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This article introduces and applies new methods to determine the exact solutions of

partial differential equations that will increase our understanding of the capabilities of

applied models in real-world problems. With these new solutions, we can achieve

remarkable advances in science and technology. This is the basic idea in this article.

To accurately describe this, some exact solutions to the Gardner’s equation are obtained

with the help of two new analytical methods including the generalized exponential rational

function method and a Jacobi elliptical solution finder method. A set of new exact

solutions containing four parameters is reported. The results obtained in this paper

are new solutions to this equation that have not been introduced in previous literature.

Another advantage of these methods is the determination of the varied solutions involving

various classes of functions, such as exponential, trigonometric, and elliptic Jacobian.

The three-dimensional diagrams of some of these solutions are plotted with specific

values for their existing parameters. By examining these graphs, the behavior of the

solution to this equation will be revealed. Mathematica software was used to perform

the computations and simulations. The suggested techniques can be used in other

real-world models in science and engineering.

Keywords: soliton solutions, generalized exponential rational function method, analytical solutions, PDE,

computational, solitons, Gardner’s equation

1. INTRODUCTION

It is difficult or impossible to determine the exact solution for many partial differential equations.
In spite of these problems, in recent years a variety of efficient and practical methods have been
proposed by mathematicians and physicists. Some of these methods are the exp-function method
[1], the Darboux transformation [2], the Lie group analysis [3], the modified simple equation
method [4], the homogeneous balance scheme [5], the sine-cosine method, and the tanh-coth
method. Some new and effective attempts at determining solutions of partial differential equations
can be found in [6–18].

The Gardner equation belongs to the category of integrable non-linear partial differential
equations. The introduction of this equation is attributed to the famous mathematician Clifford
Gardner in 1968 [19]. This equation can actually be generalized to the KdV equation. It is therefore
sometimes referred to as the modified KdV equation. This equation is used in many areas of
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applications, such as hydrodynamics, plasma physics, and
quantum field theory. This paper aims to employ two analytical
methods to solve the following version of the integrable equation
given by [20]

ut + k2uux + k3u
2ux + k4uxxxx = 0. (1)

In this model, the dependent variable is u(x, t), and The
independent variables x and t are the spatial and temporal
variables, respectively. Abdul-MajidWazwaz in [21] has obtained
some multiple-soliton solutions for a variant of the equation
called the Gardner-KP (GKP) equation. His approach is based
on the Hirota’s bilinear method. In [22] the authors have
applied the mapping method to study the dynamics of solitary
waves governed by Gardner’s equation. This equation arises
while studying the shallow water waves. The perturbed Gardner
equation is also discussed in this article through the aid
of He’s semi-inverse variational approach. Very recently, a
classification of Lie symmetries for the Gardner equation has
been reported in [23]. They have also used the similarity
transformation method to introduce the invariant solutions.
Their solutions are of multisoliton, compacton, negaton, positon,
and kink wave soliton types. Considering some suitable auxiliary
dependent variables, the authors of [24, 25] have obtained
some exact invariant solutions for the equation with non-
local symmetries. By using the method of planar dynamical
systems approach, in different parameter regions, the authors
in [26] have constructed the bifurcation of phase portraits
of a traveling wave system. The work of [27] presents the
ill-posedness results for the initial value problem for the
Gardner equation. In [28], a certain classification of single
traveling wave solutions of the time-fraction Gardner equation
is investigated. These forms of the Gardner equation can
be utilized to model various physical phenomena, such as
the non-linear propagation of ion acoustic waves in an
unmagnetized plasma.

As can be seen, numerous numerical and analytical methods
have been used to study this equation. That proves the
importance of this equation. This is our main motivation
for writing this article - to determine new solutions to
this equation This paper is organized as follows. The
analysis of the GERFM is outlined in section 2. The
application of the method of solving (1) is presented in
section 3. Also, to have a better insight into the resulting
solutions, many numerical simulations are carried out in
this section. Finally, some remarks are discussed in the
last section.

2. THE ANALYSIS OF THE GERFM

The GERFM has recently been applied to solve many non-
linear PDEs in some literature [29–31]. The successful use
of this method in solving different sets of equations has
made it an efficient method for solving partial equations. In
order to gain insight into the method, let us have a quick

review of the method. The steps to apply this method include
the following.

1. Consider the following general non-linear PDE as

N (ψ ,ψx,ψt ,ψxx, . . .) = 0. (2)

For two unknown constants of µ, ν, we define the new
variables of ψ = ψ(̹) and ̹ = µx − νt. then,
Equation (28) can be reformulated as a non-linear
ODE as

N (ψ ,µψ ′,−νψ ′,µ2ψ ′′, . . .) = 0. (3)

2. Now, we take the solution Equation (29) into account for the
following structure:

ψ(̹) = A0 +
M
∑

k=1

Ak2(̹)k +
M
∑

k=1

Bk2(̹)−k. (4)

where

2(̹) =
r1e

s1̹ + r2e
s2̹

r3es3̹ + r4es4̹
. (5)

and ri, si(1 ≤ i ≤ 4), A0,Ak and Bk(1 ≤ k ≤ M) are unknown
constants. Then, equating the two values of the amplitude,
from (12) and (13), leads to the value ofM.

