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Abstract: The present work introduces the application of rational Chebyshev collocation technique 
for approximating bio-mathematical problems of continuous population models for single and 
interacting species (C.P.M.). We study systematically the logistic growth model in a population, prey-
predator model: Lotka-Volterra system (L.V.M.), the simple two-species Lotka-Volterra competition 
model (L.V.C.M.) and the prey-predator model with limit cycle periodic behavior (P.P.M.). For testing 
the accuracy, the numerical results for our method and others existing methods as well as the exact 
solution are compared. The obtained numerical results indicate the ability, the reliability and the 
accuracy of the present method. 
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1. Introduction 

As we know, the nonlinear differential equations and their system play a crucial role due to their 
applications in applied mathematics and science, for example, in real life phenomena modeling and in 
many other fields of science, such as the epidemic model [1,2], kinetic model [3,4], ozone 
decomposition model [5,6], dynamical models of happiness [7], modeling of mosquito dispersal [8], 
modeling a thermal explosion [9] and Volterra population model [10]. 

The purpose of this investigation is applying rational Chebyshev (RC) collocation method to solve 
four nonlinear biological problems. Four problems are investigated; the first problem is the continuous 
population model (C.P.M.) represented as a nonlinear first order ordinary differential equation, 
whereas the other models are systems of non-linear differential equations. They are represented, 
respectively, as the Lotka-Volterra system (L.V.M.), Lotka-Volterra competition model (L.V.C.M.) and 
prey-predator model (P.P.M.) [11]. 

Spectral methods have an important and significant role in approximate differential equations, 
which makes it easy in treating many phenomena and models in physics, engineering, economic and 
many other fields. The most common distinguished feature for spectral methods is using them as a 
basis in form polynomials or functions that are orthogonal with respect to the weight functions defined 
in bounded and unbounded domain. 

The choice of trial functions gives the spectral methods a great distinguish feature. This choice 
depended on the analytical solution of the differential equation denoted by )(xf and the values of x  
for the proposed equation. This means that if )(xf  is polynomial in finite domain use Chebyshev 
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polynomials, but if )(xf  periodic prefer Fourier series. If )(xf  defined in unbounded domain then 
use Hermit functions or exponential Chebyshev functions. However, if the solution defined in semi-
infinite interval ),0[ ∞∈x  uses Laguerre functions or rational Chebyshev functions, especially the 
solution )(xf in fraction or exponential form in semi-infinite domain, the RC functions is preferred. 

The RC functions were proposed by Boyd [12] in 1987, used as a basis function with the spectral 
methods. RC collocation method is one of the spectral methods characterized by the domain and gives 
us high efficient and better accuracy especially if the analytical solution is as fraction or exponential 
form. The RC collocation method transforms the proposed four nonlinear biological problems and 
conditions to algebraic non-linear systems of equations with unknown RC coefficients. In terms of the 
RC functions the solutions are, then obtained after solving the systems. On the other hand, rational 
Chebyshev functions are presented to solve differential equation in many papers by Ramadan et al. 
[13–18] and Yuksel et al. [19]. 

2. Definition, Properties and Derivative of Rational Chebyshev Functions 
In this section, we use an algebraic transformation to extend the domain of Chebyshev 

polynomials to semi-infinite domain, which provide set of bases functions so called rational 
Chebyshev functions that deal with differential equations define on an infinite interval. 

The new basis are written as )(xTLn : 

θn yTxTL nn cos)()( ==  (1) 

where L is a constant map parameter and the three coordinates are related by: 
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To avoid confusion as we leap from one coordinate to another, we shall adopt the convention that 
),0[ ∞∈x  is the argument of the )(xTLn , ]1,1[−∈y  is the argument of the ordinary Chebyshev 

polynomials )(xTn , and ],0[ πθ ∈  is the argument of the cosines [12,20]. 
From Equations (1) and (2) we get: 
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In this study we take 1=L (according to the study by Boyd [12], this is the optimal value of L), 
and relation (4) obtains as: 
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where we symbolized rational Chebyshev function as )(xRn  instead of )(xTLn . Consequently, from 
above we can define rational Chebyshev functions as following. 

