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Abstract

In this paper, we address the well-known Tumor-Immune Model of Kuznetsov et al., converting it into
a stochastic form, and for simulation purposes we employ Euler-Maruyama discretization process. Such
a modeling, for being realistic in biology and medicine, requires the implication of memory components.
We also explain how to calculate the state transition time and we elaborate on how to reduce the system
dynamics after the state transition. In fact, we establish and evaluate Stochastic Kuznetsov et al. model,
and we describe how to demonstrate the stability of the numerical method, addressing tumor growth in
spleen of mice. This work ends with a conclusion and a prospective view at future research and application,
with special focus on medicine and neuroscience of tumor analysis and treatment.
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1. Introduction

Tumor growth causes of millions of deaths every years; therefore, it is a very active research area in many
different disciplines of science and technology. If we consider the treatment of tumor growth, one of the
main interactions to be investigated is tumor-immune dynamics. However, tumor-immune system dynamics
exhibit a highly complex structure. Several scientific investigations have been undertaken from perspectives
of different disciplines, trying to model those interactions. To mention some of them, one may refer to [1, 18]
and the references given therein.
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In recent years, hybrid systems became as a useful modeling approach to include regime switches and
paradigm shifts into deterministic and, especially, stochastic dynamics of science, engineering, neuroscience
and and medicine. Stochastic Hybrid Systems (SHS) which demonstrate a generalized class of those systems
are dynamical systems with random continuous and discrete behaviors. Any natural phenomena that exhibits
multiple modes can be modeled by SHS. Some of the examples can be found in air traffic management,
manufacturing systems, biological networks, financial markets and operations research. The stochasticity
in a hybrid system can result from the randomness in the continuous part or in the discrete part of it.
Depending on where to allow randomness in a hybrid model, different types of stochastic hybrid models
have been introduced to the literature. To name a few, there are piecewise deterministic Markov processes,
switching diffusion processes, or stochastic hybrid systems that are controlled by a probability law which is
determined by the previous hybrid state are the early contributions to the area. In [13], some of the stochastic
hybrid models appearing in biological networks, have been classified and summarized. In order to investigate
the different applications and various modeling versions and analysis of stochastic hybrid systems, one may
see [5, 17], and the references therein. Moreover, for piecewise linear approaches used in regulatory systems,
the paper [15] offers a good source. One of the most important properties of a regulatory system is that its
ability to memorize parts of its history. In other words, a combination of the previous inputs into the system
decides its stationary behavior and, in turn, the system’s stationary state decides about the response to the
system’s future external input. This is the crucial mechanism for adoption and learning in these systems. In
our work, we investigate one of the very well-known tumor-immune systems called as Kuznetsov et al. model,
by including stochastic calculus and benefiting from a hybrid system’s formalism. In order to achieve this
goal, firstly, we give a definition of a hybrid system with memory. A Hybrid System with Memory (HSM)
has been defined and applied in the works [7, 8, 16]. The procedure in [9] describes a Markovian procedure
and simulates one system with two different discrete stochastic systems. The procedure defined in this work
partitions the same system into subsystems and expects those subsystems act differently according to their
memory sets and furthermore, it describes a non-Markovian procedure.

Definition 1. A Hybrid System with Memory H is a collection [7, 8]:

H = (Q, X, U, T, Init, M, f, g, Inv, E, G, R),

consisting of

• a set of discrete states Q = {q1, . . . , qm} which are the so-called locations,

• a space of continuous variables X = Rn,

• a set of initial conditions Init ⊆ Q×X ×M ,

• a space of inputs U = Rz (control, disturbance or both),

• a space of independent variables T ⊆ Rk, typically the time T = [t0,∞),

• f and g are vector fields such that f, g : Q×X × U ×M −→ X, governing the continuous evolution,

• an invariant set (domain, subspace) for each q ∈ Q, Inv : Q −→ P (X) where P (·) denotes the power
set; each state’s governing dynamics is valid within its invariant set,

• a set of edges (state transitions) E ⊂ Q×Q,

• guard conditions for each edge G : E ×M −→ P (X),

• a reset map for each edge R : E ×X × U −→ P (X),

– for verifiability analysis, R : E ×G −→ X can be considered,

• M(t) consists of finite strings over M ; it is a growing memory of past state transitions such that
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– M(0) = (M0) = (t0, x0, q0),

– if M(t;−) = M0,M1, . . . ,Mi, and x(tj) ∈ g{q(t), q ∈ Q}, then
M(t; +) = (M(t;−),Mi+1),

– Mi+1 = (tj , x(tj−), q(tj−)).