3. Putting Equation (30) into Equation (29) and collecting all
terms, the left-hand side of Equation (29) give us an algebraic
equation P(Z1,Z2,Z3,Z4) = 0 in terms of Zi = esi̹ for
i = 1, . . . , 4. Zeroing each coefficient of P, we get a system
of non-linear equations in terms of ri, si(1 ≤ i ≤ 4), and
µ, l,A0,Ak and Bk(1 ≤ k ≤ M).

4. Any symbolic computation software can be utilized to solve
this system to determine the values of ri, si(1 ≤ i ≤ 4), A0,Ak,
and Bk(1 ≤ k ≤ M). Using these results will direct us to soliton
solutions of the main non-linear PDE.

3. APPLICATION OF THE METHOD

Below, we present a detailed presentation of the solution
of Equation (1). To this end, let us consider the following
new definitions

u (x, t) = U(̹), ̹ = µx− νt, (6)

where µ and ν are arbitrary unknown parameters. Utilizing
the wave transformation (36) converts Equation (1) into the
following single NODE:

(

k1ν − µ
)

U
′ + k2νUU

′ + k3νU
2
U
′ + k4ν

3
U
′′′ = 0, (7)

Performing the integral with respect to ̹ and with c = 0, the last
equation becomes

(

k1ν − µ
)

U +
1

3
k2νU

2 +
1

3
k3νU

3 + k4ν
3
U
′′ = 0. (8)
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Then, equating the two values of 3M and M + 2, corresponding
to U3 and U ′′ in Equation (8), leads to the value ofM = 1. Using
Equation (5) together withM = 1, we have

U(̹) = A0 + A12(̹)+
B1

2(̹)
. (9)

Proceeding as outlined in the second section and depending
on the values of the parameters we obtain in the solitary
wave solutions.
Set 1:

One obtains r = [−3,−1, 1, 1] along with s = [2, 0, 2, 0], so (5)
turns to

2(̹) =
−3e2̹ − 1

e2̹ + 1
. (10)

In this case we obtain two exact solutions, as:
I.

µ =
−k22k2

√
−6k3k4

72k23k4
, ν =

k2
√
−6k3k4

12k3k4
,

A0 =
k2

2k3
,A1 = 0,B1 =

3k2

2k3
.

Putting these values in Equations (10) and (37) yields a solitary
wave solution for Equation (1) as:

u1 (x, t) = −
k2

k3
(

3e2̹ + 1
) , (11)

where

̹ =
−k23

√
−6k3k4

72k23k4
x−

k2
√
−6k3k4

6k3k4
t.

II.

µ =
−k22k2

√
−6k3k4

72k23k4
, ν =

k2
√
−6k3k4

12k3k4
,

A0 = −
3k2

2k3
,A1 = 0,B1 = −

3k2

2k3
.

Putting these values in Equations (10) and (37) yields a solitary
wave solution for Equation (1) as:

u2 (x, t) = −
3k2e

2̹

k3
(

3e2̹ + 1
) , (12)

where

̹ =
−k23

√
−6k3k4

36k23k4
x−

k2
√
−6k3k4

6k3k4
t.

Set 2:

One obtains r = [−1, 3, 1,−1] along with s = [1,−1, 1,−1], so
(5) turns to

2(̹) =
cosh (̹)− 2 sinh (̹)

sinh (̹)
. (13)

In this case we obtain two exact solutions, as:
I.

µ =
−k22k2

√
−6k3k4

576k23k4
, ν =

k2
√
−6k3k4

24k3k4
,A0 = −

k2

k3
,

A1 = −
k2

4k3
,B1 = −

3k2

4k3
.

Now, from Equations (13) and (37) we will reach to a solitary
wave solution for Equation (1) as:

u3 (x, t) = −
k2

2k3

(

sinh (2̹)− 4 sinh2 (̹)
) , (14)

where

̹ =
−k23

√
−6k3k4

576k23k4
x−

k2
√
−6k3k4

24k3k4
t.

II.

µ =
k2

√

−3k3k4
(√

7+ 4
) (

406k22 − 56k22
√
7
)

1944k3
2k4

(

5
√
7− 7

) (√
7+ 1

)2
,

ν =
k2

√

−3k3k4
(√

7+ 4
)

36k3k4
,

A0 = −
k2
(

5
√
7+ 11

)

6k3
(√

7+ 1
) ,A1 = −

k2
(√

7+ 1
)

12k3
,

B1 =
−59k2

√
7− 119k2

k3
(√

7+ 1
)3 (

5
√
7− 7

)

.

Equations (13) and (37) for these values will introduce a solitary
wave solution for Equation (1) as:

u4 (x, t) (15)

= −
2k2

3k3

(116
√
7− 112) cosh2(̹)− (29

√
7− 28) sinh(2̹)

−57
√
7+ 231

(5
√
7− 7)(

√
7+ 1)3

(

sinh(2̹)− 4 sinh2(̹)
) ,

where

̹ =

k2

√

−3k3k4
(√

7+ 4
) (

406k22 + 1404
√
7k1k3

−56k22
√
7+ 756k1k3

)

1944k3
2k4

(

5
√
7− 7

) (√
7+ 1

)2
x

−
k2

√

−3k3k4
(√

7+ 4
)

36k3k4
t.

Set 3:

One obtains r = [3, 2, 1, 1] along with s = [1, 0, 1, 0], so (5)
turns to

2(̹) =
3e̹ + 2

e̹ + 1
. (16)
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In this case we obtain an exact solution, as:

I.