The rational Chebyshev functions Rn(x) of the first kind are functions of x defined on Λ , 
}0/{ ∞<≤= xxΛ defined by the relation: 
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If the variable x ranges in the interval ),0[ ∞ , hence the corresponding θ ranges in ],0[ π . Now, 

since 0=x  corresponds to θ = π and ∞→x  corresponds to θ = 0, these ranges are traversed in 
opposite directions. 

The solution function )(xy defined on Λ can be expanded in terms of RC functions where RC 
functions are orthogonal and complete, as: 


∞
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For more details, (see [14]). 
If in Expression (5), )(xy  is truncated to ∞<N for the RC functions, then )(xy  will be in the 

following form: 

AxRxRaxy
N

n
nn )()()(
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=

== , ,Λ∈x  (6) 

where N is chosen as positive integer and na is unknown RC coefficients, where )(xR  is a row vector 

with size )1(1 +× N  of RC functions and A is a column vector with size 1)1( ×+N as: 

[ ])(...)()()( 10 xRxRxRxR N= And [ ] .10
T

NaaaA =  

The kth order derivative of )(xy  according to Equation (6): 
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When applying RC collocation method in the interval ),0[ ∞∈x  will define the collocation 
points by: 
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and at 0=k ∞→0x . 

However, if ],0[ qx ∈ , where ∞<q  will take the collocation points as: 

....,,2,1,0, Nkq
N
kxk ==  (9) 

We are interested only on the initial behavior of solutions, since our numerical tests are in the 
interval [0,1]. 
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3. Description of the Problems 

The size of population will grow if the rate of birth exceeds the death rate. The growth of 
Malthusian model is the grandfather of all population models: 

),()( tNdb
dt
dN −=  

where N(t) is number of individuals in a population at time t while b and d are the average per capita 
rate of birth and rate of death respectively. The solution for N (t) will grow exponentially, that is, 

rteNtN 0)( =  where dbr −=  and N0 is an initial population size [11]. 
However, over a long period of time, the growth law of exponential form for the size of population 

is unrealistic. Thus, we may consider that the environment has intrinsic carrying capacity K to define 
the model in the well-known logistic form: 

( )
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where b is appropriate constant, we may transform (10) to dimensionless as: 
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where, )0(0 uu = . 
Hence, the exact solution of (11) takes the form: 
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The next model, L.V.M., is governed by: 
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where γβα ,, and λ  are appropriate constants. Here, the prey population is )(tPP = and the 
predator at time t is that )(tNN = . Transforming system (13) to dimensionless form by setting: 
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Lastly, L.V.C.M. is considered. Each of the two species N1 and N2 having logistic growth in the 
absence of the other, where the logistic growth inclusion in the L.V.M. makes them more realistic. 
However, we consider the simpler model that gives a lot of the properties of more complicated models 
to highlight the principle, especially in regarding stability. Therefore, we consider the system as: 
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the constants 1r , 1K , 2r , 2K , 12β  and 21β  are all positive. Additionally, the r’s represent the rates of 

birth, while the Ks are the carrying capacities. In addition, the constants 12β and 21β give a measure 

to the competitive effect of 2N  on 1N  and 1N  on 2N , respectively: in general they are not equal. This 
model can also be non-dimensionalized by writing: 
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Now, we can express (15) by: 
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Finally, P.P.M. is represented as: 
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where r, K, k, D, s and h are positive constants.  The following relations can be used by being non-
dimensionalized (17): 
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4. Method Description 

Consider the nonlinear first order initial value problem (11) as follows:  

2)( uuu −=′ τ , 

with initial condition: 

K
Nu 0

0 =  

It is easy to conclude the following nonlinear equation in the unknown vector A: 

( )2ARARAR −=′  (19) 