With this definition, the prior evolution of the system is sampled at state transitions containing the
time and the values of variables before and after the state transition. In this definition, M(t) is a piecewise
constant between the state transitions. The memory grows at each state transition. Thus, a HSM has a
complexity that increases with time. By a Stochastic Hybrid Systems with Memory (SHSM), we mean the
space of continuous variables including stochastic dynamics through the vector field g given in the definition
which stands for the diffusion and, therefore, stochastic differential equations.

2. The Stochastic Dynamics with Memory Model

As mentioned in the introduction, the model of Kuznetsov et al. is one of the most widely studied
approaches towards tumor in the sense of tumor growth immune dynamics. Actually, it is used to describe
the kinetics of growth and is an approximate regression of the B-Lymphoma BCLl in the spleen of mice
[12]. The authors derived and compared their model with experimental data and statistical estimates of
parameters identifying processes that cannot be measured in vivo [12]. The normalized version of the model
has been represented as [12]:

dx

dτ
= σ +

ρxy

η + y
− µxy − δx. (2.1)

dy

dτ
= αy(1− βy)− xy. (2.2)

In this system of equations, τ stands for the normalized time. In the paper [12], parameter values are given
as follows:

σ = 0.1181, ρ = 1.131, η = 20.19, µ = 0.00311, (2.3)

δ = 0.3743, α = 1.636, β = 2.0 · 10−3.

One may find two different stochastic versions of Kuznetsov et. al.’s model in [9]. In this work, we use
an another stochastic model which can be derived with a similar fashion used in [9] and an application of
the procedure described in [2, 3]. Let us start with a stochastic model given by a system of two coupled
stochastic differential equations (SDEs) which can be found in [8, 9]:

dX(t) =

[
σ1 +

ρ1X(t)Y (t)

η1 + Y
− µ1X(t)Y (t)− δ1X(t)

]
dt (2.4)

√
σdW1(t) +

√
ρX(t)Y (t)

η + Y (t)
dW2(t)−

√
µX(t)Y (t)dW3(t)−

√
δXdW4(t),

dY (t) = [αY (t)(1− βY (t))−X(t)Y (t)] dt

+
√
αY (t)(1− βY (t))dW5(t)−

√
X(t)Y (t)dW6(t).

where dW1, dW2, dW3, dW4, dW5 and dW6 are different Wiener processes [11, 14]. For the sake of convenience,
we may regard the parameter τ of Equations (1)-(2) normalized to 1. For numerical solutions, we have applied

We use a comprehensive, slightly simplifying mathematical notation.
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the well established and broadly accepted Euler-Maruyama method. The subsequent equations represent the
discretized version of the model which can be found in [8, 9]:

Xi+1 =Xi +

[
σ +

ρXiYi
η + Yi

− µXiYi − δXi

]
∆t (2.5)

+
√
σ∆W ∗1i +

ρXiYi
η + Yi

∆W ∗2i −
√
µXiYi∆W

∗
3i + δXi ∆W ∗4i,

Yi+1 =Yi + [αYi(1− βYi)−XiYi] ∆t

+
√
αYi ∆W ∗3i −

√
αβY 2

i +XiYi ∆W ∗4i.

Since we have simulated the aforementioned system with Euler-Maruyama method, at this point, it is very
important to question whether Euler-Maruyama method is stable for Equations (5)-(6). One may check
stability of the numerical solution by considering a nonlinear test equation for SDEs, e.g., of the form

dZt = f(Zt)dt+ σdWt,

where f satisfies a one-sided dissipative Lipschitz condition. For further steps of stability testing, we refer to
[10]. These transition probabilities, represented in Table 1, [9], give us the likelihoods of switching changes in

i Change, (∆Z)i Probability, pi

1 (1, 0)T
(
σ +

ρXY

η + Y

)
∆t

2 (−1, 0)T (µXY + δX) ∆t

3 (0, 1)T (αY ) ∆t

4 (0,−1)T
(
αβY 2 +XY

)
∆t

Table 1: The probabilities according to the transition changes of Kuznetsov et al.’s tumor-immune system model [9].

the states. When the dynamics arrives at hitting times τ , i.e., when intersecting and traversing characteristics
submanifolds in state space, it comes to the hitting times. We propose that some of the transitions will not
occur. According to the hitting time probabilities, we will have the following stochastic hybrid system. If
τ∗ = τ1, then:

dX(t) =σ1 +
ρ1X(t)Y (t)

η1 + Y
− µ1X(t)Y (t)− δ1X(t) +

√
σ1dW1(t) (2.6)

+

√
ρ1X(t)Y (t)

η1 + Y (t)
dW2(t)−

√
µ1X(t)Y (t)dW3(t)−

√
δ1XdW4(t),

dY (t) =α1Y (t)(1− β1Y (t))−X(t)Y (t) +
√
α1Y (t)(1− β1Y (t))dW5(t).

