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ABSTRACT 

In this study, the characteristics of the flow in the region of swirling vortex are examined. 
The potential flow model based on the summing infinite number of spherical sinks along the 
vortex core is introduced to predict the flow field and the flow rate along the vortex axis. The 
flow towards the swirling vortex core has considerable effects on the radial velocity 
distribution within the ambient fluid flow region near the intake. The agreement between 
available test data relating to the radial velocity and the method introduced in this study is 
found to be satisfactory. 
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1. INTRODUCTION 

Hydraulic problems attributed to the swirling vortex flow occurring at intakes are frequently 
encountered in practice (such as discharge reduction, loss of efficiency in pumps and 
turbines, vibration, air-entrainment, erosion in water-conveying structures etc). The previous 
studies on this issue may briefly be summarized in three categories that are as follows. i) 
Studies considering the critical submergence:  Fully developed air-entraining vortices occur 
at intakes that have no sufficient submergence, S (the vertical distance of the intake center to 
the fluid surface). There are several studies about the critical submergence [S = Sc at which 
the lower end (tip) of the air-core vortex just reaches the intake] include those by Denny [1], 
Anwar et al. [2], Hecker [3], Taştan and Yıldırım [4], Kocabaş and Yıldırım [5], Yang et al. 
[6], Yıldırım et al. [7], Sun and Liu [8]. ii) Studies relating to the modelling of main 
characteristics of air-core vortices are:  Odgaard [9]; Suerich-Gulick et al. [10]; and Vatistas 
et al. [11]. iii) Studies relating to profile of the air-core vortex: Typical example works on 
this issue are by Anwar [12]; Vatistas et al. [13]; and Sun and Liu [8]. 
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So far, in the available literature mentioned earlier, the following two classical points are 
considered for the potential flow region of the vortex. i) The circulatory velocity vectors are 
tangential to completely closed co-centric circular streamlines in a horizontal plane and 
varying in magnitude inversely with the radial distance from the vertical axis of the vortex 
(the center of the circular streamlines). The pressure distribution is hydrostatic. The entire 
ambient circulatory flow is in the form of an infinite number of concurrently rotating co-axial 
vertical cylindrical sink surfaces extending from the free surface to the bottom boundary and 
having the same vertical axis as the air-entraining vortex. ii) The path of each particle is a 
completely closed circular streamline with no swirling, and the entire profile of the air-core 
vortex is of a single closed-ended “hyperbolic paraboloid of revolution of circular cross-
section” with constant flux of magnitude of vorticity (the net circulation is identical at all 
levels along the entire length of the air-core vortex). 

The flow visualization in the study by Kocabaş and Yıldırım [5] indicated that the path lines 
of the particles are in the form of descending and converging unclosed lines that appear as a 
swirling-vortex filament. This indicates that in reality, the streamlines are not completely 
closed circular lines in the horizontal plane and they also have curvatures in the vertical plane. 
Therefore, the pressure distribution is not exactly hydrostatic. The circulatory ambient fluid 
is not in the form of rotating co-centric cylindrical sink surfaces and the circulation along the 
pathway axis of the vortex is not an identical constant. The circulation along the axis of the 
vortex increases from its minimum magnitude at the free surface to its maximum magnitude 
at the intake.  

The air-core vortex has to be attributed to the submerged swirling vortex flow developed 
under the surface extending from the free-surface (air-boundary) to the intake. The exact 
nature of the swirling vortex flow developing under the water surface is still unknown. 
Especially the discharge towards any point along the axis of the swirling vortex flow-filament 
is needed to be known in order to predict the variation of the magnitude of the vorticity or 
circulation (along the axis of the swirling vortex) that is the main reason for the occurrence 
of the swirling vortex or air-core vortex. The available studies have not given any information 
or explanations relating to the flow rate along the axis of swirling vortex or air-core vortex. 
Taştan and Yıldırım [14] have found that the vortex core consists of hydraulically developed 
coaxial subsurface depressions (SSDs) towards which the flows are of coaxial spherical sink 
surface sectors (SSSSs) with centers changing along the axis of the vortex core towards the 
intake. They have presented an analytical analysis for the profile of the air-core vortex and 
SSSSs, and verified it by using available test data relating to the air-core vortex. However, 
they have not considered the flow rate along the axis of the vortex core.  Note that, if an SSSS 
is in the form of a hemisphere then the SSSS is denoted by HSSS (hemispherical sink 
surfaces) in the present study. 

