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M.Sc., Department of Industrial Engineering  

Supervisor: Prof. Dr. Ferda Can ÇETİNKAYA 
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This study considers a customer order scheduling (COS) problem in which each 

customer requests a variety of products (jobs) processed on a single machine. A 

sequence-independent setup for the machine is needed before processing each product. 

All products in a customer order are delivered to the customer when the processing of 

these products is completed. The completion time of the product processed as the last 

product in a customer order defines the completion time of the customer order. We 

aim to find the best schedule of the customer orders and the products to minimize the 

total completion time of the customer orders. We have studied this customer order 

scheduling problem with order-based and job-based processing approaches. We have 

developed two mixed-integer linear programming models, which are capable of 

solving the small and medium-sized problem instances optimally for the job-based 

processing approach, which has not been studied in the literature, and a heuristic 

algorithm for large-sized problem instances. The results of our empirical study show 

that our tabu-search based heuristic algorithm gives optimal or near-optimal solutions 

in a very short time. In addition, we have compared the order-based, and job-based 

processing approaches for both setup and no-setup cases. 

 

Keywords: Customer order scheduling; order-based processing, job-based 

processing, total completion time; mixed integer linear programming; tabu search
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ÖZ 

 

 

 

MÜŞTERİ SİPARİŞLERİNİ ÇİZELGELEME PROBLEMİ İÇİN 

İKİ İŞLEME YAKLAŞIMININ KARŞILAŞTIRILMASI  

 

 

 
YELOĞLU, Pınar 

 

Yüksek Lisans, Endüstri Mühendisliği  

Anabilim Dalı Tez Yöneticisi: Prof. Dr. Ferda Can ÇETİNKAYA  

Şubat 2020, 83 sayfa 

 

Bu çalışma, her bir müşterinin tek bir makinede işlenen çeşitli ürünleri (işleri) talep 

ettiği siparişlerin çizelgelenmesi problemini ele almaktadır. Her bir ürünü işlemeden 

önce makine için sıra-bağımsız bir hazırlık (kurulum) gereklidir. Bir müşterinin 

siparişindeki tüm ürünler, bu ürünlerin işlenmesi tamamlandığında müşteriye teslim 

edilir. Bir müşteri siparişinde son ürün olarak işlenmiş ürünün tamamlanma süresi 

müşteri siparişinin tamamlanma süresini belirler. Amacımız, müşteri siparişlerinin 

toplam tamamlanma süresini en aza indirmek için müşteri siparişleri ve ürünlerinin en 

iyi çizelgelemesini belirlemektir. Bu müşteri siparişlerini çizelgeleme problemini 

sipariş bazlı ve ürün bazlı işleme yaklaşımları ile çalıştık. Literatürde çalışılmamış olan 

ürün bazlı işlem yaklaşımı için küçük ve orta ölçekli problemleri en iyi şekilde 

çözebilen iki tane karışık tamsayılı doğrusal programlama modeli ile büyük ölçekli 

problemler için bir tabu arama esaslı sezgisel bir algoritma geliştirdik. Ayrıca, hazırlık 

sürelerinin olduğu ve olmadığı durumlar için sipariş ve iş bazlı işleme yaklaşımlarını 

karşılaştırdık. 

Anahtar Kelimeler: Müşteri siparişlerini çizelgeleme; sipariş bazlı işleme, iş bazlı 

işleme, toplam tamamlanma süresi; karışık tamsayılı doğrusal programlama; tabu 

arama
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CHAPTER 1 

INTRODUCTION 

 

Most of the existing research on classical scheduling problems, except the customer 

order scheduling (COS) problem, assumes that there is a single customer that orders 

multiple different products (jobs), or there are multiple orders, each of which consists 

of only a single product (job). However, in a real-world make-to-order manufacturing 

system, there are multiple customer orders, in which each order is a collection of 

several products (jobs) that are often produced in a job lot consisting of many customer 

orders demanding the same product. In such a system, an order is shipped as a group 

to the customer, but only on the completion time of the last job of that order (Liu, 

2009). In the COS, the problem is to satisfy the demand of several customers, who 

give orders with a set of several products (jobs) having different quantities, by 

optimizing the scheduling performance (objective).  