( )τu  is approximated, as in Equation (6). Note that the typical collocation method is employed to 

obtain the approximate solution ).(τNu  Thus, Equation (19) is collocated at (N + 1) points, which may 

be taken as Equation (9) where 1=q : 
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N
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Then, the proposed technique produced a system of (N + 1) nonlinear algebraic equation. By 
applying the same technique on the condition, we will get another equation, and then replace it by any 
equation of the nonlinear system. Hence, the nonlinear system is in the RC coefficients, where one can 
use a suitable numerical method to solve this system. For example, the Newton iterative method with 
100 iterations can be used to obtain ).(τNu  

Similarly, with the nonlinear systems (14), (16) and (18), )(τNu  and )(τNv  can also be obtained 
by using the collocation method: 
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where 

[ ])(...)()()( 10 xRxRxRxR N= , [ ].)(...)()()( )1()1(
1

)1(
0

)1( xRxRxRxR N=  
and 

[ ] ,111101
T

NaaaA = [ ] .221202
T

NaaaA =  

Additionally, by substituting Equation (9) where 1=q , and replacing the equation that we got 
from the condition, we get a block non-linear system. Hence, a set of 2(N + 1) nonlinear system is 
generated in the RC coefficients. The Newton iterative method is used with 100 iterations. Then, we 
can obtain the approximate solutions of ( )τNu land ( )τNv . 
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5. Stability and Error Estimation 

The collocation method is considered to be one of most common spectral techniques used to 
handle the solution of differential equations. This method is easy to be implemented once the 
operational matrices are computed. The condition number of the coefficient matrix, which is always 

full, behaving like )( 2 jNO  (j represents differential equation order); see [21,22]. The four models are 

from the first order )1( =j ; we found that [ ]16,6∈N . Thus, the maximum condition number of the 
RC coefficient vector of the system in this study operates similar to )256(O . Thus, this approach is 
well-conditioned and is a stable RC collocation method. 

Error Estimation 

The accuracy of (11) is checked by computing the absolute error Ne , which is defined as: 

.)()( ττ NN uue −=  (23) 

As the approximate solutions of Equations (14), (16) and (18) are computed, the approximate 
solutions ( )τNu , ( )τNv , with their derivatives are replaced in systems. From that, we can get the 
residual error for the three systems, which for the second system take the form: 
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and for the third system: 
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and the fourth system: 
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where [ ]1,0∈kτ , 2,1,10, =≤ − ie kq
Ni  (where kq  positive integer), see [21,22]. 

6. Numerical Results and Discussion 

Four models are considered to obtain the effectiveness properties and accuracy of the RC 
collocation method. The calculations are carried out on the P.C. Mathematica 7.0 program (Wolform 
Research, Inc. 100 Trade Center Drive Champing IL 61820-7237, USA). Additionally, these problems 
are solved by a fourth order Runge–Kutta method. 
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6.1. Example 1 

Consider the following problem for first model. This example is mentioned in [23–26]: 
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The presented method is applied to get the approximate solution ( )tuN  for N = 6, 8, 10 and 16 by 

the truncated rational Chebyshev series. Table 1 shows the coefficients ia  of the rational Chebyshev 

series at different N as 
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)()( ττ , while Table 2 shows the comparison of the results of the 

presented method at N = 6, 8, 10 and 16 with the analytical solution. Table 3 shows the results of the 
other methods. When compared to ours, the results of our method shows higher efficiently and 
accuracy along the domain [0,1]. The solution mentioned by He’s Homotopy perturbation method [24] 
are given as:  
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The He's Homotopy perturbation solution gives Adomian solution at p = 1, thus the results of 
Adomian solution [23] are not mentioned. These results are given in Table 3 and are approximately 
the same in seven decimal places. 

The errors obtained in Tables 4 and 5 show that the proposed method is the most efficient. In 
Table 6, a comparison of the ∞LL ,2 error norms of the proposed method and Bessel collocation 
method shows that N = 6 and 10,  thus, the present method is more accurate.  Figure 1 shows the 
approximate solution for RC collocation method at N= 6,8,10 and 16, where, Figure 2 obtains the error 
functions for the present method at different N, finally, Figure 3  comparing the error functions for RC 
collocation method and Bessel collocation method. 