This paper continues the work presented in the study by Taştan and Yıldırım [14]. The main 
difference is that the present study introduces a potential flow model based on the summing 
infinite number of SSSSs along the swirling vortex core (not necessarily the air-core vortex) 
to predict the flow field and the flow rate along the axis of the swirling vortex occurring at 
an intake. The flow towards the SSDs relating to the swirling vortex-filament has 
considerable effects on the radial velocity distribution within the ambient fluid flow region 
near the intake. The agreement between available test data and the method introduced in this 
study is found to be satisfactory. 
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2. THEORETICAL CONSIDERATION 

Whenever there exists an intake in an ambient fluid with net circulation; an unavoidable 
swirling vortex flow filament develops within the ambient fluid at the intake (Fig. 1a).  

 
Figure 1- (a) SSDs and the swirling vortex filament,  

(b) SSSS(s), and Stokes’ stream surfaces or SSD(s) [14] 
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The swirling motion of the fluid particles or swirling characteristic of the vortex-path line is 
due to the circulation attributed to that may be either self-developed due to the Coriolis effect 
or disturbances and rotations present within the ambient fluid flow towards the intake or 
induced, imposed, or loaded circulation on the ambient fluid flow field. Circulation is the 
essential and main reason for the development of a swirling vortex flow or air-core vortex in 
an ambient fluid with an intake. If there is no net circulation, a swirling vortex flow cannot 
develop. In the study by Taştan and Yıldırım [14] relating to the air-core vortex at an intake, 
it is proven that regardless of the flow and geometrical conditions the fluid flow towards the 
swirling vortex consists of hydraulically developed coaxial SSSSs of varying centers along 
the axis of hydraulically developed coaxial SSDs of point (spherical) sink character for the 
ambient fluid (Fig. 1b). The SSDs are a kind of depression intakes (DIs) whose boundaries 
are of Stokes’ stream surfaces. In reality, all SSDs or DIs are open-ended through which the 
ambient fluid flow filling in the SSDs reaches and enters the intake.  

In the study by Taştan and Yıldırım [14] it is stated that : 

 “The geometrical location of whole fluid particles that have an identical magnitude of radial  
velocity towards any chosen center point on the axis of the vortex depression  (vortex path 
line) is an SSSS. Note that these particles belong to an infinite number of coaxial Stokes’ 
stream surfaces (Figs. 1b and 2). For example, in Fig. 1b, the particles G, D, A, E, and F of 
different Stokes’ stream surfaces [DI(s)] are on the same SSSS I and have identical radial 
velocity towards the center M1 of the SSSS I. Similarly, the particles B, C, K, J, L, N, and T 
of different Stokes’ stream surfaces [DI(s)] are on the same SSSS II and have identical radial 
velocity towards the center M2 of the SSSS II.” 

The potential flow model is based on the summation of infinite number of SSSSs along the 
length of the vortex axis. The potential lines representing radial velocity are perpendicular to 
the stream surfaces of SSSSs. For this purpose, firstly it is necessary to prove that for each   
SSD there exist HSSSs or SSSSs in general. This is achieved in the following way. 