 

In manufacturing environments, there are two extreme processing approaches for 

producing the products: the order-based processing (OBP), and the job-based 

processing (JBP). In the order-based processing, which is most frequently used in 

previous COS studies in the literature, all different products in a customer order form 

an order lot (group) and all products in this order lot are processed successively without 

intermingled with products of other customer orders (Yang, 2011). In other words, if 

the processing of a product in a customer order starts on a machine, then all different 

products within that customer order should be processed before switching the machine 

to process the products of another customer order. This processing approach follows 

the so-called group technology (GT) assumption. Decisions in the order-based 

processing are made to simultaneously determine the sequence of the customer order 

lots and the sequence of products (jobs) in each customer order lot. However, in job-

based processing, the same products from different customer orders form a product lot 
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and are processed successively without intermingled with other products. In other 

words, all customer orders for a product should be processed before switching the 

machine to process the customer orders for another product. Decisions in the job-based 

processing are made to simultaneously determine the sequence of the products (jobs) 

and the sequence of customer orders in each job. While the order-based processing 

aims to manage the customer orders on the shop floor easily, the job-based processing 

aims to reduce the negative effect of the job setups, especially when setup times 

required before processing the products are significantly large.  

 

The optimal solution of the COS problem with order-based processing in a single-

machine environment is easy and polynomial-time solvable, as shown in Section 2.2 

when the scheduling performance is to minimize the total completion time, which is 

the sum of the completion times of the customer orders and is equivalent to minimizing 

total work-in-process inventory focusing on increasing the customer satisfaction. For 

the same scheduling performance, the COS problem with job-based processing is, 

however, not as easy as the problem with order-based processing. Thus, in our study, 

we will focus on the job-based processing problem, in which the aim is to determine a 

schedule that gives both the sequence of products (jobs) and the sequence of customer 

orders in each job sequence to minimize the total completion time of the customer 

orders. Furthermore, it is clear that the objective function values of the COS problem 

with these two extreme processing approaches are expected to be different so that, in 

our study, the order-based and job-based processing approaches for a single machine 

with both setup and no-setup cases will also be compared.  

 

There are several contributions of our study. First, to the best of our knowledge, no 

previous research has considered our particular COS problem with the job-based 

processing for a single machine to minimize the total completion time, and we aim to 

contribute to the customer order literature in this direction. Second, we formulate a 

mixed-integer linear programming (MILP) model to solve the COS problem under 

consideration optimally. Third, our proposed heuristic algorithm for solving our COS 

problem is easy to implement for finding optimal and near-optimal solutions for 

medium and large-sized problem instances in which a solution cannot be obtained by 

solving the MILP model. Finally, we compare the order-based and job-based 

processing approaches.  
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The rest of this thesis is organized as follows. Chapter 2 defines the customer order 

scheduling problems with the order-based and job-based processing on a single-

machine in detail and presents some structural properties of the optimal schedules for 

both problems. Chapter 3 provides a brief review of the works most relevant to our 

study on customer order scheduling. An MILP model and a tabu-search based heuristic 

algorithm for solving the COS problem with job-based processing are presented in 

Chapter 4. We give our empirical studies to evaluate the performances of the MILP 

model and the heuristic algorithm, as well as the comparison of the order-based and 

job-based processing approaches, in Chapter 5. Finally, in Chapter 6, we discuss the 

main findings of our study and several directions for future research. 
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CHAPTER 2 

PROBLEM DEFINITION AND PRELIMINARY RESULTS 

 

In this chapter, we first define our order-based and job-based processing problems in 

a joint statement in detail. Then, we present a numerical example to illustrate two 

extreme processing approaches, and finally establish some preliminary results that 

provide the basis for our analysis. 