µ =
−k32

√
−6k3k4

4500k23k4
, ν =

k2
√
−6k3k4

30k3k4
,

A0 = −
k2

k3
,A1 =

k2

5k3
,B1 =

6k2

5k3
.

Putting these values in Equations (16) and (37) yields a solitary
wave solution for Equation (1) as:

u5 (x, t) = −
k2e

̹

5k3 (1+ e̹) (3e̹ + 2)
, (17)

where

̹ =
(

150k1k3 − k22
)

k2
√
−6k3k4

4500k23k4
x−

k2
√
−6k3k4

30k3k4
t.

Set 5:

One obtains r = [1, 1, 1,−1] along with s = [2, 0, 2, 0], so (5)
turns to

2(̹) =
e2̹ + 1

e2̹ − 1
. (18)

In this case we obtain an exact solution, as:

I.

µ =
−k23

√
−6k3k4

144k23k4
, ν =

k2
√
−6k3k4

24k3k4
,

A0 = −
k2

2k3
,A1 = −

k2

4k3
,B1 = −

k2

4k3
.

For these solutions in Equations (18) and (37) yields a solitary

wave solution for Equation (1) as:

u6 (x, t) = −
k2e

4̹

k3
(

e4̹ − 1
) , (19)

where

̹ =
−k23

√
−6k3k4

36k23k4
x−

k2
√
−6k3k4

6k3k4
t.

Set 6:

One obtains r = [−2− i, 2− i,−1, 1] along with s = [i,−i, i,−i],
so (5) turns to

2(̹) =
cos (̹)+ 2 sin (̹)

sin (̹)
. (20)

In this case we obtain an exact solution, as:

I.

µ =
k23
√
−6k3k4

576k23k4
, ν =

k2
√
−6k3k4

24k3k4
,

A0 = −
k2

k3
,A1 =

k2

4k3
,B1 =

5k2

4k3
.

Inserting these values in Equations (20) and (37) yields a solitary
wave solution for Equation (1) as:

u7 (x, t) =
k2

2k3
(

sin (2̹)+ 4 sin2 (̹)
) , (21)

where

̹ =
k32
√
−6k3k4

576k23k4
x−

k2
√
−6k3k4

24k3k4
t.

Set 7:

One obtains r = [−3,−1, 1, 1] along with s = [1,−1, 1,−1], so
(5) turns to

2(̹) =
−2 cosh (̹)− sinh (̹)

cosh (̹)
. (22)

In this case we obtain an exact solution, as:
I.

µ =
−k23

√
−6k3k4

72k23k4
, ν =

k2
√
−6k3k4

12k3k4
,

A0 = −
3k2

3k3
,A1 = 0,B1 = −

3k2

2k3
.

Putting these values in Equations (22) and (37) yields a solitary
wave solution for Equation (1) as:

u8 (x, t) = −
3k2

(

cosh (̹)+ sinh (̹)
)

2k3
(

2 cosh (̹)+ sinh (̹)
) , (23)

where

̹ =
−k23

√
−6k3k4

72k23k4
x−

k2
√
−6k3k4

12k3k4
t.

Set 8:

One obtains r = [1+ i, 1− i, 1, 1] along with s = [i,−i, i,−i], so
(5) turns to

2(̹) =
− sin (̹)+ cos (̹)

cos (̹)
. (24)

In this case we obtain an exact solution, as:
I.

µ =
k2

(

−374k22 − 6k2
2
√
17
)
√

−3k3k4
(√

17+ 9
)

9216k23
(√

17+ 1
)2
k4

,

ν =
k2

√

−3k3k4
(√

17+ 9
)

48k3k4
,
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A0 = −
k2
(

5
√
17+ 13

)

8k3
(√

17+ 1
) ,A1 =

k2
(√

17+ 1
)

16k3
,

B1 =
k2
(√

17+ 1
)

8k3
.

Using the above solutions in Equations (24) and (37) yields a
solitary wave solution for Equation (1) as:

u9 (x, t) = −
k2

8k3

(6
√
17− 10) cos3(̹)− 4(

√
17+ 1) cos(̹)

−(
√
17+ 9) sin(̹)

(
√
17+ 1)(2 cos(̹)3 − cos(̹))

, (25)

where

̹ =
k2

(

−374k22 − 6k2
2
√
17
)
√

−3k3k4
(√

17+ 9
)

9216k23
(√

17+ 1
)2
k4

x

−
k2

√

−3k3k4
(√

17+ 9
)

48k3k4
t.

Set 9:

One obtains r = [−1,−2, 1, 1] along with s = [1, 0, 1, 0], so (5)
turns to

2(̹) =
−e̹ − 2

e̹ + 1
. (26)

In this case we obtain an exact solution, as:
I.

µ =
k2

(

771k22
√
73− 2263k2

2
)
√

−3k3k4
(

3
√
73+ 41

)

147456k23
(√

73+ 3
)2
k4

,

ν =
k2

√

−3k3k4
(

3
√
73+ 41

)

96k3k4
,

A0 = −
k2
(

25
√
73+ 171

)

32k3
(√

73+ 3
) ,A1 = −

k2
(√

73+ 3
)

32k3
,

B1 = −
k2
(√

73+ 3
)

16k3
.

