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Abstract: In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion
in porous media. This process simultaneously occur because of molecular diffusion and convection.
Here, we analyze the governing differential equation involving Caputo–Fabrizio fractional derivative
operator having non singular kernel. Fixed point theorem has been used to prove the uniqueness and
existence of the solution of governing differential equation. We apply Laplace transform and use
technique of iterative method to obtain the solution. Few applications of the main result are discussed
by taking different initial conditions to observe the effect on derivatives of different fractional order on
the concentration of miscible fluids.
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1. Introduction

Two fluids are defined as miscible if the molecules of the one fluid are free to mix with the molecules
of the other fluid. There is no interface between two miscible fluids. A common example of two
miscible fluids is water and ethanol. In any proportions it is possible to mix the water and ethanol
together to form a single homogeneous phase. When two gases meet, they are always miscible; for
example oxygen and nitrogen readily mix in air. Two fluids are defined as immiscible if the two
fluids scarcely mix at all at the molecular level, and not at all at the macroscale. The two phases
remain distinct and there is a well-defined interface between the two fluids. Common examples of two
immiscible fluids are water and most vegetable oils.
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The phenomenon of longitudinal dispersion is the process by which miscible fluids in the laminar
flow mix in the direction of the flow. The hydrodynamic dispersion is the macroscopic outcome of
the actual movements of individual tracer particles throughout the pores and various physical and
chemical phenomenon that take place within the pores. This phenomenon simultaneously occurs due
to molecular diffusion and convection and has great importance in sea water intrusion into lake and
groundwater recharge by polluted water. Immiscible flooding, that is, the oil is displaced by one of the
liquid petroleum gas products, Ethane, Propene or Butane. If the reservoir conditions are such that the
liquid petroleum gas is in the liquid phase then it is miscible with the oil and theoretically all residual
oil can be recovered. This problem has been discussed by several authors from different viewpoints
in [10, 14, 16, 17, 24, 25]. Many Important problems in water resources engineering involve the mass-
transport of a miscible fluid in a flow. Agarwal et al. [2–5] and Yadav et al. [26] have discussed
analytical and numerical solutions of various fractionalized groundwater flow problems. Recently,
in [19,20] authors investigate a new fractional mathematical model involving a non–singular derivative
operator to discuss the clinical implications of diabetes and tuberculosis coexistence and dengue fever
outbreak based on a system of fractional differential equations.

A fluid is considered to be a continuous material and hence in addition to the velocity of a fluid
element, the molecules in this element have random motion. As a result of the random motion,
molecules of a certain material in high concentration at one point will spread with time. So the
velocity considered here is time dependent. The net molecular motion from a point of higher
concentration to one of lower concentration is called molecular diffusion. Fluid flows in nature are
usually turbulent, but we have considered the porous medium through which the fluid flows, to be
homogeneous and for this reason, in the direction of flow, we assume laminar flow in which miscible
fluids mix.

Two fluids, which are contiguous, takes different paths at one moment in any medium. In [15,
23], longitudinal dispersion term is described by the coefficient D for the isotropic media in different
connected tubes. The equation of continuity for the mixture is given as [10]

∂ρ

∂τ
+ O.(ρv̄) = 0, (1.1)

where ρ is the density for mixture and v̄ is the pore velocity. Without addition or subtraction of
dispersive fluids the diffusion equation in homogeneous porous media is given as

∂c
∂τ

+ O.(cv̄) = O.

