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Abstract 

This paper introduces new integration methods for numerical integration problems in science and engineering 

applications. It is shown that the exact results of these integrals can be obtained by these methods with the 

use of  only 2 segments. So no additional function and integrand evaluations are required for different levels 

of computation. This situation overcomes the computational inefficiency. A new Matlab Package; 

Integral_Calculator is presented. Integral_Calculator provides a user-friendly computational platform which 

requires only 3 data entries from the user and performs the integration and give the results for any functions 

to be integrated. This package has been tested for each numerical example considered below.  
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Introduction  

The Newton-Cotes formulas are the most common techniques for numerical integration of science and 

engineering problems. Although these methods can be employed for integrating functions numerically, the 

result is attained with certain accuracy and not always convenient [5, 7, 13, 24]. For this purpose, Richardson's 

extrapolation is employed by use of two Trapezoidal rule estimates to obtain a more accurate result. 

Richardson's extrapolation is a widespread technique used for integration in many science and engineering 

problems with the help of other methods such as Crank-Nicolson and Runge-Kutta schemes in literature (see 

e.g. [2-4, 9, 11, 18- 21, 23, 27, 28] Efficient implementation of Richardson's extrapolation leads to a numerical 

integration technique, called Romberg integration. This method is iterative and can be employed to attain an 

approximate result within a preestablished error tolerance [12, 22]. Romberg integration has been used for 

many applications in science, such as optics and fuzzy functions [1, 2, 6, 15, 16, 26, 30]. It was shown that the 

error in Trapezoidal rule for Romberg integration was expressed as a series in even powers of the step size 

provided that the Taylor Series for the governing function converges for every point  in the prespecified 

interval [25].  Dutka [10] analyzed both Richardson extrapolation and Romberg integration at first in the 

literature. Alternative numerical integration method for the Romberg integration was proposed firstly by 

Youngberg [33]. Since computational algorithms for integration numerically cannot be performed without the 

aid of softwares [14, 17, 31, 32], computer programs are the indispensable part of these processes. Neither of 

the works dealt with new alternatives to Romberg integration and Richardson's  extrapolation concurrently 

with implementation of a specified software.  For these reasons, this study aims to introduce new methods, 

alternative to both Romberg integration and Richardson's extrapolation with the design of a calculator in 

Matlab. This calculator performs numerical integral computations and then present results for all methods, at 

the same time. 

2 Overview of Richardson’s extrapolation and Romberg integration 

Both  methods are explained briefly in the following subsections. 

 



MathLAB Journal Vol 5 (2020) ISSN: 2582-0389                                   http://www.purkh.com/index.php/mathlab 

93 

 2.1 Richardson's extrapolation 

Richardson's extrapolation is not only a more accurate numerical integration method than Trapezoidal rule but 

it also underlies the numerical integration technique called Romberg integration. In this technique, the integral 

                                          𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
,        𝑎, 𝑏 ∈ 𝑅,        𝑓 ∈ 𝐶𝑘[𝑎, 𝑏]                                                             (1) 

is approximated using the Composite Trapezoidal rule with step sizes ℎ𝑘 =
𝑏−𝑎

2𝑘 , here k is a nonnegative 

integer. Richardson extrapolation is employed k-1 times to previously calculated approximations in order to 

enhance the order of  accuracy as much as possible. Using Composite Trapezoidal rule with one and two 

segments, respectively, the following approximations can be computed: 

                                                                  𝐼1,1 =
(𝑏−𝑎)

2
(𝑓(𝑎) + 𝑓(𝑏))                                                                 (2a) 

                                                       𝐼2,1 =
(𝑏−𝑎)

4
(𝑓(𝑎) + 2𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏))                                                          (2b) 

If  𝑓(𝑥) has continuous derivatives of all orders on [𝑎, 𝑏]. Then Composite Trapezoidal rule for a general 

number of n segments, should satisfy the following: 