Inserting these values in Equations (26) and (37) yields a solitary
wave solution for Equation (1) as:

u10 (x, t)

= −
k2
(

(7
√
73− 75)e2̹ + (27

√
73− 143)e̹ + 14

√
73− 150

)

32k3
(√

73+ 3
)

(1+ e̹) (e̹ + 2)
,

(27)

where

̹

=
k2
(

(9216
√
73+ (771

√
73− 2263)k22

)

√

−3k3k4
(

3
√
73+ 41

)

147456k23
(√

73+ 3
)2
k4

x

−
k2

√

−3k3k4
(

3
√
73+ 41

)

96k3k4
t.

It is worth mentioning that the necessary condition to establish
the existence of the acquired solutions u1 (x, t) − u10 (x, t)
is k3k4 < 0.

4. A JACOBI ELLIPTICAL SOLUTIONS
FINDER METHOD

In this part, we are going to obtain new exact soliton solutions
to the equation under investigation, using a newly proposed
method [32]. To this end, we will briefly review the steps of using
the method.

1. The main purpose of this method is to solve an equation
as follows:

N (φ,φx,φt ,φxx, . . .) = 0. (28)

2. Defining φ = φ(̹) and ̹ = µx − lt, Equation (28) is
converted to

N (φ,φ′,φ′′, . . .) = 0, (29)

where µ and l are two constants.
3. At this point, the symbolic form of the Equation (29) can be

formulated as follows:

φ(̹) =
α0 +

∑2N
k=1 αk2(̹)k

β0 +
∑2N

k=1 βk2(̹)k
, (30)

where the values of constants A0,B0 and Ak,Bk(1 ≤ k ≤ 2N)
are so that (30) is a solution to the Equation (29).

4. The value of N in Equation (30) is obtained using
the balance principles and 2(̹) satisfies the following
non-linear ODE:

2(̹)′2 = h0 + h22(̹)2 + h42(̹)4 + h62(̹)6,
2(̹)′′ = h22(̹)+ 2h42(̹)3 + 3h62(̹)5,

(31)

where hi(i = 0, 2, 4, 6) are real constants.

5. The solution of the Equation (31) should be as follows

2(̹) =
8(̹)

√

f8(̹)2 + g
, (32)

where8(̹)2 + g > 0, and8(̹) is the solution of the Jacobian

elliptic equation

8(̹)′2 = l0 + l28(̹)
2 + l48(̹)

4, (33)

and lj(j = 0, 2, 4) are constants need to be calculated, The
relationships for f and g will also be as follows:

f =
h4(l2 − h2)

(l2 − h2)2 + 3l0l4 − 2l2(l2 − h2)
,

g =
3h4l0

(l2 − h2)2 + 3l0l4 − 2l2(l2 − h2)
,

(34)
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under the constraint condition

h42(l2−h2)[9l0l4−(l2−h2)(2l2+h2)]+3h6[3l0l4−(l22−h22)]
2 = 0.
(35)

6. It is known that solutions of Equation (33) are in terms of
Jacobi elliptic solutions. Inserting both (33) and (32) into
Equation (30), one gets the optical solutions of Equation (28).
It should be noted that by using the limits in Table 2, the
Jacobian elliptic functions used in the solutions reduce to the
known triangular functions.

5. THE APPLICATION OF THE METHOD

In this section, to begin solving the equation, we first introduce
the following new variables

φ = U(̹), ̹ = µx− νt. (36)

Then we will consider the balancing principles in Equation (8).
So, one gets N = 1. So, the Equation (30) can be rewritten
as follows

U(̹) =
α0 + α12(̹)+ α222(̹)

β0 + β12(̹)+ β222(̹)
. (37)

The following results will be obtained using the method
presented in section 4 of this article.
Set 11:We attain

µ =
−2νk2

2

27k3
, ν = ν,α0 = −

β0k2

3k3
,α1 = α1,α2 = 0,

β0 = β0,β1 = 0,β2 = 0,

h0 = h0, h2 =
k2

2

27ν2k3k4
, h4 = −

α1
2k3

6ν2β0
2k4

, h6 = 0.

(38)

Using No. 1 in Table 1 we have

U (̹) = −
k2

3k3
+ α1

√
6

√

√

√

√

√−
(sn (̹ ,m))2 ν2k4

α12k3

(

m4 −m2 − k2
4

729ν4k3
2k4

2 + 1
)

−3+
(

m2 + k2
2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2
,

provided that
(

27m2ν2k3k4 + 27ν2k3k4 + k2
2
)

(

27m2ν2k3k4 − 54ν2k3k4 + k2
2
)

(

54m2ν2k3k4 − 27ν2k3k4 − k2
2
)

= 0.

The exact soliton solution to the equation will thus be determined
as follows

u11 (x, t) = −
k2

3k3
+ α1

√
6

√

√

√

√

√−
(sn (̹ ,m))2 ν2k4

α12k3

(

m4 −m2 − k2
4

729ν4k3
2k4

2 + 1
)

−3+
(

m2 + k2
2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2
, (39)

where

̹ =
−2νk2

2

27k3
x− νt.

TABLE 1 | Jacobi elliptic solutions of Equation (33).