[
ρD̄O

(
c
ρ

)]
, (1.2)

where c is the concentration of the fluid A in the host fluid B, D̄ is the tensor co-efficient of dispersion
with nine components D̄i j. For homogeneous porous media at constant temperature, ρ may be
considered as a constant and hence Eq (1.2) becomes

∂c
∂τ

+ O.(cv̄) = O.
[
D̄Oc

]
, (1.3)

Along x-axis, D11 = DL and other Di j are zero [22] hence

∂c(ξ, τ)
∂τ

= −u
∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2 , (1.4)
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where u is the velocity component along x-axis.
We use Caputo-Fabrizio fractional derivative for the time variable and fractionalize Eq (1.4) as

follows:

CF
0 Dς

τc(ξ, τ) = −u
∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2 , (1.5)

subject to the initial condition c(ξ, 0) = c0, 0 < ς < 1, τ > 0 and ξ ∈ (0, L).
Caputo fractional derivative given by Caputo and Fabrizio [13] as

CF
a Dς

t f (t) =
B(ς)
1 − ς

∫ t

a
f
′

(τ) exp
(
−ς

t − τ
1 − ς

)
dτ, a < t < b, (1.6)

where f ∈ H
′

(a, b) is the Sobolev space, ς ∈ (0, 1] and B(ς) is a normalized function such that
B(0) = B(1) = 1.

Remark 1.1. Usually normalized function means that some important property of the mathematical
function takes value unity. The general idea, though, is to pick a particular element of a class of
functions and reduce it to the “simplest” element in the class, so that you only need to deal with
that simpler representative. Normalized function has many applications in science, mathematics and
statistics, computer science and technology etc. At few places, the value of B(ς) is taken constant i.e.
1 (see, e.g [13,18]) and at some places it is defined as B(ς) = 1 + ς +

ς
Γ(ς) , (see, e.g. [9]). In this paper,

B(ς) is assumed constant and equal to 1.

The Caputo-Fabrizio integral of a function f (t) of fractional order ς is given by Nieto and Losada
[21] as

CF
a Iςt f (t) =

2(1 − ς)
(2 − ς)M(ς)

f (t) +
2ς

(2 − ς)M(ς)

∫ t

a
f (s)ds, t ≥ 0, (1.7)

where M(ς) = 2
2−ςB(ς).

Remark 1.2. Equation (1.7) can be written as average of the function f (t) and its integral as

2(1 − ς)
(2 − ς)M(ς)

+
2ς

(2 − ς)M(ς)
= 1, (1.8)

which implies that M(ς) = 2
2−ς . Nieto and Losada [21] gave Caputo-Fabrizio definition by using

Eqs (1.7) and (1.8) as

CF
a Dς

t f (t) =
1

1 − ς

∫ t

a
f
′

(τ) exp
(
−ς

t − τ
1 − α

)
dτ. (1.9)

Caputo-Fabrizio fractional derivative does not have singularity at t = τ in its kernel, therefore
memory is described better by fractional order with non singular kernels compared to fractional order
with singular kernels. Several studies based upon Caputo-Fabrizio fractional derivative operator were
made [1, 6–8]. Laplace transform of the Caputo-Fabrizio fractional derivative is given by Caputo and
Fabrizio [13] as

L
[
CF
0 Dς

t f (t); s
]

= B(ς)
sF(s) − f (0)
s + ς(1 − s)

, 0 < ς ≤ 1, (1.10)
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If exists, The organization of this paper is as follows:
In section 2 we present existence and uniqueness of the solution by using fixed point theorem. In
section 3 we derive approximation solution by employing the iterative method. Section 4 deals with
applications of obtained iterative formula by taking different initial conditions. In section 5 we observe
the effect of the fractional order derivative to the approximate solution and last section 6 contains the
conclusion.

2. Existence and uniqueness of the solution

We use fixed point theorem to show the existence of the solution. We transform the Eq (1.5) by
applying Caputo-Fabrizio fractional integral (1.7) to obtain

c(ξ, τ) − c(ξ, 0) =CF
0 Iςτ

(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

)
. (2.1)

Now applying the definition given by Nieto and Losada [21] on equation (2.1) becomes

c(ξ, τ) − c(ξ, 0) =
2(1 − ς)

(2 − ς)M(ς)

(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

)
+

2ς
(2 − ς)M(ς)

∫ τ

0

(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

)
. (2.2)

Theorem 2.1. K(ξ, τ, c) satisfy the Lipschitz condition and is contraction if the following inequality
holds