                                     ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=

ℎ

2
(𝑓(𝑎) + 2 ∑ 𝑓(𝑥𝑗)𝑛−1

𝑗=1 + 𝑓(𝑏)) + ∑ 𝐾𝑖ℎ2𝑖∞
𝑖=1                                              (3) 

ere  h=(b-a)/n, 𝑥𝑗 = 𝑎 + 𝑗ℎ and the constants {𝐾𝑖}𝑖=1
∞ depend only on the derivatives of  𝑓(𝑥). It follows that one 

can employ Richardson's extrapolation to calculate an integral numerically with a higher order of accuracy. If 

true value of the integral is represented by 𝐼, then (2a) and (2b) become 

                                                                  𝐼1,1 = 𝐼 + 𝐾1ℎ2 + 𝑂(ℎ4)                                                                    (4a) 

                                                           𝐼2,1 = 𝐼 +  𝐾1(ℎ/2)2 + 𝑂(ℎ4)                                                                   (4b) 

The system of equations can be solved for 𝐾1 and  𝐼 by neglecting the 𝑂(ℎ4) terms. Then, 𝐼 takes the following 

form: 

                                                                       𝐼 =
4

3
𝐼2,1 −

1

3
𝐼1,1                                                                             (5) 

The result in (5)  is based on accuracy  𝑂(ℎ4).  New approximate results may also be obtained by use of 

Composite Trapezoidal rule with higher orders of accuracy. 

2.2 Romberg integration 

This technique approximates the integral in (1) based on the Euler-Maclaurin asymptotic error expansion 

formula and the Richardson's extrapolation [13]. Romberg [24] has formulated the Richardson's extrapolation 

technique for automatic computations. With use of Composite Trapezoidal rule, Romberg sequence ensures 

full overlapping of the nodes of integration from one extrapolation level to another. Precisely, as the number 

of segments and order of accuracy increase,  the result of integral converges to the exact result and 

approximation improves [5, 7, 13, 24, 32]. The general formulation for Romberg integration can be expressed 

as follows [7]: 

                                                             𝐼𝑗,𝑘 ≅
4𝑘−1𝐼𝑗+1,𝑘−1

4𝑘−1−1
−

𝐼𝑗,𝑘−1

4𝑘−1−1
                                                                       (6) 
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where 𝐼𝑗+1,𝑘−1 is the more accurate result of integral and 𝐼𝑗,𝑘−1 is the less accurate result. The index k denotes 

the level of  integration, here k=1 represents the original trapezoidal rule estimates, k=2 relates to 𝑂(ℎ4), k=3 

corresponds to 𝑂(ℎ6) and so on. 

In other respects, the complexity of Romberg method is mainly expressed by the number of function 

evaluations at the nodes of integration. In this integration, from level k-1 to k, 2k  additional integrand 

evaluations are needed. In higher dimensions, this causes too many function evaluations, and this technique 

becomes computationally inefficient. This inefficiency can be prevented by the new methods proposed in the 

following section.   

3 Proposed methods 

These new methods are proposed to improve Richardson's extrapolation and Romberg integration techniques, 

respectively. Main aim is to cope with the complexity of Richardson's extrapolation and Romberg techniques 

in terms of numerous function and integrand computations. Only use of n=2 segments and ℎ2 =
ℎ1

3𝑛 are 

sufficient to attain the exact result of integral. The demonstration of these novel methods with error analysis 

are presented in the following subsection. 

3.1 Error analysis 

The estimate and error associated with a multiple-application Simpson’s rule can be denoted generally as 

                    𝐼 = 𝐼(ℎ) + 𝐸(ℎ)                                                                                              (7) 

Where 𝐼 the exact value of the integral,  𝐼(ℎ)= the approximation from an n-segment application of the 

Simpson’s rule with step size ℎ = (𝑏 − 𝑎)/𝑛  and 𝐸(ℎ) = the truncation error. If two separate estimates using 

step sizes of ℎ1 and ℎ2 are employed with the following values for the error, 

                                                          𝐼(ℎ1) + 𝐸(ℎ1) = 𝐼(ℎ2) + 𝐸(ℎ2)                                                                  (8) 

Then the error of the multiple-application Simpson’s rule is (with 𝑛 = (𝑏 − 𝑎)/ℎ ) [7] 

                                                𝐸 ≅ −
(𝑏−𝑎)

180
ℎ4𝑓̅(4)                                                                                                (9) 

Where 𝑓̅(4) is the average fourth derivative for the interval. 