−
√
X(t)Y (t)dW6(t).

If τ∗ = τ2, then:

dX(t) =σ2 +
ρ2X(t)Y (t)

η2 + Y
− µ2X(t)Y (t)− δ2X(t) +

√
σ2dW1(t) (2.7)

+

√
ρ2X(t)Y (t)

η2 + Y (t)
dW2(t)−

√
µ2X(t)Y (t)dW3(t)−

√
δ2XdW4(t),

dY (t) =α2Y (t)(1− β2Y (t))−X(t)Y (t) +
√
α2Y (t)(1− β2Y (t))dW5(t)

−
√
X(t)Y (t)dW6(t),



N. Gökgöz, H. Öktem, G.-W. Weber, Results in Nonlinear Anal. 3 (2020), 24–34 28

where dW1, dW2, dW3, dW4, dW5 and dW6 are different Wiener processes.

For making our results more realistic and to be adapted to real-world systems, we have searched the
literature and we have employed the results obtained in the experiment of [6]. In that work, the authors
use two groups of mice in order to decide on the effect of IL1-α. Their work states the role of tumor cell-
associated IL1-α, in the induction of specific immune responses, eventually leading to tumor regression and
the development of an immune memory, which prevents the mice from a fight with the violent tumor cells [6].
Concerning the data that illustrate different levels of tumor sizes according to different clones and so-called
Stimulation Index, S.I., values can be seen from Figure 1, Figure 2 and Figure 3. Clone 2 has been injected
with IL1-α, whereas Clone 5 has not been. As previously mentioned, according to different levels of IL1-α,
different levels of tumor growth and effector cells have been observed. These effects can be seen from Figure
1, Figure 2 and Figure 3. Moreover, the precise values can be found in Table 2. In this table, S.I. refers the
Stimulator Index which is the ratio for immune cells (the effector cell and stimulator cells) and the tumor
size has been measured in millimeters (mm). By observing the data, one can see that Clone 2 and Clone 5
behave similarly until day 3. After Day 3, Stimulation Index is decreasing in Clone 5, and after Day 15, the
tumor size is increasing in Clone 5. If we assume that this relationship of IL1-α on the immune system is
not known previously, the one who observes the dynamics would question the differents behaviors of Clone
2 and Clone 5. Therefore, one may argue that there are functional relationships effecting the dynamics of
the system and those functional relationships are captured in the memory set.

Clone 2 Clone 5
Days S.I. Tumor Size (mm) S.I. Tumor Size (mm)
0 1 3.05 1 3.125
3 1.988 3.7 2.129 3.75
7 2.344 4.35 1.443 4
10 2.822 6.35 0.914 5.5
15 3.011 7.345 0.914 8.5
20 3.411 6 0.886 15.125
40 3.266 3.7 0.943 29.125

Table 2: Stimulation Index, S.I., and Tumor size data of Clone 2 and Clone 5 [8].

In our tumor-immune problem, we should have two different regimes according to different hitting times
and, therefore, two different memory values in the modified model of Kuznetsov et al. In that model, we will
have a memory value as stated subsequently:

m=(τ, ((X1 < 2.344 ∧X2 < 4) ∨ (X1 ≥ 2.344 ∧X2 ≥ 4)), q),

where τ ∈ {τ1, τ2}. For instance, if τ∗ = τ1, (X1 < 2.344 ∧X2 < 4) and q = q1, then we guess the system to
behave like Clone 2. Moreover, the terms

√
ρX(t)Y (t)
η+Y (t) dW2(t) and

√
αY (t)(1− βY (t))dW5(t) in Equation(2.4)

will drop out, and the equations will be:

dX(t) =σ1 − µ1X(t)Y (t)− δ1X(t)+ (2.8)
√
σ1dW1(t)−

√
µ1X(t)Y (t)dW3(t)−

√
δ1XdW4(t),

dY (t) =−X(t)Y (t)−
√
X(t)Y (t)dW6(t).

