the efficiency of our proposed scheme, we apply some
other reliable methods discussed in the literature and
compare the results of these methods with the results
developed by the proposed scheme.

3.1 The upwind implicit scheme

According to this scheme, both time and space deriva-
tives are established as follows:

∂

∂
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∂

∂
=

−

∂

∂
=

− +

+

+
−
+

+
+ +

−
+

u
t

u u
k

u
x

u u
h

u
x

u u u
h

2 .

i
n

i
n

i
n

i
n

i
n

i
n

i
n

1

1
1

1

2

2
1

1 1
1

1

2

Substituting theses values in equations (12) and (13), we
get the upwind implicit scheme as follows:
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where =τ k
h , =ξ kd

h1
1

2 and =ξ kd
h2

2
2 .

The aforementioned upwind implicit schemes indicate
that the system of algebraic equations developed by this
scheme is diagonally dominant and so its solution exists. The
behavior of this scheme is found to be Von Neumann stable.

3.2 The Crank Nicolson scheme

In this scheme, we replace both the time and the spatial
partial derivatives by their central difference approximations

at a grid point +ih k, n2 1
2
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The difference equations associated by equations (12) and
(13), after using the above approximations, we get,
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where =τ k
h and =ξ kd

h1
1

2 , =ξ kd
h2

2
2 .

Now, we are adopting an efficient finite difference
scheme, which has positivity preserving and structural
preserving properties. We apply this scheme on the
model (12) and (13).

4 Proposed structure preserving
numerical scheme

Numerous numerical schemes are developed and used to
solve the mathematical models so far, and some of them are
implicit and some are explicit schemes. In explicit schemes,
dependent variables are expressed as a function of some
known quantities at the previous time unit (say n time step),
whereas in case of implicit schemes, dependent variables
are determined by the coupled system of multiple simulta-
neous algebraic equations and used to obtain the solution
either in the form of the matrix or some iterative processes.
In this method, all unknown quantities are evaluated at the
future time step, (say (n + 1) time step), as well as we are
allowed to take a large time step size in each iteration of the
implicit scheme. Although computations through implicit
schemes are intensively expensive due to their formations,
there is only less error in the simulation process to explicit
methods. As stability represents the behavior of the solution
with the increase of the time step size, if the solution shows
the controlled behavior for a large time step size, the
numerical scheme is unconditionally stable. But such a
situation does not appear in case of explicit schemes, which
are usually always conditionally stable. In this paper, we
use an explicit scheme to solve the system (12) and (13). But
we observe that this proposed scheme, despite of being
explicit, is very effective and behaved well, consistent and
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unconditionally stable. However, other implicit schemes
in this paper do not behave well. We demonstrate such a
situation in this paper through simulation.

The proposed scheme, which we are adopting for the
model (12) and (13) developed in Ref. [24], is explicit in
nature and unconditionally positivity preserving.

The formulas for temporal and spatial derivatives
according to our proposed scheme are given by
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The numerical modulation for equations (12) and (13) are
as follows:
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We will check the consistency and the stability of
our proposed scheme by equations (12) and (13).

Theorem 4.1. Suppose that ui
n and vi

n are the approximate
values of the functions u and v, respectively, at a grid point
(xi,tn). Then, the proposed scheme (14) and (15) assures the
positivity, in whole domain, of positive solutions under the
hypothesis of positive initial functions, That is,

≥ ≥ ⇒ ≥ ≥
+ +u v u v0, 0 0, 0.i
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n1 1

4.1 Remark

Equations (14) and (15) give the positivity of the solution
because the known functions occurred in the initial
conditions are nonnegative, so the right-hand sides of
equations (14) and (15) bear no negative terms for all
discretization parameters i, n = 0, 1, 2, 3,….

4.2 Consistency of proposed scheme

For equation (12)
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By using the approximations of the proposed scheme,
we obtain
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By using Taylor’s series and simplifications, we obtain
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By replacing k by h3, we obtain
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By taking the limit as h → 0
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which proves the consistency.
Now from equation (13)
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Taylor’s formulae are as follows:

= +
∂

∂
+

!