No l0 l2 l4 2(̹)

1 1 −(1+m2 ) m2 sn(̹,m) or cd(̹,m)

2 1−m2 2m2 − 1 −m2 cn(̹,m)

3 m2 − 1 2−m2 −1 dn(̹,m)

4 m2 −(m2 + 1) 1 ns(̹,m) or dc(̹,m)

5 −m2 2m2 − 1 1−m2 nc(̹,m)

6 −1 2−m2 −(1−m2 ) nd(̹,m)

7 1 2−m2 1−m2 sc(̹,m)

8 1 2m2 − 1 −m2 (1−m2 ) sd(̹,m)

9 1−m2 2−m2 1 cs(̹,m)

10 −m2 (1−m2 ) 2m2 − 1 1 ds(̹,m)

11 1−m2

4
1+m2

2
1−m2

4 nc(̹,m)± sc(̹,m) or
cn(̹,m)

1±sn(̹,m)

12 −(1−m2 )2

4
m2+1

2 − 1
4 mcn(̹,m)± dn(̹,m)

13 1
4

1−2m2

2
1
4

sn(̹,m)
1±cn(̹,m)

14 1
4

1+m2

2
(1−m2 )2

4
sn(̹,m)

cn(̹,m)±dn(̹,m)

TABLE 2 | Jacobi elliptic functions and their limits.

Function m → 0 m → 1

sn(̹) = sn(̹,m) sin(̹) tanh(̹)

cn(̹) = cn(̹,m) cos(̹) sech(̹)

dn(̹) = dn(̹,m) 1 sech(̹)

ns(̹) = ns(̹,m) csc(̹) coth(̹)

cs(̹) = cs(̹,m) cot(̹) csch(̹)

ds(̹) = ds(̹,m) csc(̹) csch(̹)

sc(̹) = sc(̹,m) tan(̹) sinh(̹)

sd(̹) = sd(̹,m) sin(̹) sinh(̹)

nc(̹) = nc(̹,m) sec(̹) cosh(̹)

cd(̹) = cd(̹,m) cos(̹) 1

nd(̹) = nd(̹,m) 1 cosh(̹)
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Using No. 2 in Table 1 we have

U (̹) = −
k2

3k3
+ α1

√
6

√

√

√

√

√

√

√

√

√

−
k4ν

2
(

(sn (̹ ,m))2 − 1
)

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

α12k3

(

2 (cn (̹ ,m))2m2 −
(cn (̹ ,m))2 k2

2

27ν2k3k4
− (cn (̹ ,m))2 − 3m2 + 3

) ,

provided that

(

27m2ν2k3k4 + 27ν2k3k4 + k2
2
) (

27m2ν2k3k4 − 54ν2k3k4 + k2
2
) (

54m2ν2k3k4 − 27ν2k3k4 − k2
2
)

= 0.

The exact soliton solution to the equation will thus be determined as follows

u12 (x, t) = −
k2

3k3
+ α1

√
6

√

√

√

√

√

√

√

√

√

−
k4ν

2
(

(sn (̹ ,m))2 − 1
)

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

α12k3

(

2 (cn (̹ ,m))2m2 −
(cn (̹ ,m))2 k2

2

27ν2k3k4
− (cn (̹ ,m))2 − 3m2 + 3

) , (40)

where

̹ =
−2νk2

2

27k3
x− νt.

Set 12:We attain

µ =
−2νk2

2

27k3
, ν = ν,α0 = α0,α1 = α1,α2 = 0,β0 = 0,β1 = −

3k3α1

k2
,β2 = 0,

h0 = −
α0

2k2
2

54α12k3ν2k4
, h2 =

k2
2

27ν2k3k4
, h4 = h4, h6 = 0.

(41)

Using No. 1 in Table 1 we have

U (̹) = −
k2

3k3α1















α1

√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

) + α0















√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

)

,

provided that

(

27m2ν2k3k4 − 54ν2k3k4 + k2
2
) (

54m2ν2k3k4 − 27ν2k3k4 − k2
2
) (

27m2ν2k3k4 + 27ν2k3k4 + k2
2
)

= 0.

The exact soliton solution to the equation will thus be determined as follows

u13 (x, t) = −
k2

3k3α1















α1

√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

) + α0















√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

)

, (42)
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where

̹ =
−2νk2

2

27k3
x− νt.

Using No. 4 in Table 1 we have

U (̹) = −

k2α1

√

√

√

√

√

√

√

√

√

((sn (̹ ,m))2m2 − 1)

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

h4

(

−m2 −
k2

2

27ν2k3k4
− 1

)

(

dn (̹ ,m)
)2 + 3m2h4cn2 (̹ ,m)

) + α0

3k3α1

√

√

√

√

√

√

√

√

√

((sn (̹ ,m))2 m2 − 1)

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

h4

(

−m2 −
k2

2

27ν2k3k4
− 1

)

(

dn (̹ ,m)
)2 + 3m2h4 (cn (̹ ,m))

2

)

, (43)

provided that

(

27m2ν2k3k4 − 54ν2k3k4 + k2
2
) (

54m2ν2k3k4 − 27ν2k3k4 − k2
2
) (

27m2ν2k3k4 + 27ν2k3k4 + k2
2
)

= 0.

The exact soliton solution to the equation will thus be determined as follows

u14 (x, t) = −

k2α1

√

√

√

√

√

√

√

√

√

((sn (̹ ,m))2m2 − 1)

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

h4

(

−m2 −
k2

2

27ν2k3k4
− 1

)

(

dn (̹ ,m)
)2 + 3m2h4cn2 (̹ ,m)

) + α0

3k3α1

√

√

√

√

√

√

√

√

√

((sn (̹ ,m))2m2 − 1)

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

h4

(

−m2 −
k2

2

27ν2k3k4
− 1

)

(

dn (̹ ,m)
)2 + 3m2h4 (cn (̹ ,m))

2

)

, (44)

where

̹ =
−2νk2

2

27k3
x− νt.