0 <
(
uθ1 + DLθ

2
2

)
≤ 1, (2.3)

where

K(ξ, τ, c) = −u
∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2 . (2.4)

Proof. Let c and c1 are two functions then from Eq (2.4) we have

||K(ξ, τ, c) − K(ξ, τ, c1)|| =

∥∥∥∥∥∥−u
∂{c(ξ, τ) − c1(ξ, τ)}

∂ξ
+ DL

∂2{c(ξ, τ) − c1(ξ, τ)})
∂ξ2

∥∥∥∥∥∥ . (2.5)

Using the triangular inequality on Eq (2.5), we obtain

||K(ξ, τ, c) − K(ξ, τ, c1)|| ≤ u
∥∥∥∥∥−∂{c(ξ, τ) − c1(ξ, τ)}

∂ξ

∥∥∥∥∥ + DL

∥∥∥∥∥∥∂2{c(ξ, τ) − c1(ξ, τ)})
∂ξ2

∥∥∥∥∥∥ . (2.6)

Since the derivatives satisfy the Lipschitz condition, we can find positive parameters θ1 and θ2, from
Eq (2.6) as

u
∥∥∥∥∥−∂{c(ξ, τ) − c1(ξ, τ)}

∂ξ

∥∥∥∥∥ ≤uθ1 ‖c(ξ, τ) − c1(ξ, τ)‖ (2.7)
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DL

∥∥∥∥∥∥∂2{c(ξ, τ) − c1(ξ, τ)})
∂ξ2

∥∥∥∥∥∥ ≤DLθ
2
2 ‖c(ξ, τ) − c1(ξ, τ)‖ . (2.8)

Using the inequalities (2.7) and (2.8) in Eq (2.6), we obtain

‖K(ξ, τ, c) − K(ξ, τ, c1)‖ ≤
(
uθ1 + DLθ

2
2

)
‖c(ξ, τ) − c1(ξ, τ)‖ . (2.9)

Letting
(
uθ1 + DLθ

2
2

)
= R, we obtain

||K(ξ, τ, c) − K(ξ, τ, c1)|| ≤ R||c(ξ, τ) − c1(ξ, τ)||. (2.10)

Therefore K(ξ, τ, c) satisfy the Lipschitz condition and if R ≤ 1, then it is contraction. �

By considering this kernel K(ξ, τ, c), equation (2.2) reduces as

c(ξ, τ) − c(ξ, 0) =
2(1 − ς)

(2 − ς)M(ς)
K(ξ, τ, c) +

2ς
(2 − ς)M(ς)

∫ τ

0
K(ξ, y, c)dy. (2.11)

Now we consider following recursive formula

cn(ξ, τ) =
2(1 − ς)

(2 − ς)M(ς)
K(ξ, τ, cn−1) +

2ς
(2 − ς)M(ς)

∫ τ

0
K(ξ, y, cn−1)dy, (2.12)

with initial component c0(ξ, τ) = c(ξ, 0) and the difference between two consecutive terms of the Eq
(2.12) is denoted by Cn(ξ, τ), is given as

Cn(ξ, τ) =cn(ξ, τ) − cn−1(ξ, τ)

=
2(1 − ς)

(2 − ς)M(ς)
(K(ξ, τ, cn−1) − K(ξ, τ, cn−2))

+
2ς

(2 − ς)M(ς)

∫ τ

0
(K(ξ, y, cn−1) − K(ξ, y, cn−2))dy, (2.13)

and also cn(ξ, τ) =
∑n

i=0 Ci(ξ, τ). Taking norm on both sides of Eq (2.13), we obtain

||Cn(ξ, τ)|| =||cn(ξ, τ) − cn−1(ξ, τ)||

=

∥∥∥∥∥ 2(1 − ς)
(2 − ς)M(ς)

(K(ξ, τ, cn−1) − K(ξ, τ, cn−2))

+
2ς

(2 − ς)M(ς)

∫ τ

0
(K(ξ, y, cn−1) − K(ξ, y, cn−2))dy

∥∥∥∥∥ . (2.14)