 

2.1. Problem Definition 

For a planning period, consider a scheduling problem of 𝐾 customers (𝑖 = 1,2, … , 𝐾) 

in which each customer 𝑖 gives an order 𝑂𝑖 with one or more products (jobs) from a 

set of 𝑁 jobs. Each customer order 𝑂𝑖 has a demand for 𝐷𝑖,𝑗 units of identical items of 

product 𝑗. A sequence-independent setup with 𝑠𝑗 time units is needed to set up the 

machine before processing the product 𝑗. Sequence-independent setup means that the 

setup time is dependent only on the product to be processed next and is independent 

of the previous product. Each job has only one operation to be processed by a single 

machine, and the unit-processing time of the product 𝑗 on the machine is  𝑝𝑗 time units. 

All products (jobs) ordered by the same customer must be processed consecutively if 

the order-based processing approach is used. However, when the job-based processing 

approach is used, all customer orders for the same product must be processed 

consecutively. The following additional assumptions will be considered in describing 

our problem: 

 All customer orders are available for processing at the same time, say time 0. 

 The machine is available continuously from time zero onwards, with no 

breakdowns or maintenance delays, to process the products. 

 The setup cannot be performed while the machine is processing a job. 

 The machine can process, at most, one job at a time. 
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 No precedence relations among the jobs exist. 

 No priorities among the customers exist. 

 Job processing cannot be interrupted; i.e., no preemption is allowed. 

 All parameters are known with certainty and not subject to any change; i.e., the 

scheduling problem is deterministic and static. 

 

A completed product within a customer order has to wait until all finished products are 

being combined with other products belonging to the same customer order and shipped 

as a complete order. That is, each order is delivered to the customer when the 

processing of all products within that customer order is completed. Thus, the 

completion time of the product processed as the last product in a customer order 

defines the completion time of the customer order. Our goal is to find: 

 a schedule with a sequence of customer orders and the sequence of jobs in each 

customer order when order-based processing approach is used, and  

 a schedule with a sequence of the jobs and the sequence of the customer orders 

in each job when job-based processing approach is used, 

so that the total completion time of the customer orders is minimized to increase the 

customer satisfaction in both processing approaches. 

 

The order-based processing approach can be investigated in two forms:  

 “Order-based processing without setup saving” in which setup time is required 

for each transition between products (jobs) while processing customer orders 

successively on a machine, and  

 “Order-based processing with setup saving” in which setup times are 

eliminated between products (jobs) while processing customer orders 

successively on a machine. 

 

2.2. An Illustrative Example 

Before we proceed with our analysis, it seems appropriate to illustrate two extreme 

processing approaches by a numerical example. Consider a simple instance of the 

problem in which there are three customer orders and four products (jobs). Each 

customer gives order with a set of several products (jobs) having setup and unit 
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processing times, as in Table 1. For example, Customer 1 gives an order with 10, 5, 

and 20 units of Products 2, 3, and 4, respectively.  

 

                   Table 1 Customer orders, setup times, and unit-processing times 

 

Jobs 

(Products)  

Demand (in units) of 

the customer orders Setup 

time 

Unit-processing 

time 
𝑂1 𝑂2 𝑂3 

𝐽1 - 5 15 10 1 

𝐽2 10 - - 10 4 

𝐽3 5 15 5 10 2 

𝐽4 20 - 15 10 1 

In Figures 1(a) and 1(b), the optimal schedules are illustrated for the order-based 

processing approach when there is no setup saving and a setup saving, respectively. In 

Figure 1(c), the optimal schedule for the job-based processing approach is given, and 

the setup and processing times are illustrated by the gray and blank blocks, 

respectively.  

 

 

 

(a) 

 

 

 

 

 

(b) 

 

  

 

(c) 

 

Figure 1 Gantt chart for the example problem: (a) with order-based processing 

having no setup savings; (b) with order-based processing having setup savings; and 

(c) with job-based processing 
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The optimal sequence of the customer orders is 𝑂2 − 𝑂3 − 𝑂1, in which the customer 

orders 1, 2, and 3 are completed at 225, 55, and 125 time units, respectively, and the 

total completion time of the customer orders is 55 + 125 + 225 = 405 time units. 