Considering an air-core vortex depression and the coordinate system as indicated in Fig. 2 
(basing on the formula developed by Vatistas et al. [13]; Sun and Liu, [8]) for the profile of 
an air-core vortex, Taştan and Yıldırım [14] have written as  

)arctan(2 20 R
h

HHr 



    (1) 

where R = r/rm = dimensionless horizontal radial distance from the vertical centerline of the 
depression (vortex) or intake entrance; r = horizontal radial distance from the vertical 
centerline of the air-core vortex depression (or intake entrance); rm = air-core vortex 
depression core radius (outer limit radius of the viscous region); Hr = water surface elevation 
at R;  H0 = elevation of the lower end or tip of the depression (air-core vortex); h = total depth 
of the depression (air-core vortex); and  = a coefficient relating to the flow conditions. In 
reality, the lower end (tip) of the air-core vortex depression should have a tiny opening but 
the surface tension (capillary) forces overcome the small inertia and gravity forces at the 
lower end of the air-core vortex. Therefore the lower end (tip) of the air-core vortex 
depression is seen as closed and slightly curved [14].   
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Figure 2 - Geometric variable definitions [14] 

 

Consider an SSSS whose center C on the axis of symmetry of the intake entrance or air-core 
vortex is above the lower end (tip) of the air-core vortex for an amount of a or a/h, as shown 
in Fig. 2a and b. The SSSS can be described by the equation of a circle in which the horizontal 
dimension is R and the vertical dimension is the radius of the circle expressed in terms of the 
geometry of the air-core vortex.  For the circular arch, one can write [14], 
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where Rs* is the dimensionless radius of a different kind of SSSS that is indicated as SSSS* 
(in the dimensionless coordinate system of Hr/h and R) in Fig. 2b. 
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Taştan and Yıldırım [14] have shown that SSSS* and air-core vortex depression profile 
normally intersect (for example at intersection point A in Fig. 1) for which one can write  
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Substituting Eq. (3) in Eq. (1) (for the intersection point of SSSS and air-core vortex profile) 
it yields 
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Note that Eq. (4) is independent of β. 

To prove that there exist HSSSs or SSSSs for each SSD; consider any ith SSD (call it SSDi) 
as indicated in Fig. 3. For simplicity let the origin of the coordinate system (r, Hri) or (Ri, 
Hri/hi) is located at the lower end (tip) point Ti  of the SSDi (Fig. 3). Herein, Ri = r/rmi ;  rmi = 
core radius (outer limit radius of the viscous region) of the SSDi ; Hri = elevation of the SSDi 
profile with respect to the lower end (tip) of the SSDi at Ri ; hi = the vertical distance of the 
top level of the SSDi at sufficiently large horizontal radial distance from the vertical central 
axis line of the SSDi or the intake centre. In reality an air-core vortex depression is also an 
SSD for which the depth of ambient fluid above it is not sufficient to fill out the SSD alone 
(SSD is filled out by both the ambient fluid and air as explained in the study by Taştan and 
Yıldırım [14]. Therefore; Eq. (1) can be adopted for any ith SSD (call it SSDi) provided that 
Hri , hi, βi, and Ri are used in lieu of their corresponding (Hr – H0) , h, β, and R respectively as 
indicated in Fig. 3. For the profile of  SSDi  Eqs. (1) and (2) may be rewritten as; 
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Herein, Rsi* = dimensionless radius of a different kind of SSSSi that is indicated as SSSSi* (in 
the dimensionless coordinate system of Hri/hi and Ri); and ai = vertical distance of the center 
point of the SSSSi to the lower end (tip) of the SSDi (Fig. 3b). Note that Hri ; hi ; βi ; Ri ; and 
Rsi*  may change for all SSDs. Considering Eqs. (3) and (4); for the normal-intersection of the 
profiles of the SSDi and the SSSSi one  may write  
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Figure 3 - SSD(s) and relating geometric parameters 
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Eq. (8) can be solved for Hri /hi by a trial and error procedure for a chosen magnitude of      ai 
/hi  indicating that for every point on the axis of the vortex there corresponds an SSSS. It can 
be shown that Eq. (8) has only one real root within the domain of solution by constructing a 
graph of assumed values of Hri /hi with respect to computed values of Hri /hi for all possible 
ai’s. 

