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Abstract: The present study is devoted to using two analytic approaches to study the Triki-Biswas
equation (TBE). The TBE model plays a vital role in propagation of short pulses of width around
regions of sub-10 fs in optical. The analytic approaches used are the sine-Gordon expansion (SGEM)
and the Riccatti Bernoulli sub-ODE (RBSO) methods. Chirped kink-type, bright envelope and singular
solitons are formally derived.
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1. Introduction

A lot of nonlinear wave propagations in physics are described by a Schrödinger equations. The
Schrödinger equations appear in different fields of physical, biological and engineering sciences.
Several important concepts, e.g. processing, control acoustics, electro-magnetic, electro-chemistry are
very much described by Schrödinger equations. To understanding these nonlinear terminologies,
mathematicians and physicists have made a giant effort to find out more about the behavior of the
models, especially their solutions. Therefore, several powerful integration approaches have utilized to
study many equations [1–27]. In this paper, we will consider the following TBE [3–6]:

iψt + αψxx + iβ(|ψ|2nψ)x = 0, (1.1)
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where ψ is the variable representing the wave profile, ψxx represents the group velocity dispersion
(GVD) and alpha is the coefficient of GVD, (|ψ|2nψ)x is the term representing the non-Kerr dispersion
(NKD) for n > 2 and β is the coefficient of NKD. In the event when n = 1, (1.1) transforms to the well
known Kaup-Newell equation [7]. (1.1) has been solved by several authors using different methods
and the results have been reported in [3–6].

In the current study, we aim to apply the SGEM [14] and the RBSO [15] to investigate the chirped
envelope solitons of (1.1) which includes the bright, kink-type and singular solitons.

2. Mathematical analysis sand derivation of chirped parameters

Our aim is to acquire a solution in the following form

ψ(x, t) = R(ξ)ei(φ(ξ)−ωt), ξ = x − vt (2.1)

where ω is the frequency and v represent the velocity. The chirp is represented by

δg(x, t) = −
∂

∂x
[φ(ξ) − ωt] = φ′(ξ). (2.2)

Putting (2.1) into (1.1) and separating the result into real and imaginary components, we obtain the
following equations

gR + vφ′R + αR′′ − αR(φ′)2 − βφ′R2n+1 = 0, (2.3)

and

αRφ′′ + 2αR′φ′ − vR′ + β(2n + 1)R2nR′ = 0. (2.4)

To solve the above two equations, we apply the following ansatz solution

R′ = η1R2n + η2, (2.5)

where η1 is a constant and η2 is the nonlinear chirp parameter. Thus, we obtain

δg(x, t) = −(η1R2n + η2). (2.6)

On inserting (2.5) into (2.4), we obtain the chirped parameters given by

η1 = −
β(2n + 1)
2α(n + 1)

, η2 =
v

2α
. (2.7)

Putting (2.5) into (2.3), we acquire

R′′ + b1R4n+1 + b2R2n+1 + b3R = 0, (2.8)

where b1 =
β2(2n+1)

4α2(n+1)2 , b2 =
vβ

2α2 , b3 =
4gα+v2

4α2 .

Equation (2.8) is an elliptic equation describing the dynamics of field amplitude in the concept of
nonlinear media. Thus, (2.8) can be written in another form as

(R′)2 +
b1

2n + 1
R4n+1 +

b2

n + 1
R2n+1 + b3R2. (2.9)
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Applying the following transformation
R(ξ) = U(ξ)

1
2 (2.10)

(2.9) reduces to

U′′ + δU + σUn+1 + γU2n+1 = 0, (2.11)

where
δ = 4b3, σ =

2b2(n+2)
n+1 , γ =

4b1(n+1)
2n+1 . To derive the solutions of (2.11), we utilize the following

change of variable

U(ξ) = u(ξ)
1
n (2.12)

to reduce (2.11) to

n2δu2 + n2σu3 + n2γu4 + (1 − n)u′2 + nuu′′ = 0. (2.13)