  

Table 1. The results of rational Chebyshev (RC) coefficients series. 

i N = 6 N = 8 N = 10 
0 1.3743038652494135 1.3815676658579128 1.378760897008215 
1 −0.48569746796934876 −0.472360965127773 −0.47762275444551 
2 0.1573910657307733 0.1676676751696002 0.163340333772166 
3 0.02472470081167393 0.03130192087870919 0.028193249891979 
4 0.008651101531889627 0.01207803143254162 0.010142873118876 
5 0.0014836127284939531 0.00288300087697244 0.001852300099965 
6 0.00016481305874272199 0.00058424467628341 0.000123719346054 
7 - 0.00007957368660952 −0.00008777552305 
8 - 5.913178179 610−×  −0.00004101762781 

9 - - −9.1851265 610−×  

10 - - −9.7072067 710−×  
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Table 2. Approximate solution of the proposed method with the analytical solution. 

iτ  ( )tu The Exact Solution 
( )tuN Proposed Method 

N = 6 N = 8 N = 10 N = 16 
0 2 2 2.0 2 2 

0.2 1.693094106370 1.693097310282 1.693094124641 1.693094084261 1.693094106329 
0.4 1.504121344416 1.504123163285 1.504121356087 1.504121329981 1.504121344389 
0.6 1.378180841125 1.378182097628 1.378180849124 1.378180831198 1.378180841107 
0.8 1.289764207701 1.289765195162 1.289764213455 1.289764200594 1.289764207687 
1.0 1.225399673561 1.225399087991 1.225399690622 1.225399670101 1.225399673550 

Table 3. The approximate solutions of the other method. 

iτ  

Bessel 
Collocation 

Method [25] N = 
10 

Shifted Chebyshev 
Collocation Method 

[26] 

He’s Homotopy 
Perturbation Method [24] 

N = 8 

Runge-Kutta Method 
N = 10 h = 0.1 

Runge-Kutta 
method N = 100 

h = 0.01 

0.0 2.0 2.0 2.0 2.0 2.0 
0.2 1.69309344793 1.6930940588 1.69310962730 1.69309839098 1.69309410677 
0.4 1.50412090406 1.5041219473 1.51061414603 1.50412551760 1.50412134481 
0.6 1.37818054385 1.3781801288 1.58918166286 1.37818429507 1.37818084145 
0.8 1.28976406729 1.2897638171 3.72352625778 1.28976697188 1.28976420796 
1.0 1.22542276706 1.2253849971 17.2164186508 1..122540187518 1.22539967376 

Table 4. Comparing absolute errors of RC collocation method for different values of N. 

iτ  6e  8e  10e  16e  

0.0 0 0 0 0 
0.2 3.20391 × 10−6 1.82704 810−×  2.21096 810−×  4.10847 1110−×  
0.4 1.81887 × 10−6 1.16713 810−×  1.44351 810−×  2.65399 1110−×  
0.6 1.2565 × 10−6 7.99841 910−×  9.92748 910−×  1.8243 1110−×  
0.8 9.87462 × 10−7 5.75504 910−×  7.10665 910−×  1.30811 1110−×  
1.0 5.85569 × 10−7 1.70622 810−×  3.45884 910−×  9.6152 1210−×  

Table 5. Comparing absolute errors for pervious works. 