∂

∂
+

!

∂

∂
+ ⋯

= −
∂

∂
+

!

∂

∂
−

!

∂

∂
+ ⋯

= +
∂

∂
+

!

∂

∂
+

!

∂

∂
+ ⋯

+

−

+

v v k u
t

k u
t

k u
t

v v h v
x

h v
x

h v
x

v v h v
x

h v
x

h v
x

2 3

2 3

2 3

i
n

i
n

i
n

i
n

i
n

i
n

1
2 2

2

3 3

3

1
2 2

2

3 3

3

1
2 2

2

3 3

3

After substituting these formulas in the aforementioned
equation, we obtain
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By replacing k by h3 and h → 0, we obtain
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Which is (13). It verifies that the proposed scheme is
consistent.

Now we investigate the stability of the proposed
scheme referred to given system of equations.

4.3 Stability of proposed scheme

To verify the stability of our proposed scheme, we
consider both the equations of given mathematical
model of advection–reaction–diffusion. First, we select
equation (12) and incorporate = =τ ξ,k
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associated equation and after linearizing it by equation
(16), we obtain
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According to Von Neumann stability criteria, our
proposed scheme is unconditionally stable.

5 Numerical example and
simulations
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Clearly, in Figure 1(b) and (c) drawn from upwind
implicit scheme, by choosing A and B such that 1 − A +
B2 > 0, we observe that the graph is lying in the negative
side, which is not possible for any type of concentration.

On the other hand, in Figure 2, when we observe the
graph of concentrations u and v from the proposed
scheme at the same values of the parameters, it remains
in the positive side, which shows that the proposed
scheme is well behaved or positivity preserving with the
aforementioned parameter values.

Now we look at the comparison of proposed scheme
with Crank Nicolson implicit scheme.

In Figure 3, after choosing the values of A and B
such that 1 − A + B2 > 0, the graphs of u and v fall in the
negative side, which is naturally not possible.
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Figure 1: (a) Mesh graph of u (concentration profile) using upwind
implicit FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.006, τ = 3
and d1 = d2 = 10−4. (b)Mesh graph of v (concentration profile) using
the upwind implicit FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 =
0.006, τ = 3 and d1 = d2 = 10−4. (c) Combined plot of u, v at x = 1 vs
time with same parameters as discussed in (a) and (b).
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Figure 2: (a) Mesh graph of u (concentration profile) using the
proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.006,
τ = 3 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration profile)
using the proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 =
0.006, τ = 3 and d1 = d2 = 10−4. (c) Combined plot of u, v at x = 1 vs
time with same parameters as discussed in (a) and (b).
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Figure 3: (a) Mesh graph of u (concentration profile) using Crank
Nicolson implicit FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 =
0.032, τ = 1.6 and d1 = d2 = 10−4. (b)Mesh graph of v (concentration
profile) using Crank Nicolson implicit FD method at h = 0.05,
B = 3.4, A = 1, ξ1 = ξ2 = 0.008, τ = 1.6 and d1 = d2 = 10−4.
(c) Combined plot of u, v at x = 1 vs time with same parameters as
discussed in (a) and (b).
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Figure 4: (a) Mesh graph of u (concentration profile) using the
proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.032,
τ = 1.6 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration profile)
using the proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 =
0.008, τ = 1.6 and d1 = d2 = 10−4. (c) The combined plot of u, v at
x = 1 vs time with same parameters as discussed in (a) and (b).
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Figure 5: (a) Mesh graph of u (concentration profile) using upwind
implicit FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.012,
τ = 5.90 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration
profile) using upwind implicit FD method at h = 0.05, B = 3.4, A = 1,
ξ1 = ξ2 = 0.012, τ = 5.90 and d1 = d2 = 10−4. (c) Combined plot of u, v
at x = 1 vs time with same parameters as discussed in (a) and (b).
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Figure 6: (a) Mesh graph of u (concentration profile) using
proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.012,
τ = 5.90 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration
profile) using proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 =
ξ2 = 0.012, τ = 5.90 and d1 = d2 = 10−4. (c) Combined plot of u, v at
x = 1 vs time with same parameters as discussed in (a) and (b).
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Figure 7: (a) Mesh graph of u (concentration profile) using Crank
Nicolson implicit FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 =
0.004, τ = 2 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration
profile) using Crank Nicolson FD method at h = 0.05, B = 3.4, A = 1,
ξ1 = ξ2 = 0.004, τ = 2 and d1 = d2 = 10−4. (c) Combined plot of u, v at
x = 1 vs time with same parameters as discussed in (a) and (b).
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Figure 8: (a) Mesh graph of u (concentration profile) using the
proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.004,
τ = 2 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration profile)
using the proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 =
0.004, τ = 2 and d1 = d2 = 10−4. (c) The combined plot of u, v at x = 1
vs time with same parameters as discussed in (a) and (b).
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Figure 9: (a) Mesh graph of u (concentration profile) using the
proposed FD method at h = 0.05, B = 3.4, A = 1, ξ1 = ξ2 = 0.004,
τ = 2 and d1 = d2 = 10−4. (b) Mesh graph of v (concentration profile)
using the proposed FD method at h = 0.05, B = 1, A = 3.4, ξ1 = ξ2 =
0.004, τ = 2 and d1 = d2 = 10−4. (c) The combined plot of u, v at x = 1
vs time with same parameters as discussed in (a) and (b).