However, if we allow processing common jobs successively when switching over 

customer orders on a machine, the total completion time is decreased due to setup-time 

savings of jobs. The optimal sequence of the customer orders is 𝑂2 − 𝑂3 − 𝑂1, in 

which the customer orders 1, 2, and 3 are completed at 205, 55, and 115 time units, 

respectively, and the total completion time is reduced to 55 + 115 + 205 = 375 time 

units.  

On the other hand, when we solve the problem with the job-based processing approach, 

the optimal job sequence is 𝐽1 − 𝐽3 − 𝐽4 − 𝐽2, in which the customer orders 1, 2, and 3 

are completed at 185, 70, and 115 time units, respectively, and the total completion 

time of the customer orders is 185 + 70 + 115 = 370 time units. 

 

2.3. Preliminary Results 

We now give some definitions and theorems to investigate the complexities of the 

problems with different processing approaches, and derive some structural properties 

of the optimal solutions for these problems.  

Definition 1. Let 𝑃𝐽𝐵𝑃, 𝑃𝑂𝐵𝑃 and 𝑃𝑂𝐵𝑃
′  denote the problems with job-based processing, 

order-based processing with setup savings, and order-based processing without setup 

savings, respectively.    

Definition 2. Total Time (TT) of a customer order is the sum of the setup, if any, and 

processing times of all products (jobs) in this customer order. 

Definition 3. The Shortest Total Time (STT) sequence is a sequence in which customer 

orders are sequenced in non-decreasing order of their total time (TT). 

Since there are no restrictions that delay setups, jobs, and customer orders, we have 

the following result. 
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Lemma 1. For all problems 𝑃𝐽𝐵𝑃, 𝑃𝑂𝐵𝑃 and 𝑃𝑂𝐵𝑃
′ , there exists an optimal schedule in 

which the machine has no idle time; that is, the machine is busy for either processing  

a customer order of a job or being set up.  

The optimal schedule for problem 𝑃𝑂𝐵𝑃
′  is given by the following theorem. 

Theorem 1. The Shortest Total Time (STT) sequence gives the optimal schedule for 

problem 𝑃𝑂𝐵𝑃
′ . 

Proof. It is clear that a sequence characterized by a string-based version of STT 

becomes optimal when each customer order may be treated as a pseudo-string of jobs, 

as it is given by Pinedo (2008).   

Remark 1. It is obvious that the minimum total completion time of the problem 𝑃𝑂𝐵𝑃 

is always less than or equal to the minimum total completion time of the problem 𝑃𝑂𝐵𝑃
′ . 

Furthermore, the problem 𝑃𝑂𝐵𝑃, when there is no-setup time, turns into the 

problem 𝑃𝑂𝐵𝑃
′ , which is optimally solved by Theorem 1.  

The relevant definitions and theorems for the optimal solution of the problem 𝑃𝑂𝐵𝑃 

can be seen in Akkocaoğlu (2014), and the mathematical model for solving the 

problem 𝑃𝑂𝐵𝑃 is given in Appendix A.  

Remark 2. When each customer gives an order consisting of only one product 

different from those ordered by the other customers, we observe that the problem 𝑃𝐽𝐵𝑃 

reduces to the scheduling problem of multiple products (jobs) to minimize the total 

completion time of the customer orders, which is equivalent to the sum of the job 

completion times. This reduced problem is equivalent to the classical single-machine 

problem  1/ ∑ 𝐶𝑗 in which there are multiple jobs. In this reduced problem, the STT 

rule minimizes the total completion time of the customer orders. On the other hand, 

when there is a single customer order, as an extreme case, with multiple products, we 

observe that the problem 𝑃𝐽𝐵𝑃 reduces to the scheduling problem of multiple products 

(jobs) to minimize the maximum completion time (makespan) of the jobs in that 

customer order. In this reduced problem, the makespan minimization becomes trivial, 

and the arbitrary sequence of the products (jobs) is the optimal solution. Therefore, to 

investigate the complexity of the problem 𝑃𝐽𝐵𝑃, we assume that the number of 
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customer orders is more than one, and at least one of the customers gives an order with 

more than one product (job) from a set of several jobs. 