3. Description of methods and derivation of optical solitons

3.1. Optical solitons by SGEM

Consider the following partial differential equation (PDE) represented by

P(ψ, ψt, ψx, ψtt, ψxx, ψxt, ...) = 0. (3.1)

Applying the transformation
ψ(x, t) = u(ξ), ξ = x − vt. (3.2)

(3.1) can be reduced to the following ordinary differential equation (ODE) ODE

P(u, u′, u′′, ...) = 0. (3.3)

Consider the following ODE derived from the integration of a Sine-Gordon equation ( [8, 9])

y′(ξ) = sin(y(ξ)). (3.4)

(3.4) possesses the following solutions

sin(y(ξ)) = sech(ξ) or cos(y(ξ)) = tanh(ξ), (3.5)

and
sin(y(ξ)) = icsch(ξ) or cos(y(ξ)) = coth(ξ). (3.6)

We use the following ansatz to retrieve the solutions of (3.3):

u(ξ) =

n∑
j=1

cos j−1(y) ×
[
B jsin(y) + A jcos(y)

]
+ A0. (3.7)
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n in (3.7) is derived using the balancing formulae. Inserting n into (3.7) and performing all necessary
algebraic computations, the solution of (3.2) can be derived and subsequently, the solutions of (3.1).

Now we Apply the SGEM to study (2.13), Balancing u4 and uu′′ from (2.13), we obtain n = 1.
Inserting n = 1 into (2.13), we acquire

u = B1sin(y) + A1cos(y) + A0. (3.8)

Inserting (3.8) into (2.13) using (3.4), we acquire the following system of equations upon collecting
terms of similar coefficients:

constants:

n2A2
0

(
δ + σA0 + γA2

0

)
= 0, (3.9)

cos2(y) :

n2 A2
1

(
δ + 3σA0 + 6γA2

0 + γA2
1

)
= 0, (3.10)

cos(y) :

n2 A1

(
3σA2

0 + 4γA3
0 + σA2

1 + 2A0

(
δ + 2γA2

1

))
= 0, (3.11)

sin(y)cos(y) :

2n2
(
δ + 3σA0 + 6γA2

0

)
A1B1 = 0, (3.12)

cos3(y)sin(y) :

n A1

(
1 + 4nγA2

1

)
B1 = 0, (3.13)

sin2(y):

A1B1

(
−2 − n + 4n2γB2

1

)
= 0, (3.14)

cos(y)sin3(y) :

−n A1

(
nσ

(
A2

1 − 3B2
1

)
+ 2A0

(
1 + 2nγA2

1 − 6nγB2
1

))
= 0, (3.15)

cos(y)sin2(y) :

n B1

(
nσ

(
3A2

1 − B2
1

)
+ 2A0

(
1 + 6nγA2

1 − 2nγB2
1

))
= 0, (3.16)

cos2(y)sin(y) : (
−(−1 + n)A2

1 + nB2
1

(
−1 + nδ + 3nσA0 + 6nγA2

0 + nγB2
1

))
= 0, (3.17)
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sin(y):

n B1

(
3nσA2

0 + 4nγA3
0 + nσB2

1 + A0

(
−1 + 2nδ + 4nγB2

1

))
= 0, (3.18)

sin2(y)cos2(y): (
−n2γA4

1 + B2
1

(
1 + n − n2γB2

1

)
+ A2

1

(
−1 − n + 6n2γB2

1

))
= 0. (3.19)

Solution of equations (23)- (3.19) gives the following family

Family 1:

A1 = 0, A0 =
δ(−19 + 8δ)(−1 + 8δ)σ

270γ
, B1 =

√
δ(−1 + 8δ)

15γ
,

δ =
5
4
, γ =

3σ2

16
, n =

1
3

(11 − 4δ),

(3.20)

Family 2:

σ =
6
A1
, δ = −4, γ = −

2
A2

1

, n = 1, B1 = 0, A0 = A1. (3.21)

3.1.1. Bright optical soliton

Using (3.20), we retrieve the bright soliton represented by

ψ(x, t) =

(
−

2
σ

+
2sech[x − vt]

σ

) 1
2n

× e(φ(x−vt)−ωt). (3.22)

Figure 1. Surface profile of bright soliton (3.22) by setting σ = 0.1, n = 3.
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3.1.2. Dark optical soliton

Using (3.20), we retrieve the dark optical soliton represented by

ψ(x, t) =

(
A1 − A1 tanh[x − vt]

) 1
2n

× e(φ(x−vt)−ωt). (3.23)

Figure 2. Surface profile of kink-type soliton (3.23) by setting σ = 0.1, n = 3.