 
Bessel Collocation 

Method [25] 
Shifted Chebyshev 

Collocation Method [26] 
He’s Homotopy 

Perturbation Method [24] Runge–Kutta Method 

iτ  10e  - 8e  N = 10 h=0.1
 

N = 100 h=0.01
 

0.0 0.0 0.0 0.0 0.0 0.0 
0.2 6.5844 710−×  4.75702 810−×  1.5521 510−×  4.28461 × 10−6 4.08747 × 10−10 

0.4 4.4035 710−×  6.02884 710−×  6.4928 310−×  4.17319 × 10−6 3.94976 × 10−10 

0.6 2.9727 710−×  7.12326 710−×  2.1100 110−×  3.45395 × 10−6 3.25475 × 10−10 

0.8 1.4041 710−×  3.90601 710−×  2.433800 2.76418 × 10−6 2.59781 × 10−10 

1.0 2.3094 510−×  1.46765 510−×  15.99100  2.20162 × 10−6 2.06548 × 10−10 

Table 6. Comparison of the ∞LL ,2 errors norm. 

 2L Proposed Method 2L Bessel Collocation [21] ∞L Proposed Method ∞L  Bessel Collocation [21] 

6=N  11−10 × 1.17678  610−× 1.56377 610−× 3.43964  310−× 2.20598  

10=N  1610−× 7.53488  1010−× 1.69564  810−× 3.09021   510−× 30935.2  

16=N  
1610−× 2.43726  -  1110−× 5.29949 -  
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Figure 1. Approximate solution for RC collocation method at different N values. 

 
Figure 2. Error functions for the present method at different N values. 

 
Figure 3. Comparing error functions for RC collocation method and Bessel collocation method. 
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6.2. Example 2 

The nonlinear system with the initial conditions for third model is considered as [24]:  
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By applying the present method to find the approximate solutions ( )τNu  and ( )τNv  for N = 8 and 
10 by the rational Chebyshev functions: 
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The results in Table 7 shows the comparison of the approximate solutions of RC collocation 
method at N = 10 with other methods. Table 8 contains the residual errors of present method and the 
He’s Homotopy perturbation method [24]. From the two tables, we can see that the RC collocation 
method has better accuracy along the domain [0,1], which is clear in Figures 4 and 5. 

Table 7. Numerical results for ( )τNv  and ( )τNu  at N = 10 compared with another methods. 

( )τNu  ( )τNv  

iτ
 

Proposed 
Method N = 10 

Fourth 
Order 

Runge-Kutta 

He's 
Homotopy 

[24] 

Proposed 
Method N = 

10 

Fourth 
Order 

Runge-Kutta 

He's 
Homotopy 

[24] 
0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
0.2 0.843998 0.842106 0.844877 0.875479 0.875552 0.876128 
0.4 0.744861 0.73666 0.768055 0.797484 0.79815 0.814648 
0.6 0.676850 0.661213 0.826702 0.745510 0.747394 0.856633 
0.8 0.627632 0.604487 1.177110 0.709539 0.713175 1.117640 

Table 8. The residual errors of the RC collocation method and He’s Homotopy.. 

( )τNu  ( )τNv  

iτ  8e  10e  He’s  
Homotopy 8e  10e  He’s Homotopy 

0.0 0 1.11022 × 10−16 0.0 0 −1.11022 × 10−16 −1.11022 1610−×  
0.2 3.18832 × 10−7 0 0.0229604 −3.01595 × 10−7 0 0.0170781 
0.4 2.08784 × 10−8 0 0.313171 −1.83947 × 10−8 5.55112 × 10−17 0.235563 
0.6 −9.89687 × 10−9 0 1.41601 8.0971 × 10−9 5.55112 × 10−17 1.07387 
0.8 −3.85544 × 10−8 −5.55112 × 10−17 4.38991 2.92022 × 10−8 −5.55112 × 10−17 3.32221 
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6.3. Example 3 

The system for the second model is mentioned in [23–25] and is given with: 
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To find the approximate solutions ( )τNu  and ( )τNv , we apply the RC collocation method for N 
= 6, 9 and 10 by using the rational Chebyshev functions: 
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Tables 9 and 10 contain comparison of previous works and the present method in the interval 
[0,1]. Tables 11 and 12 contain the residual errors of previous works and present method. 
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Table 9. Comparison between RC collocation method and other methods for ( )τNu
. 

iτ  
Bessel Collocation 
Method N = 9 [25] 

He’s Homotopy Perturbation Method 
[24]and Adomian [23] 