Definition 4. The Smallest Demand (SD) sequence is a sequence in which customer 

orders of a job are sequenced in non-decreasing order of their demand for this job. 

The following lemma describes the sequence for the customer orders of the job in the 

last position of the optimal schedule for the problem 𝑃𝐽𝐵𝑃. 

Lemma 2. For the problem 𝑃𝐽𝐵𝑃, there exists an optimal schedule, in which all 

customer orders of the job in the last position of the job sequence are processed by the 

SD rule. 

Proof Note that the total completion time of the customer orders having no demand 

for the product (job) processed in the last position of the job sequence does not depend 

on the sequence of the customer orders in the job processed as the last in the job 

sequence. Thus, the problem of finding the sequence of the customer orders of the job 

in the last position of the job sequence can be considered as the single-job case, which 

is equivalent to the classical single-machine scheduling problem 1/ ∑ 𝐶𝑗. Smith (1956) 

showed that processing the jobs in the shortest processing time (SPT) rule minimizes 

the total completion time for the basic single-machine problem in which there are 

multiple jobs. In our problem, all customer orders for the last job in the job sequence 

can be thought of as the jobs in the classical single-machine scheduling problem, and 

they should be sequenced by the SD rule.   

The following theorem gives the optimal sequence of the customer orders in each job 

when a product (job) sequence is given for the problem 𝑃𝐽𝐵𝑃. 

Theorem 2. For a given product (job) sequence for the problem 𝑃𝐽𝐵𝑃, there is an 

optimal sequence of the customer orders in each job with the following properties: 

(a) In each job, the customer orders completed with this job precede all the customer 

orders completed with the succeeding jobs, as illustrated in Figure 2. 

(b) In each job, the set of customer orders completed with this job is scheduled in SD 

sequence, whereas the set of customer orders completed with the succeeding jobs 

is sequenced in any order. 
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Proof. The proof of the first part is straightforward. Suppose that a customer order 

completed with the current job is preceded by a customer order completed with the 

succeeding job. The quality of the schedule does not decrease by moving this customer 

order completed with the succeeding job to the end of the sequence of customer orders 

in the current job and shifting forward all the customer orders currently succeeding it. 

The repetition of this argument shows the correctness of the first property. 

The proof of the second property follows from the result by Smith (1956), who showed 

that processing the jobs with SPT rule minimizes the total completion time in a single-

machine scheduling problem 1/ ∑ 𝐶𝑗. Starting from the last minus one position of the 

job sequence, repetitive use of Lemma 2 in the job shows the correctness of the second 

property.   

 

 

 

 

 

 

 

 

 

Based on Theorem 2, the algorithm SCO below gives the optimal sequence of the 

customer orders in each job when a job sequence is given for the problem 𝑃𝐽𝐵𝑃. 

 

 

 

 

 

 

C C C C N

C 

.... N N .... .... 

Current Job Succeeding Job Preceding Job 

.... 

C : Customer order completed in the current job 

 
N : Customer order completed in the succeeding job 

 

Figure 2 Positions of the customer orders in a job 
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Algorithm SCO 

Step 1  For the given job sequence, generate the initial sequence of the customer orders 

in each job by sorting the customer orders of each job in non-descending order 

of their demand for this job. 

Step 2  a Set 𝑙 = 𝑁 − 1.  

 b Let the job in position 𝑙 of the given job sequence as the current job.  

 c Starting from the customer order in the first position of the customer orders 

sequence in the current job, check whether the customer order will be 

completed in the succeeding jobs. If the answer is yes, then sent this 

customer order to the last position of the customer orders in the current job; 

otherwise, keep this customer order in its current position. Repeat this step 

for all customer orders in the current job. 

 d Set 𝑙 = 𝑙 − 1. If 𝑙 > 0, then go to Step 2b; otherwise, stop. 
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CHAPTER 3 

 

 

LITERATURE REVIEW 

 

 

 

Within the context of scheduling, a customer order and a product ordered by a 

customer in the COS problem may correspond to a group and a job in the group, 

respectively, in the Group Scheduling (GS) problem. Thus, the COS and GS are two 

closely related problems, and the problems under study fall in the intersection of these 

two main areas of research in the literature of scheduling.  