If it is supposed that 𝑓̅(4) is constant regardless of step size,  (9) can be employed to designate that the ratio of 

the two errors will be  

                                                                                       
𝐸(ℎ1)

𝐸(ℎ2)
≅

ℎ1
4

ℎ2
4                                                                      (10) 

Relation (10) has the significant effect of removing the term 𝑓̅(4) from the computation. So one can obtain 

𝐸(ℎ1) approximately without knowing the average fourth derivative for the interval. 

                                                                    𝐸(ℎ1) ≅ 𝐸(ℎ2) (
ℎ1

ℎ2
)

4

                                                                      (11)       

                             Relation (11) can be inserted into (8): 

                                             𝐼(ℎ1) + 𝐸(ℎ2) (
ℎ1

ℎ2
)

4

= 𝐼(ℎ2) + 𝐸(ℎ2)                                                                     (12)  

By solving (12), 𝐸(ℎ2) becomes 
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                                                                     𝐸(ℎ2) ≅
𝐼(ℎ1)−𝐼(ℎ2)

1−(
ℎ1
ℎ2

)
4                                                                           (13) 

So, estimate of the truncation error in terms of the integral estimates and their step sizes have been  

developed. This estimate can then be put into 

                                                                          𝐼 = 𝐼(ℎ2) + 𝐸(ℎ2)                                                                     (14) 

to  obtain an improved approximation for the result of integral: 

                                                                    𝐼 ≅ 𝐼(ℎ2) +
𝐼(ℎ2)−𝐼(ℎ1)

(
ℎ1
ℎ2

)
4

−1
                                                                   (15) 

So two Simpson's rule estimates of O(h2) are combined to attain a new improved result of O(h4) and so forth. 

For the special case where the interval  is ℎ2 =
ℎ1

3𝑛  this equation takes the following form: 

                                                       𝐼 ≅ 𝐼(ℎ2) +
𝐼(ℎ2)−𝐼(ℎ1)

34𝑛−1
                                                                                 (16) 

Or, arranging (16) becomes,  

                                                     𝐼 ≅
34𝑛𝐼(ℎ2)

34𝑛−1
−

𝐼(ℎ1)

34𝑛−1
                                                                                        (17) 

The formula in (17) is the alternative to Richardson's extrapolation. Relation (17) is arranged so that one can 

perform iterative computations by use of following formula: 

                                                                     𝐼𝑗,𝑘 ≅
(34𝑛)𝑘−1𝐼𝑗+1,𝑘−1

(34𝑛)𝑘−1−1
−

𝐼𝑗,𝑘−1

(34𝑛)𝑘−1−1
                                                    (18)                                                                   

where 𝐼𝑗+1,𝑘−1 and 𝐼𝑗,𝑘−1 are the more and less accurate result of integral, respectively and 𝐼𝑗,𝑘 is the improved 

result of the integral. The index k represents the level of  integration.This is an alternative to Romberg 

integration method.  

4 Numerical examples  

Numerical results are presented from civil, mechanical engineering and other integral problems. The error 

tolerance for each example is 10-10. Two segments are employed for each example. All results are obtained by 

use of Integral_Calculator in Matlab. 

4. 1 Civil engineering 

The amount of mass transported via a pipe over a period of time can be computed as [7] 

                                             𝑀 = ∫ Q(t)c(t)dt
t2

t1
                                                                            (19) 

where M is mass (mg), t1=2 min (initial time), t2=8 min (final time) , Q(t) = 9 + 4cos2(0.4t) (flow rate, m3/min 

and  

c(t) = 5e−0.5t + 2e0.15t). 

All integration results are presented in the following table. 

Table 1.  Results for integration of civil engineering example 
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 Classical 

Richardson's 

extrapolation 

Classical 

Romberg 

method 

Proposed method 

alternative to 

Richardson's 

extrapolation 

Proposed method 

alternative to 

Romberg method 

Integrated by 

analytically 

Integration 

results 

286.5328 315.1858 322.3484 322.3484 322.3484 

4. 2 Mechanical engineering 

The distance problem of how far the parachutist has fallen after a final time tf (tf =10 min) is solved by 

performing the following integration [7]. 