Using No. 7 in Table 1 we have

U (̹) = −
k2

3k3α1















α1

√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

((

m2 +
k2

2

27ν2k3k4
− 2

)

(sn (̹ ,m))2 − 3(cn (̹ ,m))2

)

h4

+ α0















√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

((

m2 +
k2

2

27ν2k3k4
− 2

)

(sn (̹ ,m))2 − 3(cn (̹ ,m))2

)

h4

, (45)

provided that

(

27m2ν2k3k4 − 54ν2k3k4 + k2
2
) (

27m2ν2k3k4 + 27ν2k3k4 + k2
2
) (

54m2ν2k3k4 − 27ν2k3k4 − k2
2
)

= 0.
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The exact soliton solution to the equation will thus be determined as follows

u15 (x, t) = −
k2

3k3α1















α1

√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

((

m2 +
k2

2

27ν2k3k4
− 2

)

(sn (̹ ,m))2 − 3(cn (̹ ,m))2

)

h4

+ α0















√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

((

m2 +
k2

2

27ν2k3k4
− 2

)

(sn (̹ ,m))2 − 3(cn (̹ ,m))2

)

h4

, (46)

where

̹ =
−2νk2

2

27k3
x− νt.

Set 13:We attain

µ =
−2νk2

2

27k3
, ν = ν,α0 = α0,α1 = −

β1k2

3k3
,α2 = α2,β0 = 0,β1 = β1,β2 = 0, h0 = −

α0
2k3

6k4β1
2ν2

,

h2 = −
27α0α2k3

2 − β12k22

27β1
2ν2k3k4

, h4 = −
α2

2k3

6k4β1
2ν2

, h6 = 0.

(47)

Using No. 1 in Table 1 we have

U (̹) =













α0 −
18(sn (ξ ,m))2ν2k4

(

m4 −m2 −
α0

2k2
2

81β0
2ν4k4

2
+ 1

)

k2

(

−3+
(

m2 −
α0k2

9β0ν2k4
+ 1

)

(sn (ξ ,m))2
)



























1+ 3β1
√
6

√

√

√

√

√

√

√

√

−
(sn (ξ ,m))2ν2k4k3

(

m4 −m2 −
α0

2k2
2

81β0
2ν4k4

2
+ 1

)

β1
2k2

2

(

−3+
(

m2 −
α0k2

9β0ν2k4
+ 1

)

(sn (ξ ,m))2
)















,

provided that

(

9m2β0ν
2k4 − 18β0ν

2k4 − α0k2
) (

9m2β0ν
2k4 + 9β0ν

2k4 − α0k2
) (

18m2β0ν
2k4 − 9β0ν

2k4 + α0k2
)

= 0.

The exact soliton solution to the equation will thus be determined as follows

u16 (x, t) =













α0 −
18(sn (ξ ,m))2ν2k4

(

m4 −m2 −
α0

2k2
2

81β0
2ν4k4

2
+ 1

)

k2

(

−3+
(

m2 −
α0k2

9β0ν2k4
+ 1

)

(sn (ξ ,m))2
)



























1+ 3β1
√
6

√

√

√

√

√

√

√

√

−
(sn (ξ ,m))2ν2k4k3

(

m4 −m2 −
α0

2k2
2

81β0
2ν4k4

2
+ 1

)

β1
2k2

2

(

−3+
(

m2 −
α0k2

9β0ν2k4
+ 1

)

(sn (ξ ,m))2
)















, (48)
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where

̹ =
−2νk2

2

27k3
x− νt.

Using No. 8 in Table 1 we have

U (̹) = −
k2

3k3α1















α1

√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

) + α0















√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

)

provided that

(

9m2β0ν
2k4 − 18β0ν

2k4 − α0k2
) (

9m2β0ν
2k4 + 9β0ν

2k4 − α0k2
) (

18m2β0ν
2k4 − 9β0ν

2k4 + α0k2
)

= 0.

The exact soliton solution to the equation will thus be determined as follows

u17 (x, t) = −
k2

3k3α1















α1

√

√

√

√

√

√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)

(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

) + α0















√

√

√

√

(sn (̹ ,m))2

h4

(

m4 −m2 −
k2

4

729ν4k3
2k4

2
+ 1

)(

−3+

(

m2 +
k2

2

27ν2k3k4
+ 1

)

(sn (̹ ,m))2

)

, (49)

where

̹ =
ν

(

27k1k3 − 2k2
2
)

x

27k3
− νt.

Set 14:We attain

µ =
ν

(

432ν4β0
4h6

2k3k4
2 + 4ν2β0

2β2
2h6k2

2k4 − 4ν2β0β2
3h4k2

2k4 + β24k1k22
)

k2
2β2

4
, ν = ν,

α0 =
36ν2β0

3h6k4

β2
2k2

,α1 = 0,α2 = −
36ν2β0

2h6k4

β2k2
,β0 = β0,β1 = 0,β2 = β2,

h0 =
β0

2
(

2β0h6 + β2h4
)

β2
3

, h2 = −
β0

(

216ν2β0
3h6

2k3k4 − β0β22h6k22 − 2β2
3h4k2

2
)

k2
2β2

4
, h4 = h4, h6 = h6.