 

In this chapter, we provide a brief overview of the COS and GS studies with a focus 

on the single-machine problems to facilitate the proper positioning of our study in the 

literature.  

 

3.1. Customer Order Scheduling 

 

Although the concept of customer order scheduling was first introduced nearly three 

decades ago by Julien and Magazine (1990), Ahmadi and Bagchi (1990), COS 

problems are scarce in the literature. Julien and Magazine (1990) considered multiple 

customer orders containing several products (jobs) processed on a single machine with 

a job-dependent setup time between two different types of jobs. They provided a 

dynamic programming algorithm for minimizing the total completion time of orders 

when there exist only two types of jobs, and the batch processing order is fixed. 

Subsequently, Bagchi et al. (1994) considered the COS problem on a single machine 

in which they aimed to determine the due dates of the customer orders and to schedule 

all jobs to minimize penalty function. Other early research efforts for COS problems 

of the single machine case are carried out by Baker (1988), Coffman et al. (1989), and 

Vickson et al. (1993). For more recent studies, Erel and Ghosh (2007) considered a 

single machine COS model in which orders consisted of various quantities of products 

coming from different families. Family dependent setup time is incurred between 
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different families of products. They discussed the complexity of the problem and 

proposed a dynamic programming algorithm for solving the problem. 

 

One of the other recent studies carried out by Hazır et al. (2008) investigated the COS 

problem on a single facility, which aimed to minimize the average customer order flow 

time, and they proposed four metaheuristics: simulated annealing, genetic algorithm, 

tabu search, and ant colony, respectively. Then, they evaluated the performance of 

these heuristics.  

 

As we can see from the previous studies, there are several variants for the COS related 

problems under different scheduling criteria such as maximum completion time 

(makespan), total completion time, and maximum lateness, and under different 

machine environments such as parallel machines and job shop environments. 

However, COS problems for the single machine case are quite a few in the literature. 

We review the most related and recent works done in the remainder of this section. 

 

Yang (2017) addresses a similar COS problem on a single machine of which the lot 

description is considered as job in our study. Orders are indivisible, and each order has 

to be processed on the same lot. He provided the complexity of the problem, a binary 

integer programming model, and four efficient heuristics to minimize the makespan 

and the total completion time objectives, respectively. The main difference between 

the problem studied by Yang (2017) and the one studied in this thesis is the processing 

approach. He assumed that all orders in the same lot have the same processing times 

and same completion times. Furthermore, each lot has the capacity, and there are no 

setup times between different lots in his study, whereas our study tackles sequence-

independent setup times that exist between different products (jobs).   

 

The study that has similar characteristics to our problem belongs to Akkocaoğlu (2014) 

which considers a COS problem with order-based processing approach, and there is a 

sequence-independent setup time between jobs in a customer order. It aims to avoid 

frequent product (job) switchovers, which aims to minimize the makespan and the total 

completion time. Hence, it is accomplished by combining the first job of a customer 

order with the last job of the immediately preceding customer order if these jobs are 

the same. 



14  

There is also one more recent study, namely by Yozgat (2018), which considers the 

job-based processing approach for the two-machine flow shop environment to find a 

sequence of the job lots as well as the sublots (customer orders) in each job, thereby 

minimizing the total completion time of the customer orders. 

 

3.2. Group Scheduling   

 

In the past two decades, the job grouping idea has received considerable attention. 

Family scheduling and group technology are prevalent aspects of recent scheduling 

problems. The main idea of these approaches is classifying the jobs that share similar 

properties into the same groups or families, which helps to improve the efficiency of 

operations and save time. The studies that incorporate benefits from job grouping, the 

reader is referred to the survey papers done by Webster and Baker (1995), Potts and 

Kovalyov (2000), Allahverdi et al. (2015), and Neufeld et al. (2016). 