Using the triangular inequality, Eq (2.14) becomes

||cn(ξ, τ) − cn−1(ξ, τ)|| ≤
2(1 − ς)

(2 − ς)M(ς)
||(K(ξ, τ, cn−1) − K(ξ, τ, cn−2))||

+
2ς

(2 − ς)M(ς)

∫ τ

0
||(K(ξ, y, cn−1) − K(ξ, y, cn−2))dy||. (2.15)
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Since the kernel K(ξ, τ, c) satisfies the Lipschitz condition, we obtain

||cn(ξ, τ) − cn−1(ξ, τ)|| ≤
2(1 − ς)

(2 − ς)M(ς)
R||cn−1(ξ, τ) − cn−2(ξ, τ)||

+
2ςR

(2 − ς)M(ς)

∫ τ

0
||cn−1(ξ, y) − cn−2(ξ, y)||dy. (2.16)

Solving further, we obtain

||Cn(ξ, τ)|| ≤
2(1 − ς)

(2 − ς)M(ς)
R||cn−1(ξ, τ)|| +

2ςR
(2 − ς)M(ς)

∫ τ

0
||cn−1(ξ, y)||dy. (2.17)

We shall then state the following theorem:

Theorem 2.2. The fractional miscible flow Eq (1.5) through porous media has exact solution.

Proof. We have that c(ξ, τ) is bounded and kernel (1.5) satisfy the Lipschitz condition, then we obtain
the following relation using the recursive relation

||Cn(ξ, τ)|| ≤ ||c(ξ, 0)||
(

2(1 − ς)R
(2 − ς)M(ς)

+
2ςRτ

(2 − ς)M(ς)

)n

. (2.18)

Now, we prove that (2.18) is a solution, so we assume that

c(ξ, τ) − c(ξ, 0) = cn(ξ, τ) − An(ξ, τ). (2.19)

Therefore, we have

||An(ξ, τ)|| =
∥∥∥∥∥ 2(1 − ς)

(2 − ς)M(ς)
(K(ξ, τ, cn) − K(ξ, τ, cn−1))

+
2ς

(2 − ς)M(ς)

∫ τ

0
(K(ξ, y, cn) − K(ξ, y, cn−1))dy

∥∥∥∥∥ ,
≤

2(1 − ς)
(2 − ς)M(ς)

‖(K(ξ, τ, cn) − K(ξ, τ, cn−1))‖

+
2ς

(2 − ς)M(ς)

∫ τ

0
‖(K(ξ, y, cn) − K(ξ, y, cn−1))dy‖,

≤
2(1 − ς)R

(2 − ς)M(ς)
‖(cn − cn−1)‖

+
2ςRτ

(2 − ς)M(ς)

∫ τ

0
‖(cn − cn−1)dy‖. (2.20)

Repeating this process we obtain

||An(ξ, τ)|| ≤
(

2(1 − ς)R
(2 − ς)M(ς)

+
2ςRτ

(2 − ς)M(ς)

)n+1

Rn+1c0. (2.21)

At τ = τ0

||An(ξ, τ)|| ≤
(

2(1 − ς)R
(2 − ς)M(ς)

+
2ςRτ0

(2 − ς)M(ς)

)n+1

Rn+1c0. (2.22)

Now taking lim
n→∞
||An(τ)|| → 0, hence existence of the solution is proved. �
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For the uniqueness of the solution, we let

c(ξ, τ) − c1(ξ, τ) =
2(1 − ς)

(2 − ς)M(ς)
(K(ξ, τ, c) − K(ξ, τ, c1))

+
2ς

(2 − ς)M(ς)

∫ τ

0
(K(ξ, y, c) − K(ξ, y, c1))dy. (2.23)

and then

||c(ξ, τ) − c1(ξ, τ)|| ≤
2(1 − ς)

(2 − ς)M(ς)
||(K(ξ, τ, c) − K(ξ, τ, c1))||

+
2ς

(2 − ς)M(ς)