Fourth Order 
Runge-Kutta 

Proposed Method 
N = 9 

0.0 1.30000 1.30000 1.30000 1.30000 
0.2 1.40250 1.40250 1.40432 1.40240 
0.4 1.49742 1.49747 1.50641 1.49726 
0.6 1.57645 1.57664 1.60048 1.57625 
0.8 1.62988 1.62987 1.67896 1.62962 
1.0 1.64799 1.64509 1.73280 1.64769 

Table 10. Comparison between RC collocation method and other methods for ( )τNv
. 

iτ  
Bessel Collocation 
Method N = 9 [25] 

He’s Homotopy Perturbation 
Method [24]and Adomian [23] 

Fourth Order 
Runge-Kutta 

Proposed 
method N = 9 

0.0 0.60000 0.60000 0.60000 0.60000 
0.2 0.64370 0.64371 0.64378 0.64386 
0.4 0.70445 0.70453 0.70522 0.70461 
0.6 0.78459 0.78529 0.78792 0.78473 
0.8 0.88563 0.88918 0.89576 0.88575 
1.0 1.00702 1.01980 1.03209 1.00712 

Table 11. Comparison of the residual errors of other methods. 

( )τNu  ( )τNv  

iτ  
9e  Bessel 

Collocation Method 
[25] 

He’s Homotopy Perturbation 
Method [24] and Adomian [23] 

9e  Bessel 

Collocation Method 
[25] 

He’s Homotopy Perturbation 
Method [24] and Adomian [23] N 

= 9 

0.0 0 −2.22045 × 10-16 0 0 
0.2 7.5143 910−×  0.0363226 3.6872 910−×  −0.00239656 

0.4 3.9632 910−×  0.122843 1.8683 910−×  −0.0168928 

0.6 5.5576 910−×  0.258709 2.4142 910−×  −0.0549218 

0.8 2.4248 810−×  0.444968 8.9296 910−×  −0.128288 

1.0 5.6282 610−×  0.6838 1.4089 610−×  −0.2484 

Table 12. Comparison of the errors of the present of different values for N. 

( )τNu ( )τNv

iτ  6e  9e  10e  6e  9e  10e  

0.0 1.44329 × 10−15 
9.88098 

1510−×  
−4.996 × 10−15 1.77636 × 10−15 −8.52096 × 10−15 1.94567 × 10−14 

0.2 1.40608 310−×  2.09602 510−×  
−8.88178 × 

10−16 
−3.11203 

510−×  
−4.55058 

510−×  
−2.66454 × 

10−15 

0.4 
−4.41867 

410−×  
3.06784 × 10-6 

−1.77636 × 
10−15 −1.76244 510−×  5.98195 × 10−6 1.27676 × 10−15 

0.6 2.58461 410−×  1.46951 × 10-6 
−7.77156 × 

10−16 3.17073 510−×  −2.6324 × 10−6 2.27596 × 10−15 

0.8 
−3.21336 

410−×  
2.60506 × 10-6 0 

−7.55635 
510−×  

−4.3658 × 10−6 4.44089 × 10−16 

1.0 7.10364 310−×  
−2.89201 

410−×  
−1.37099 

410−×  
2.77429 310−×  4.60118 410−×  1.49865 410−×  
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6.4. Example 4 

For the nonlinear system for the fourth model, as mentioned in [24], is given with: 
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He’s Homotopy perturbation method introduces the approximate solution, which takes the form 
[24]: 

....493.7608016.352024.44615.02.1
....7396.3399.28415.05281.03.1
432

432
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++−+−=

ττττ
ττττ
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By applying the proposed method to get the approximate solutions ( )τNu  and ( )τNv  for N = 8 
and 10 given in Table 13, and comparison between fourth order Runge-Kutta method and the 
Homotopy perturbation method [24]. We can see from Table 14, which contains the residual errors 
and Figures 6 and 7, that the present method is more accurate. 