 

Group scheduling problems date back to the pioneering work of Gupta (1988).  He 

studied a single-machine scheduling problem where jobs are divided into diverse 

classes of jobs, and setup time is required between different classes. A heuristic 

algorithm is proposed to minimize mean flow time. Similarly, Gupta et al. (1997) 

extended the scheduling problem under two different objective criteria: minimization 

of makespan and total carrying costs of the customer orders, respectively. Edwin et al. 

(1996) also provided a good framework for the problem of grouping jobs. In their 

study, jobs are classified into several groups, and the jobs within the same group 

processed contiguously. Sequence-independent setup time is defined. A schedule is 

determined by a sequence of the groups and a sequence of the jobs in each group. A 

polynomial-time algorithm is proposed to minimize maximum cost and total weighted 

completion time. 

 

Another well-defined study for grouping jobs on a single machine is carried out by 

Liao and Chuang (1996). The various jobs of the customer orders are clustered into 

several groups, and setup time between different groups is required to process on a 

machine. Branch and bound algorithms are proposed to minimize the two objective 

criteria: number of tardy orders and the maximum tardiness, respectively. Gerodimos 

et al. (1999) addressed a similar problem of family scheduling model in which jobs 
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consist of multiple operations that belong to different families. Their study covered 

three objective criteria: the maximum lateness, the weighted number of late jobs, and 

the sum of job completion times, respectively. Karabati and Akkan (2006) presented a 

branch and bound algorithm for minimizing the total completion time in a single-

machine where jobs can be grouped into families, and a sequence-dependent family 

setup is incurred if the sequence requires a switch from a job in a particular family to 

a job in a different family. Wu and Lee (2006) focused on the same problem and 

determined total setup time and the total earliness as measures of performance for their 

problem. Gupta and Chantaravarapan (2008) considered the group scheduling problem 

with a sequence-independent setup time between families of jobs. A mixed-integer 

linear programming model and a simulated annealing algorithm are developed to 

minimize total tardiness. 

 

On the other hand, job grouping problems are prevalent in the field of process 

industries and electronics manufacturing. One of the studies belongs to Sabouni and 

Logendran (2013) that considered a single machine group scheduling problem in the 

PCB manufacturing environment with carryover sequence-dependent setup times, and 

they proposed a branch-and-bound algorithm to minimize the makespan.  

  

Several recent studies introduce new concepts of job deteriorating and learning effects 

into the group scheduling problems. We reviewed some of the them which are the most 

relevant to our study. One of the studies, which is done by Wang et al. (2012), 

considered a single machine problem under makespan minimization with the group 

technology assumption and the deterioration effect of jobs. Fixed group setup times 

and ready times of the jobs are assumed in this problem. In addition, the problem 

studied by He and Sun (2012) considered a single machine group scheduling with 

deterioration without ready times to minimize the total completion time. They showed 

that their problem could be polynomially solvable only under some conditions. In the 

case of jointly compressible setup and processing times, a polynomial-time algorithm 

to find the optimal solution to minimize the total job completion time on a single 

machine is presented in Ng et al. (2004). 

 

The concepts of group technology and time-dependent processing times are also 

introduced in the study of Wang and Wang (2014). They proved that the problem is 
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solvable in polynomial-time and attempted to minimize the makespan when ready 

times of the jobs are available. The reader can find thorough surveys on related works 

that are mentioned in the study of Wang and Wang (2014). Moreover, He and Sun 

(2015) similarly studied the problem with deterioration and learning effect with the 

group technology assumption. They showed that the total completion time 

minimization could be solved in polynomial time. More recently, Liu et al. (2019) 

addressed a single-machine group scheduling problem with deterioration effect and 

job-ready times. An efficient heuristic and two exact algorithms are developed to 

minimize the makespan objective. Their study also covers the related works done in 

this area so that the reader can refer to the study of Liu et al. (2019) for the 

comprehensive review. 