3.1.3. Singular optical solitons

Using (3.20) gives the following singular soliton

ψ(x, t) =

(
−

2
σ
−

2csch[x − vt]
σ

) 1
2n

e(φ(x−vt)−ωt). (3.24)

while (3.21) gives the dark-singular soliton represented by

ψ(x, t) =

(
A1 − A1 coth[x − vt]

) 1
2n

× e(φ(x−vt)−ωt). (3.25)

Figure 3. Surface profile of singular soliton (3.24) by setting σ = 0.8, n = 3.
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3.2. Optical solitons by RBSOM

Suppose that (3.3) is the solution of the following Riccati-Bernoulli equation (RBE) [15]:

u′ = bu + au2−m + cum, (3.26)

with a, b, c, and m being any constants. Differentiating (3.26) once, we get

u′′ = u−1−2m
(
au2 + cu2m + bu1+m

)
(−a(−2+m)u2 + cmu2m + bu1+m

)
. (3.27)

Putting (3.26) and (3.27) into (2.13), we obtain

n2δu2 + n2σu3 + n2γu4 + (1 − n)
(
bu + au2−m + cum

)2
+

nu−2m
(
au2 + cu2m + bu1+m

) (
−a(−2 + m)u2+

cmu2m + bu1+m
)

= 0.

(3.28)

Substituting m = 0 in (3.28) gives

c2 − c2n + 2bcu − bcnu + b2u2 + 2acu2 + n2δu2+

2abu3 + abnu3 + n2σu3 + a2u4 + a2nu4 + n2γu4 = 0.
(3.29)

Collecting all the coefficients of ui(i = 0, 1..., 4) and performing all the required algebraic calculations,
we obtain the following independent set of parametric equations:

u0 coeff:
− c2(−1 + n) = 0, (3.30)

u1 coeff:
− bc(−2 + n) = 0, (3.31)

u2 coeff: (
b2 + 2ac + n2δ

)
= 0, (3.32)

u3 coeff: (
ab(2 + n) + n2σ

)
= 0, (3.33)

u4 coeff: (
a2(1 + n) + n2γ

)
= 0. (3.34)

Solution of equations (44)-(48) gives the values of the constants represented by

n = 1, c = 0, δ = −b2, γ = −
2σ2

9b2 , a = −
σ

3b
. (3.35)
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From the solutions of the RBE (3.26) given in [15], we obtain the following kink-type and singular
soliton solutions of (1.1) represented by

ψ(x, t) =

3b2

2σ
+

3b2 tanh
[

1
2b(C − tv + x)

]
2σ


1
2n

× e(φ(x−vt)−ωt), (3.36)

ψ(x, t) =

3b2

2σ
+

3b2 coth
[

1
2b(C − tv + x)

]
2σ


1
2n

× e(φ(x−vt)−ωt). (3.37)

4. Conclusions

The current work treated the systematic examination of the TBE. The SGEM and RBSO were
utilized for fabricating the chirped bright, kink-type and singular solitons. Illustration of the physical
behavior of solutions are displayed by assigning several values to the arbitrary constants, which might
be significant for clarification. The reported solutions may have many applications in the fields of
physics and various other branches of physical sciences. In Figures 1–3, we showed the properties
of the acquired solutions of Eq. (1.1). The SGEM and RBSO and the can be applied to study other
NPDEs in mathematical physics. Although, all the solutions derived by RBSO method were recovered
by the SGEM, this made the SGEM a more powerful method than the RBSO.
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