∫ τ

0
||(K(ξ, y, c) − K(ξ, y, c1))||dy. (2.24)

Now making use of the Lipschitz condition on the kernel, we obtain

||c(ξ, τ) − c1(ξ, τ)|| ≤
2(1 − ς)

(2 − ς)M(ς)
R||c(ξ, τ) − c1(ξ, τ)||

+
2ςRτ

(2 − ς)M(ς)
||c(ξ, τ) − c1(ξ, τ)||. (2.25)

This leads to

||c(ξ, τ) − c1(ξ, τ)||
(
1 −

2(1 − ς)
(2 − ς)M(ς)

R +
2ςR

(2 − ς)M(ς)

)
≤ 0. (2.26)

Since (
1 −

2(1 − ς)
(2 − ς)M(ς)

R +
2ςR

(2 − ς)M(ς)

)
> 0 (2.27)

If the above condition holds

||c(ξ, τ) − c1(ξ, τ)||
(
1 −

2(1 − ς)
(2 − ς)M(ς)

R +
2ςR

(2 − ς)M(ς)

)
≤ 0. (2.28)

implies

||c(ξ, τ) − c1(ξ, τ)|| = 0. (2.29)

3. Derivation of the approximate solution

In this section, we derive the solution by employing the iterative technique. Assume B(ς) = 1 in
(1.6). Laplace transform technique is used on Eq (1.5) to obtain

L
{
CF
0 Dς

t c(ξ, τ)
}

=L
(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

)
=⇒

sc(ξ, s) − c(ξ, 0)
s + ς(1 − s)

=L
(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

)
. (3.1)
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Solving further, we obtain

c(ξ, s) =
c(ξ, 0)

s
+

s + ς(1 − s)
s

L
(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

)
. (3.2)

Now applying the inverse Laplace transform on Eq (3.2) we obtain

c(ξ, τ) = c(ξ, 0) + L−1
(

s + ς(1 − s)
s

L
(
−u

∂c(ξ, τ)
∂ξ

+ DL
∂2c(ξ, τ)
∂ξ2

))
. (3.3)

Let us assume the following recursive formula

cn+1(ξ, τ) = cn(ξ, τ) + L−1
(

s + ς(1 − s)
s

L
(
−u

∂cn(ξ, τ)
∂ξ

+ DL
∂2cn(ξ, τ)
∂ξ2

))
. (3.4)

with the initial component c0(ξ, τ) = c(ξ, 0). The solution is thus provided by c(ξ, τ) = lim
n→∞

cn(ξ, τ).

4. Applications

Here, as applications, we have considered the different initial conditions c(ξ, 0) = c0(ξ) in the Eq
(1.5).

1. Consider c0(ξ, τ) = (1 + ξ)−n, n ∈ R+, then from Eq (3.4) we have

c1(ξ, τ) =c0(ξ, τ) + L−1
(

s + ς(1 − s)
s

L
(
−u

∂c0(ξ, τ)
∂ξ

+ DL
∂2c0(ξ, τ)
∂ξ2

))
=(1 + ξ)−n +

(
nu(1 + ξ)−n−1 + n(n + 1)DL(1 + ξ)−n−2

)
L−1

(
s + ς(1 − s)

s

)
=(1 + ξ)−n +

(
nu(1 + ξ)−n−1 + n(n + 1)DL(1 + ξ)−n−2

)
(1 − ς + ςτ)

c2(ξ, τ) =c1(ξ, τ) + L−1
(

s + ς(1 − s)
s

L
(
−u

∂c1(ξ, τ)
∂ξ

+ DL
∂2c1(ξ, τ)
∂ξ2

))
=(1 + ξ)−n +

(
nu(1 + ξ)−n−1 + n(n + 1)DL(1 + ξ)−n−2

)
(1 − ς + ςτ)

+ (1 − ξ + ξτ)(u2n(2n + 1)(1 + ξ)−2n−3)