For simplicity it may be advised to study the case of  ai = 0 first. For  ai = 0 the SSSSi has the 
same center as the lower end (tip) for which Eqs. (5)-(8) give 

Hri /hi = 0.6033; or Hri = 0.6033hi ; and Ri = 0.8343; or r = 0.8343rmi              (9) 

Now, one can go to Fig. 4a (with ai = 0; Hri = 0.6033hi ; and r = 0.8343rmi that correspond 
the point B in Fig. 4a) and write the equation for a circle (whose revolution gives an SSSi) of 
radius of Rsi as follows: 

222
siri RHr   (10a) 

     222 6033.08343.0 siimi Rhr constant (10b) 

22 912.1constant mii rh   (10c) 

 
Figure 4 - SSDi for the case of ai = 0 

 

Considering the air-core vortex depression, the test results of Sun and Liu [8] indicate that rm  
is a constant for the vertical distance from the top level of SSDi less than or equal to 0.7Sc (or 
Hr/Sc = 1 – 0.7 = 0.3).  

Noting that the air-core vortex depression is also one of the SSDs; for an SSDi Eq. (9) 
indicates that for ai = 0, the vertical distance of the point B (Fig. 4a) from the top level of 
SSDi is (hi – Hri)at B or,  (hi – 0.6033hi ) = 0.3967hi < 0.7hi, this infers that rmi in Eq. (10c) can 
also be taken as a constant. Thus, Eq. (10c) can be rewritten as  
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 hi
2 = a constant (11) 

One can multiply both sides of Eq. (11) by 2 and get 

2πhi
2 = constant (12) 

Equation (12) indicates that regardless of flow and geometrical conditions (including the 
profile of the intake-entrance) there exists an HSSSi of radius of hi (on upstream side of the 
tip point Ti) that has the same centre as the point Ti, and with the base normal to the central 
axis of the swirling vortex filament at point Ti as indicated in Fig. 4. 

Considering Eq. (12), the discharge, qi , towards the centre Ti of the HSSSi can be written as 

  siii Vhq 22  (13) 

where Vsi = radial velocity at the HSSSi whose magnitude depends on the flow and 
geometrical conditions. Vsi may be measured. 

Equation (13) infers that the discharge towards any point under consideration on the 
centerline of the swirling vortex filament is equal to that through the HSSSi (on upstream 
side of the point Ti) that has the same center as Ti , and the base normal to the central axis of 
the swirling vortex filament at Ti (Fig. 4). This discharge is valid for the flow on the upstream 
side of the point Ti. Note that the above conclusion is reached for  ai = 0. If similar analysis 
is done for a given ai ≠ 0  the same conclusion is to be obtained. Existence of HSSSs within 
the flow field along the path of the swirling vortex does not depend on the value of ai. 

Physically the lower ends (tips) of whole SSDs at upstream of a point on the axis of the 
swirling vortex flow-filament must one after another reach (and pass from) that point. 
Because these SSDs have their own respective HSSSs, one can draw infinite number of 
concentric HSSSs with different radii at that point as indicated in Fig. 5. This means that at 
every point along the axis of the swirling vortex flow infinite number of concentric HSSSs 
having identical discharge can be drawn. Not to make the figure crowded HSSSs at only a 
few points are presented in Fig. 5. 

As for the practice, Eq. (13) indicates that if Vsi at a given radial distance of hi to the point 
under consideration on the axis of the swirling vortex filament is measured, then the 
discharge (qi) towards that point (center of the HSSS) can be calculated. To measure the 
radial velocities, a point on the path of the swirling vortex should be chosen. Then a velocity 
meter (i.e., a pitot tube) should be radially aligned at the point that has required radial distance 
(radius of SSS) to the point under consideration.  

By means of this method one can know the magnitude of the discharge participating in the 
vortex filament (vorticity feeding-discharge) at any level along the axis of the swirling vortex 
flow-filament. 