Table 13. Comparing the results for RC collocation method with other methods 

( )τNu
 

( )τNv
 

iτ
 

Proposed 
Method He's 

Homotopy [24] 
Fourth Order 
Runge-Kutta 

Proposed 
Method He's 

Homotopy [24] 
Fourth Order 
Runge-Kutta 

N = 8 N = 10 N = 8 N = 10 
0.0 1.30000 1.30000 1.30000 1.30000 1.20000 1.20000 1.20000 1.20000 
0.2 1.20944 1.20944 1.21483 1.20953 1.22773 1.22773 0.19383 1.22768 
0.4 1.14291 1.14291 1.16560 1.14310 1.18981 1.18981 −16.46510 1.18987 
0.6 1.09334 1.09334 1.25255 1.09334 1.13990 1.13990 −90.86270 1.13996 
0.8 1.05582 1.05582 1.71953 1.05541 1.09507 1.09507 −294.2880 1.09492 

Table 14. The residual errors for RC collocation method and He's Homotopy perturbation method 

( )τNu  ( )τNv  

iτ  8e  10e  He's 
Homotopy 8e  10e  He's 

Homotopy 

0.0 
−2.77556 × 

10−16 
3.60822 × 

10−16 −4.69027 510−×  2.16493 × 10−15 6.10623 × 10−16 −3.84615 510−×  

0.2 6.31305 × 10−8 
1.11022 × 

10−16 
−0.07773280 6.53084 × 10−6 1.59595 × 10−15 −22.07360 

0.4 4.97209 × 10−9 
3.46945 × 

10−16 
−1.5748900 3.38616 × 10−7 1.19349 × 10−15 1064.8400 

0.6 −2.74813 × 10−9 
1.52656 × 

10−16 
−8.676020 

−1.33023 × 
10−7 

−6.10623 × 
10−16 

32788.300 

0.8 −1.21897 × 10−8 
2.22045 × 

10−16 
−38.070800 

−4.49676 × 
10−7 

8.32667 × 10−17 251805.00 
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Figure 6. Approximate solutions ( )τNu  at different N with He’s Homotopy solution. 

 
Figure 7. Approximate solution ( )τNv  at different N with He’s Homotopy solution. 

Finally, the numerical computations for all examples are carried out by the Mathematica 7.0, with 
usual personal computer with specifications (Intel processor CORE i3 2.53 GHz, 2.00 GB RAM). 
Additionally, in Table 15, the CPU time used by the program for all examples using rational Chebyshev 
collocation method and He's Homotopy perturbation method are computed.  

Table 15. The CPU time used for all examples. 

Example He's Homotopy RC Collocation Method N = 6 N = 8 N = 9 N = 10 N = 16 
1 0.296 0.704 1.17 - 1.5 2.247 
2 0.281 - 1.374 - 2.154 - 
3 0.233 0.861 - 1.809 1.965 - 
4 0.364  1.358 - 2.09 - 

The results in Table 15 for the CPU time are expected, since in the He’s Homotopy perturbation 
method, the code takes a few steps to be implemented, while in our method, the models are transformed 
to a system of algebraic nonlinear equations that need more speed/storage to be solved. 

7. Conclusions 

In this paper, an application of the collocation technique for solving single and interacting species 
C.P.M. using rational Chebyshev series is investigated. The three models we considered are the 
population logistic growth model, an L.V.M., an L.V.C.M. and a P.P.M. Upon using the rational 
Chebyshev collocation points, this method transforms the four models to system of nonlinear 
equations with unknown rational Chebyshev coefficients. A considerable advantage of this technique 
is that it is very simple to implement using the Mathematica 7.0 computer program. The obtained 
numerical results indicate the ability and reliability and accuracy of the present method. From this 
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work, we can see the rational Chebyshev functions are better bases to deal with problems such as the 
four models, as we see the analytical solution of the first model C.P.M. in fraction form for this 
proposed technique gives high efficiency along the domain. Moreover, the rational Chebyshev 
functions can deal with large domains, even if x tends to infinity. 
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