(50)

Using No. 1 in Table 1 we have

U (̹) = −
36ν2h6k4

(((

m4 −m2 −12 + 1
)

β2 − h4
(

m2 −1+ 1
))

(sn (ξ ,m))2 + 3h4
)

β2
2k2

(((

m4 −m2 −12 + 1
)

β2 + h4
(

m2 −1+ 1
))

(sn (ξ ,m))2 − 3h4
) ,

where1 =
β0

(

216ν2β0
3h6

2k3k4−β0β22h6k22−2β2
3h4k2

2
)

k2
2β2

4 , provided that one of following conditions holds
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(

−216 ν2β0
4h6

2k3k4 +m2k2
2β2

4 + β02β22h6k22

+2β0β2
3h4k2

2 − 2 k2
2β2

4
)

= 0,
(

−216 ν2β0
4h6

2k3k4 +m2k2
2β2

4

+β02β22h6k22 + 2β0β2
3h4k2

2 + k2
2β2

4
)

= 0,
(

216 ν2β0
4h6

2k3k4 + 2m2k2
2β2

4 − β02β22h6k22

−2β0β2
3h4k2

2 − k2
2β2

4
)

h4
2 = 0.

The exact soliton solution to the equation will thus be determined
as follows

u18 (x, t) = −

36ν2h6k4
(((

m4 −m2 −12 + 1
)

β2

−h4
(

m2 −1+ 1
))

(sn (ξ ,m))2 + 3h4
)

β2
2k2

(((

m4 −m2 −12 + 1
)

β2

+h4
(

m2 −1+ 1
))

(sn (ξ ,m))2 − 3h4
)

,

(51)

where

̹ =

ν

(

432 ν4β0
4h6

2k3k4
2 + 4 ν2β0

2β2
2h6k2

2k4

−4 ν2β0β2
3h4k2

2k4 + β24k1k22
)

x

k2
2β2

4
− ν t.

Using No. 5 in Table 1 we have

U (̹) =

−

36ν2h6k4
(

−3(cn (ξ ,m))2m2h4

+
(

m4 −m2 −12 + 1
)

β2 + h4
(

2m2 +1− 1
))

β2
2k2

(

3(cn (ξ ,m))2m2h4 +
(

m4 −m2 −12 + 1
)

β2

+
(

−2m2 −1+ 1
)

h4
)

,

where 1 =
β0

(

216ν2β0
3h6

2k3k4−β0β22h6k22−2β2
3h4k2

2
)

k2
2β2

4 , provided

that one of following conditions holds

(

−216 ν2β0
4h6

2k3k4 +m2k2
2β2

4 + β02β22h6k22

+2β0β2
3h4k2

2 − 2 k2
2β2

4
)

= 0,
(

−216 ν2β0
4h6

2k3k4 +m2k2
2β2

4 + β02β22h6k22

+2β0β2
3h4k2

2 + k2
2β2

4
)

= 0,
(

216 ν2β0
4h6

2k3k4 + 2m2k2
2β2

4 − β02β22h6k22

−2β0β2
3h4k2

2 − k2
2β2

4
)

h4
2 = 0.

The exact soliton solution to the equation will thus be determined
as follows

u18 (x, t)

= −

36ν2h6k4
(

−3(cn (ξ ,m))2m2h4
+
(

m4 −m2 −12 + 1
)

β2 + h4
(

2m2 +1− 1
))

β2
2k2

(

3(cn (ξ ,m))2m2h4 +
(

m4 −m2 −12 + 1
)

β2
+
(

−2m2 −1+ 1
)

h4
)

,

(52)

where

̹ =

ν

(

432 ν4β0
4h6

2k3k4
2 + 4 ν2β0

2β2
2h6k2

2k4

−4 ν2β0β2
3h4k2

2k4 + β24k1k22
)

x

k2
2β2

4
− ν t.

Likewise, other new families of solutions are obtained by
following steps similar to the above using the following sets
of parameters.
Set 15:We attain

µ =
−2α2

2k2
2ν

162ν2β1
2h4k4 + 27α22k3

, ν = ν,α0 = 0,

α1 = 0,α2 = α2,β0 = 0,β1 = β1,

β2 = −
18ν2β1

2h4k4 + 3α2
2k3

2α2k2
, h0 = 0,

h2 = −
2α2

2k2
2

27k4
(

6ν2β1
2h4k4 + α22k3

)

ν2
, h4 = h4, h6 = 0.

(53)

Set 16:We attain

µ =
ν

(

−3456ν4β0
4h4

2k2
2k3k4

2 − 48ν2β0
2β1

2h4k2
4k4

)

(

216ν2β0
2h4k4k3 + β12k22

)2
,

ν = ν,α0 = −
576β1

2ν2β0
3h4k4k2

3

(

216ν2β0
2h4k4k3 + β12k22

)2
,

α1 = −
144ν2β0

2β1h4k4k2

216ν2β0
2h4k4k3 + β12k22

,α2 = 0,β0 = β0,β1 = β1,

β2 =
216ν2β0

2h4k4k3 + β12k22

4k2
2β0

,

(54)

h0 =

144β0
4h4

(

5184ν4β0
4h4

2k3
2k4

2 − 144ν2β0
2β1

2h4k2
2k3k4

+β14k24
)

k2
4

(

216ν2β0
2h4k4k3 + β12k22

)4
,

h2 =
24h4

(

72ν2β0
2h4k4k3 − β12k22

)

k2
2β0

2

(

216ν2β0
2h4k4k3 + β12k22

)2
.
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Set 17:We attain

µ =
−2ν k2

2

27k3
, ν = ν,α0 = −

β0k2

3k3
,α1 = α1,

α2 =
3
(

96 ν2β0
2h4k4 − α12k3

)