Figure 5 indicates that HSSSs  radially shrink towards their center. As HSSSs radially shrink 
they must simultaneously rotate [due to the forces caused by non-uniformities in the ambient 
flow media, the Coriolis force, and imposed or induced circulation] about their axis (axis of 
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the SSDs). This may be the reason why the swirling vortex flow is observed to be a swirling 
filament (Fig. 1a).   

Physically it is seen that HSSSs having centers on the central axis line of the swirling vortex 
filament at upstream of the intake center M (Fig. 5) have open bases through which the fluid 
flows or escapes (evacuation of the fluid within the HSSSs occurs). The base of the  HSSS 
or SSSS having the same center and discharge as the intake has the opening of the intake 
entrance. Similar to the swirling vortex filament above the intake as indicated in Figs. 1-4, in 
reality another swirling vortex filament also exists below the intake that is not visible (not 
indicated in Figs. 1-4) since it is blocked by the vertically downward flowing intake pipe. 
Therefore, similar to the HSSSs above the intake level, one can also draw HSSSs below the 
intake level as indicated Fig. 5c. Note that spatial growth of the swirling vortex from free-
surface to the intake is not considered in this study. 

       

 
Figure 5 - HSSSs at different levels along the swirling vortex flow filament in case of a 

vertically flowing downward intake 
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In the above analysis a vertically downward perfect straight vortex flow-filament on which 
there exist no boundary blockages is considered [profiles of the SSDs are perfectly symmetric 
about their vertical axis due to which HSSSs are perfect and complete, there cannot be 
velocity vectors below the horizontal plane (on which Ti takes place) pointing Ti]. 

In practice the position, orientation and configuration of the intake-entrance, flow and 
geometrical conditions may be different, and there may exist boundary blockages on the 
profile of the SSDs due to which HSSSs may not be complete or HSSSs may be in any forms 
of SSSSs [because, there can be velocity vectors below the horizontal plane (on which Ti 
takes place)  pointing Ti ] as indicated for an inclined intake in Fig. 6.  

 
Figure 6 - HSSSs and SSDs along the swirling vortex flow filament in case of inclined 

intake(s) 
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Basing on this fact, for general purposes it may be appropriate to rewrite Eqs. (12), and (13) 
as in Eqs. (14) and (15), respectively. 

 2
isi hkA  constant  (14) 

sisii VAq   (15) 

where  Asi = the effective surface area of the ith SSSS (or SSSSi); and  k = coefficient for the 
ith SSSS (or SSSSi) under consideration.   

 

3. VERIFICATION OF EXISTENCE OF HSSSs OR SSSSs 

The test data in the study by Suerich-Gulick et al. [15] relating to the constant velocity 
contours (isovels) on upstream side of a pipe intake issuing from a dead-end wall is replicated 
in Fig. 7.  

 
Figure 7 - Comparison of the theory and the available data in the study by Suerich-Gulick 

et al. [15] 
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The clearances of the center of the intake to the dead-end wall and the bottom boundary are 
zero, and relatively small, respectively. In addition, there are two symmetric flow-disturbing 
vertical piers (with small clearance to the intake entrance) mounted on each side of the intake-
entrance. Therefore, the velocity distribution in the ambient fluid region close to the intake 
should be under large boundary-effects that are clearly observable in the measured velocity 
contours in Fig. 7. It is a typical challenging case to test the method introduced in the present 
study. In Fig. 7 there are five isovels (HSSSs or SSSSs) that are denoted by SSSS I, II, III, 
IV, and V. By choosing arbitrarily chords (applied to the test data) and their locations the 
centers of SSSSs are geometrically located. For example, two arbitrarily chosen chords of 
D1J1B1 and E1K1G1 are used and thereby the center T1 for SSSS I is found as indicated in Fig. 
7. By following the same geometrical procedure the centers T2, T3, T4, and T5 for SSSSs II, 
III, IV, and V, respectively are found. Not to make the figure crowded the chords for SSSSs 
II, III, IV, and V  are not indicated in Fig. 7. 