Novel numerical analysis for nonlinear advection–reaction–diffusion systems  123



In Figure 4, the graph of the proposed scheme with
same values of parameters used in Crank Nicolson
implicit scheme shows the positivity of the concentration
variables, that is, the scheme is positivity preserving.

In Figure 5, when we incorporate the same values of
ξ1 and ξ2 in both concentration profiles with compara-
tively large time scale, we obtain the graphs of u and v
that are tilted in the negative sides. This shows the
unstability of the scheme.

But in the graph of proposed scheme, with the same
values of the parameters, we observe the stability of our
proposed scheme (Figure 6).

In Figure 7, when we incorporate the same values to
ξ1 = ξ2 = 0.004, with same τ = 2, the well-known Crank
Nicolson scheme gives the unstable behavior.

On the other hand, our proposed scheme shows the
stability at the same values of parameters used in the
graph of Figure 8.

In Figure 9, when the condition for convergence of
concentration profile is violated, that is, even our
scheme shows the positivity, which is one of the basic
requirements of any numerical scheme. Finally, we
observe that our proposed scheme for the proposed
model is unconditionally stable.

6 Conclusion

In this paper, we demonstrated the existence of solution
of a nonlinear advection–reaction–diffusion model by
using the Schauder fixed point theorem, which is a
strong tool to prove the existence of fixed points of
nonlinear operators in the fixed point theory. First, we
converted the system of equations to a single nonlinear
differential equation and then constructed a fixed-point
differential operator. We proved here that the fixed
points of this operator exist under some suitable
conditions. After obtaining the existence of solution of
our proposed model, we designed an unconditionally
positivity preserving finite difference numerical scheme,
which is explicit in nature, for a nonlinear advection–
reaction–diffusion model. Despite of explicitly, our
proposed scheme is more efficient than the existing
techniques due to positivity preserving property. The
results of the proposed scheme are compared with the
well-known upwind implicit scheme and Crank Nicolson
scheme and can be observed that these schemes are
unable to preserve the positivity at certain time interval.
Since the solutions functions of the differential equa-
tions are not globally bounded, it is better to consider

the closed optimal balls in function spaces, which give
the explicit estimates for the solutions of the system. So
for the future work, we can optimize the convergence of
the solution. In case of the numerical analysis, we can
use our proposed scheme in two- or three-dimensional
advection–reaction–diffusion system to obtain the
numerical solution for the future perspective. Also, the
work can be extended to the system of stochastic
differential equations.
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