+ (1 − ς)(1 − ς + ςτ)nuDL(n + 1)(n + 2)(1 + ξ) + ς(1 + ς)t + ς
τ2

2
. (4.1)

and so on. By means of these terms, the solution c(ξ, τ) is given by

c(ξ, τ) = c0(ξ, τ) + c1(ξ, τ) + c2(ξ, τ) + . . . (4.2)
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2. Consider c0(ξ, τ) = e−ξ, then from Eq (3.4) we have

c1(ξ, τ) =c0(ξ, τ) + L−1
(

s + ς(1 − s)
s

L
(
−u

∂c0(ξ, τ)
∂ξ

+ DL
∂2c0(ξ, τ)
∂ξ2

))
=e−ξ + L−1

(
s + ς(1 − s)

s
L
(
−ue−ξ + DLe−ξ

))
=e−ξ − (ue−ξ − DLe−ξ) (1 − ς + ςτ)

c2(ξ, τ) =c1(ξ, τ) + L−1
(

s + ς(1 − s)
s

L
(
−u

∂c1(ξ, τ)
∂ξ

+ DL
∂2c1(ξ, τ)
∂ξ2

))
=e−ξ − (ue−ξ − DLe−ξ) (1 − ς + ςτ) + L−1

(
s + ς(1 − s)

s

L
(
ue−ξ + ue−ξ(u + DL)(1 − ς + ςτ) + DLe−ξ + DLe−ξ(u + DL)(1 − ς + ςτ)

))
=e−ξ − (ue−ξ − e−ξDL) (1 − ς + ςτ) + e−ξ(1 − ς)(u + DL)(1 + u − uς + DL − ςDL)

+ ς(1 − ς)(u + DL)2e−ξτ + e−ξςτ(u + DL)(1 + u − uς + DL − DLς)

+
1
2
ς2e−ξτ2(u + DL)2, (4.3)

and so on. By means of these terms, the solution c(ξ, τ) is given by

c(ξ, τ) = c0(ξ, τ) + c1(ξ, τ) + c2(ξ, τ) . . . (4.4)

5. Results discussions

To obtain the effect of the fractional order derivatives to the approximation solution (3.4) of the
governing differential Eq (1.5), we plotted graphs for various values of fractional order
ς = 0.50, 0.70, 0.80 and 0.99. We observe the behavior of the miscible flow with longitudinal
dispersion with respect to time and space variables in Figure 1 (a) and (b) respectively and also
plotted a 3-dimensional graph in Figure 2. The initial condition considered here is c(ξ, 0) = e−ξ for
fixed values of u = 0.5 and DL = 0.6.

The developed mathematical formulation is helpful in predicting the possible concentration of a
given dissolved substance in homogeneous, isotropic porous media and vary exponentially with time
in Figure 1 (a). In Figure 1 (b) the concentration is decreasing with respect to ξ for τ > 0. The obtained
concentration of dispersing element in Eq (3.4) can be helpful to the study of salinity intrusion in
groundwater and to making the predictions of the possible contamination of groundwater flows.
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Figure 1. Concentration profiles for ς = 0.5, 0.7, 0.8 and 0.99 with respect to time and
space variable respectively for the fixed values of u = 0.5, DL = 0.6.
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Figure 2. Concentration profiles for ς = 0.99 with respect to time and space variable
respectively in different directions for the fixed values of u = 0.5, DL = 0.6.

6. Conclusions

• In this paper, the phenomenon of the longitudinal dispersion in the flow of two miscible fluids
through porous media is investigated by applying Caputo-Fabrizio fractional derivative.

• Existence and uniqueness of the solution is proved by using fixed point theorem. Solution is
obtained by using iterative method and some numerical simulations are performed.
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• The results described in Figures shows the behaviours of the concentration with respect to time and
space variables for different order and fixed values of the parameters.

• The obtained results of dispersing element can be used to analyzing the salinity intrusion in
groundwater and to making the predictions of contamination in groundwater.

• The recent features of the Caputo–Fabrizio fractional derivative operator provide more realistic
models, which help us to adjust better the dynamical behaviours of the real–world phenomena as
discussed in [11, 12].
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