8β0k2
,β0 = β0,β1 = 0,

β2 = −
9 k3

(

96 ν2β0
2h4k4 − α12k3

)

8 k2
2β0

,

(55)

h0 =
64 k2

4h4β0
4

81 k3
2 (96 ν2β0

2h4k4 − α12k3
)2
,

h2 = −
k2

2 (48 ν2β0
2h4k4 + α12k3

)

27k3k4
(

96 ν2β0
2h4k4 − α12k3

)

ν2
, h4 = h4, h6 = 0.

As can be seen, many varied sets of soliton solutions to Gardner’s
equation will be obtained by applying this method. In the
structure of these solutions, rational, hyperbolic, trigonometric,
exponential and Jacobi elliptical functions are used. The

FIGURE 1 | Dynamic behavior of u1(x, t), u2(x, t) for k2 = 1.2, k3 = 2, k4 = −2. (A) u1(x, t). (B) u2(x, t).

FIGURE 2 | Dynamic behavior of u5(x, t), u8(x, t) for k2 = 1.2, k3 = 2, k4 = −2. (A) u5(x, t). (B) u8(x, t).

FIGURE 3 | Dynamic behavior of u9(x, t), and u10(x, t) for k2 = 1.1, k3 = −1.2, k4 = 0.5. (A) u9(x, t). (B) u10(x, t).
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FIGURE 4 | Dynamic behavior of |u11(x, t)| for k2 = 0.8, k3 = −0.5, k4 = 0.5., and α1 = 0.1. (A) m = 0.5 and ν = − 2k2

3
√

−6 k3k4
. (B) m = 0.8 and ν = 5

√
102k2

306
√

k3k4
.

FIGURE 5 | Dynamic behavior of |u12(x, t)| for k2 = 0.3, k3 = −0.1, k4 = 0.2. (A) m = 0.2 and ν = − 5
√
3k2

63
√

k3k4
. (B) m = 0.5 and ν = − 2

√
21k2

63
√

k3k4
.

FIGURE 6 | Dynamic behavior of |u15(x, t)| for k2 = 0.2, k3 = −0.9, k4 = 1. (A) m = 0.3 and ν = − 10k2

3
√

−246 k3k4
. (B) m = 0.7 and ν = − 10k2

3
√

−6 k3k4
.

correctness of all the obtained answers has been carefully
examined. All of these soliton solutions are new findings
presented for the first time in this article.

6. GRAPHICAL REPRESENTATION

We aimed to find new solutions for a given problem in Equation
(1), and these new solutions should be described graphically.
Thus, we present a graphical representation of some obtained

solutions with the help of Mathematica in Figures 1–9. From
these plots, some interesting and important physics phenomena
can be observed.

7. CONCLUSION

In this manuscript, we have studied the Gardner equation
with the help of two exact solution finder methods. A set
of new exact solutions, including bright, kink, multi-soliton
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FIGURE 7 | Dynamic behavior of |u16(x, t)| for k2 = 0.1, k3 = 0.7, k4 = −1.3, and α2 = 0.1,β1 = 1. (A) m = 0.1 and ν =
5
√
6

√

k3k4

(

27α0α2k3
2−β12k22

)

63 k3k4β1
. (B) m = 0.9 and

ν =
10

√

−357 k3k4

(

27α0α2k3
2−β12k22

)

1071 k3k4β1
.

FIGURE 8 | Dynamic behavior of |u18(x, t)| for k2 = 0.1, k3 = 0.7, k4 = −1.3, and β2 = 0.1, h6 = 1. (A) m = 0.3 and ν =
√
3
√

k3k4(50β02h6+100β0β2h4+41β2
2)k2β2

180β0
2h6k3k4

. (B)

m = 0.8 and ν =
√
6
√

k3k4(25β02h6+50β0β2h4−7β2
2)k2β2

180β0
2h6k3k4

.

FIGURE 9 | Dynamic behavior of |u19(x, t)| for k2 = 0.7, k3 = 0.4, k4 = −0.5, and β2 = h6 = 1. (A) m = 0.1 and ν =
√
3
√

k3k4(50β02h6+100β0β2h4+49β2
2)k2β2

180 k3k4h6β0
2 . (B)

m = 0.7 and ν =
√
3
√

k3k4(50β02h6+100β0β2h4+β22)k2β2
180 k3k4h6β0

2 .

solutions, and singular solitons were found corresponding to
four parameters, namely k1, k2, k3, and k4. The dynamic behavior
of the acquired solutions was also demonstrated to deeply
understand the features of the non-linear model. In order to
better their properties, we have drawn some 3-D graphs. To
the best of the authors knowledge, all the acquired results are
novel findings, and cannot be found in the previous works.
This result verifies the power of two suggested methods. The
main advantages of the method are that they are very simple

and quite efficient for the estimation of the optical solutions of
PDES. Moreover, the proposed approaches represent efficient
methodologies to investigate the exact solutions of the non-linear
PDEs.
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