                                            𝑑 =
𝑔𝑚

𝑐
∫  (1 − 𝑒−(𝑐/𝑚)𝑡)  𝑑𝑡

tf

0
                                                                       (20) 

where d is the distance in meters, c=12.5 kg/s (the drag coefficient), m=68.1 kg (mass of the parachutist) and 

𝑔=9.8 m/s2 (the gravitational constant). 

The numerical and exact integration results are exhibited in Table 2. 

Table 2.  Results for integration of mechanical engineering example 

 Classical 

Richardson's 

extrapolation 

Classical 

Romberg  

method 

Proposed method 

alternative to 

Richardson's 

extrapolation 

Proposed method 

alternative to 

Romberg method 

Integrated by 

analytically 

Integration 

results 

257.2762 283.0036 289.4351 289.4351 289.4351 

4. 3 Other integrals 

Integration results by numerically and analytically for other problems are displayed in Table 3. 

Table 3.  Results for integration of other examples 

Functions to be 

Integrated 

Result of classical 

Richardson's 

extrapolation 

 

Result of 

classical 

Romberg  

method 

 

Result of proposed 

method alternative 

to Richardson's 

extrapolation 

Result of 

proposed 

method 

alternative to 

Romberg 

method 

Exact 

result 

∫
𝑑𝑥

1+𝑥2

4

−4
 [8] 2.357000 

 

2.592700 2.651600 2.651600 2.651600 
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∫ 𝑒cos (𝑥)𝑑𝑥
2

0
 [32] 3.070500 3.377600 3.454400 3.454400 3.454400 

∫ 2cos (𝑥2)𝑑𝑥
1

0
 [32] 1.608000 1.768900 1.809000 1.809000 1.809000 

∫ 𝑥4sin21

−1
(𝜋𝑥)𝑑𝑥 

[8] 

0.1014000 0.1115400 0.1140800 0.1140800 0.1140800 

The results presented in above Tables demonstrate that exact value of the integrals can be obtained by new 

methods with only 2 segments and 10-10 error tolerance as compared to the classical Richardson's 

extrapolation, Romberg method and also the studies in literature [7, 8, 32].  

5 Matlab Package:Integral_Calculator and Implementation 

The numerical computations begin with developing an algorithm. This algorithm consists of codes for classical 

Richardson's extrapolation, Romberg integration and new alternative methods to these techniques 

simultaneously.  The algorithm is adjusted as application of Matlab package  in a selected folder. This 

application is called as Integral_Calculator. Matlab R2016a (9.0.0.341360) was used for both creation of 

Integral_Calculator and its implementation. Once, one clicks the small icon (red arrow head) shown in Fig. 1, 

then computations start. 

 

Figure 1. Screenshot of Integral_Calculator App 

After clicking this icon, an input box appears which requires lower, upper limits and function to be integrated, 

from user. Fig. 2 demonstrates the display image of input box waiting for the data entries.  
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Figure 2. Display image of input box 

User should enter these data into the corresponding fields in input box. As an illustration; the numerical data 

of the last example in Table 3 has been entered into the input box. The screenshot of this process is given in 

Fig. 3. 

 

Figure 3. Screenshot of filled input box 

Once clicking OK, the results are appeared immediately in command window. Fig. 4 indicates all inputs and 

outputs including results for each method, explicitly. 
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    Figure 4. Display of results for numerical computations 

Conclusions 

In this paper, novel alternative methods to Richardson's extrapolation and Romberg integration are presented. 

These methods can be used for any integration problem of any complicated functions in science and 

engineering applications, comfortably. Only 2 segments for computations is sufficient to attain exact value of 

the integrals by the proposed techniques. Therefore, there is no need to perform additional function and 

integrand computations. Furthermore, another important contribution of this study is to design a new Matlab 

Package namely, Integral_Calculator. This ensures a user-friendly computational platform including classical 

Richardson's extrapolation, Romberg methods and proposed methods alternatives to them, simultaneously 

with high accuracy. This package allows the user to obtain the integration results from each numerical 

integration method at the same time by entering lower, upper limits and function only.  

Data Availability (excluding Review articles) 

Romberg Integration, Richardson’s Extrapolation, New alternative algorithms to Richardson’s Extrapolation 

and Romberg Integration, Matlab Package; Integral_Calculator 
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