In this case, the memory value is M = (M(0),M(1)). Moreover, if τ∗ = τ2, (X1 < 2.344 ∧ X2 < 4) and
q = q1, we assess the system to behave like Clone 5. In this case, the terms

√
µX(t)Y (t)dW3(t),

√
δXdW4(t)
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Figure 1: Tumor size of Clone 2 and Clone 5 according to days [6, 8].

and
√
X(t)Y (t)dW6(t) in Equation(2.4) will not be used and then, the equations will look as follows:

dX(t) =σ2 +
ρ2X(t)Y (t)

η2 + Y
+
√
σ2dW1(t) +

√
ρ2X(t)Y (t)

η2 + Y (t)
dW2(t), (2.9)

dY (t) =α2Y (t)(1− β2Y (t)) +
√
α2Y (t)(1− β2Y (t))dW5(t);

where the memory value is M = M(0). The reason that we are not using some of the terms of Equation
(2.4) is that those variables represents increase or decrease in X and Y . However, when we investigate the
system, the immune variables of the system is not working in Clone 2 and tumor is not growing in Clone 5.
Therefore, this means that those transitions are not valid for the model anymore and so those terms should
be dropped. The reader may see a graphical representation of the states in Figure 4. You may read the
graph as follows: start with q1. If the memory set is equal to M = (M(0),M(1)) go to q2 and from q2, the
system will turn back to q1, if memory set is equal to M = (M(0)) go to q3. Here, q1 represents the healthy
state of the host. Moreover, at the end of every state transition, the data given in Table 2, will be fitted to
the corresponding equations of q1, q2 or q3. More precisely, if the host is leaving q1 and is entering q2, then
Equation (2.8) will be used and the parameter values of this system will be estimated according to the data
set given in Table 2 and the same procedure will be applied to the Equation (2.9) in case of entering the
state q3. In order to determine the transition times and the probability whether the process reaches a state
or not, we refer the reader to [3, Chapter 8]. The following steps summarize the procedure described in [3].
Moreover, we refer the interested reader to the work [21] in order to find parameter values in a piecewise
linear model. If Q(x, t) is the probability that the process does not reach states, we may say, A or B, within
time [0, t], then we can represent it as [3]:

Q(x, t) =

∫ B

A
p(y, x, t)dy,

where p(y, x, t) stands for the density function of a transition from state x at time t to state y at time s,
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Figure 2: S.I. and tumor size of Clone 2 according to days [6, 8].

and s < t. Let T (x) be the random variable representing the time for the stochastic process to reach states
A or B, and pt(x, t) be the probability density function of it. Expected time of T (x) can be found by [3,
Chapter 8]:

E(T (x)) =

∫ ∞
0

Q(x, t)dt. (2.10)

By using this procedure we can write the transition probability distribution function for the states, q2, q3,
which will be the solution of the following backward Kolmogorov differential equations:

−∂p(x, t)
∂t

=

(
σ1 +

ρ1x(t)y(t)

η1 + Y
− µ1x(t)y(t)− δ1x(t)

)
∂

∂xi
p(xi, t)+ (2.11)(

√
σ1 +

√
ρ1x(t)y(t)

η1 + y(t)
−
√
µ1x(t)y(t)−

√
δ1X

)
∂2

∂xixj
p(x, t),

−∂p(x, t)
∂t

= (α1Y (t)(1− β1Y (t))−X(t)Y (t))
∂

∂x
p(x, t)+ (2.12)(√

α1Y (t)(1− β1Y (t))dW5(t)−
√
X(t)Y (t)dW6(t)

) ∂2

∂xixj
p(x, t).

3. Conclusion and Outlook

In this work, we refine the model of Kuznetsov et al. and we improve it by using stochastic calculus
and memory formalism. We also discretize the model with Euler-Maruyama method and give the transition
probabilities. Moreover, we give a precise description on how to find transition times, parameter values and
also probabilities, if the process will make a transition from one state to another. Since we discretize the
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Figure 3: S.I. and tumor size of Clone 5 according to days [6, 8].
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Figure 4: Basic representation of the states for Stochastic Kuznetsov et al. model.
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model, we describe how to check the stability of the numerical method. Furthermore, in order to make our
model realistic, we use medical data from the literature. As a future development of the model, we plan
to include jumps into our dynamics, representing instantaneous changes such as, e.g., mutations, switches
through the outer environment, and to establish a stochastic optimal control subject to our stochastic
dynamics, e.g., for an optimal chemotherapy on tumor diseases and on further kinds of cancer. In such a
stochastic optimal control, also delay could be included as a further form of memory [19, 20] and moreover
dynamic programming technique could also be applied to obtain Hamilton-Jacobi-Bellman equation [4, 22].
Finally, as an alternative form of implying memory, we mention so-called Fractional Brownian Motions; for
a reference on their parametric assessment, we refer the reader to the paper [23].
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