The line connecting the centers T1, T2, T3, T4, and T5 (Fig. 7) is the approximate profile of 
the axis line of the swirling vortex flow-filament that is very similar to the one observed by 
several researchers (i.e., Quick [16], Figs. 2-7; Anwar et al. [2], Figs. 2-3). In practice the 
centers of HSSSs or SSSSs on downstream side of the intake-entrance center M are observed 
to be on the straight extension of the swirling vortex filament-line parallel to the axis of the 
intake pipe. But, Fig. 7 indicates that the predicted centers T4 and T5  are on downstream side 
of the intake center M, and they are not exactly on the straight extension of the swirling vortex 
filament-line parallel to the inside-axis of the intake pipe. The reasons for this are as follows. 

(1) The method may not give good results for the sections of SSDs whose centers remain 
within the intake since the approximations and assumptions under which the 
equations derived earlier (basing on those by Vatistas et al. [13]; Sun and Liu [8]) 
may not be acceptable in the fluid flow section within the intake pipe. 

(2) The centers of the SSSs in Fig. 7 are found by applying geometry to the test data 
relating to the radial velocity on which boundary effects are obviously present and 
more pronounced in the flow region close to the boundaries (Fig. 7). Radial iso-
velocity contours deviate from being perfect spheres for the flow regions close to the 
solid boundaries (especially very confined intakes, i.e., intakes completely 
surrounded by very close solid boundaries). 

(3) Arbitrarily chosen chords (applied to the test data-set) and their locations to predict 
the centers of SSSSs.  

Figure 7 indicates that the agreement between method introduced in present study and the 
test data is satisfactory. The difference between the test data and the method is more 
pronounced in the flow regions close to the flow boundaries that is attributable to the effects 
of the boundaries as expected. In addition to visual comparison, to quantify the error between 
suggested method and the theory, the values of SSSS I, which has the maximum deviation 
with respect to the experimental data among the other SSSSs in Fig. 7, are used. The mean 
error is found as 4.2%. Maximum error, which is obtained at close to the solid boundaries is 
about 12%. Similar analysis can be done for other SSSSs in Fig. 7. 

Figures 5-7 indicate that if an SSSS or HSSS cuts whole flow boundaries and thereby the 
SSSS along with boundaries completely encloses entire intake-entrance, qi through the net 
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effective surface of the SSSS is the same as the intake discharge Q (qi = Q). Otherwise, qi < 
Q. 

 

4. CONCLUSIONS 

From this study, the following conclusions may be drawn. 

 The discharge towards any point on the axis of the swirling vortex flow-filament 
from the free-surface to the intake can be calculated if the radial velocity at a given 
radius is measured.  

 The flow towards the SSDs relating to the swirling vortex-filament has considerable 
effects on the radial velocity distribution within the ambient fluid flow region near 
the intake-entrance. 

 The swirling vortex flow-filament consists of infinite number of coaxial SSSSs at 
every point along the axis of the swirling vortex flow-filament. Swirling vortex 
flow-filament is the result of the concurrently shrinking of the SSSSs along the axis 
of the swirling vortex. 

 

Symbols 

Asi  : the net (effective) surface area of the ith SSSS [m2] 
a  : distance between the tip of the air-core vortex and center of the SSSS [m] 
Hr  : water surface elevation at R [m] 
H0  : elevation of the lower end or tip of the air-core vortex [m]  
h  : total depth of the air core [m] 
k  : coefficient for the ith SSSS (or SSSSi) under consideration  
qi  : discharge towards the centre point T [m3/s] 
Q  : intake discharge [m3/s] 
R  : dimensionless radius 
Rs*  : dimensionless radius of the SSSS*  
r   : horizontal radial distance from the vertical centerline of the vortex or intake entrance  
   [m] 
rm  : vortex core radius (outer limit radius of the viscous region) [m] 
S  : submergence [m]  
Sc  : critical submergence [m] 
V  : average intake-entrance velocity [m/s] 
Vsi  : radial (normal) velocity at the SSSSi [m/s] 
β  : a coefficient  
βi  : magnitude of β for SSDi  
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