 

Apart from the above studies, single machine batch delivery problems also resemble 

the problem undertaken in this thesis. Batch delivery, especially in a single machine 

case, was first introduced by Santos and Magazine (1985). Mazdeh et al. (2007) 

adopted the concept of batch delivery on a single machine and aimed to minimize 

maximum tardiness and delivery costs.  

 

There are several variants of studies in the scheduling literature that deal with customer 

order scheduling and group scheduling problems. However, to the best of our 

knowledge, the job-based processing approach for the single machine case is 

considered in our study for the first time. 
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CHAPTER 4 

 

 

PROPOSED SOLUTION APPROACHES: MIXED INTEGER 

PROGRAMMING MODELS AND A TABU-SEARCH BASED HEURISTIC 

ALGORITHM 

 

 

 

In this chapter, our two solution approaches, which are the mathematical programming 

model and the tabu-search based heuristic algorithm, for the job-based processing 

problem are explained in detail. 

4.1. Mixed Integer Programming Models 

In this section, we present two mixed-integer linear programming (MILP) models to 

solve the problem 𝑃𝐽𝐵𝑃 optimally. Our models provide the optimal schedule with the 

job sequence (i.e., the sequence of the products) and the sequence of the customer 

orders within each job to minimize the total completion time of the customer orders.  

 

For developing our models, we first introduce the following parameters, indices and 

sets, which are commonly used in both MILP models. 

 

Parameters, indices and sets 

𝐾 Number of customer orders. 

𝑜, 𝑚, 𝑢 Indices for customer orders (𝑜, 𝑚, 𝑢 = 1,2, … , 𝐾). 

𝑁 Number of jobs. 

𝑗, 𝑘, 𝑙 Indices for jobs (𝑗, 𝑘, 𝑙 = 1,2, … , 𝑁). 

𝐷𝑜,𝑗 Demand (number of identical items) for job 𝑗 in customer order 𝑜. 

𝑆𝐶𝑗 Set of customer orders having demand for job 𝑗.  

𝐿𝑗 Lot size (total demand) for job 𝑗, where 𝐿𝑗 = ∑ 𝐷𝑜,𝑗𝑜∈𝑆𝐶𝑗
. 

𝑡𝑗 Unit processing time for job 𝑗. 

𝑠𝑗 Setup time for job 𝑗. 
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4.1.1. The First Model (MILP-1) 

In this first model, we use the sequence-position variables. Our additional parameters 

indices and sets are as follows: 

 

Additional parameters and indices 

𝐻𝑜,𝑗 1, if customer order 𝑜 has demand for job 𝑗; 0, otherwise. 

‖𝑆𝐶𝑗‖ Cardinality of the set of customer orders having demand for job 𝑗. That is, the 

number of customer orders having demand for job 𝑗.  

𝑄 Sufficiently large positive number. 

𝑝 Index for positions in the job sequence (𝑝 = 1,2, … , 𝑁). 

𝑟 Index for positions in the sequence of customer orders having demand for  job 

𝑗 (𝑟 = 1,2, … , ‖𝑆𝐶𝑗‖). 

 

Decision variables 

𝑌𝑗,𝑝 =  {
1      if job 𝑗 is assigned to position 𝑝 of the job sequence
0     otherwise                                                                               

 

𝑋𝑜,𝑗,𝑝,𝑟 =  {
1    if customer order 𝑜 in job 𝑗 at position 𝑝 of the job sequence is       

assigned to position 𝑟 of the customer orders sequence in job 𝑗
0    otherwise                                                                                                           

 

𝐶𝑜,𝑗,𝑝,𝑟 Completion time of customer order 𝑜 assigned to position 𝑟 of the customer 

orders sequence in job 𝑗 at position 𝑝 of the job sequence. 

𝐶𝑇𝑗,𝑝 Completion time of job 𝑗 assigned to position 𝑝 of the job sequence. 

𝑇𝑜 Completion time of the customer order 𝑜. 

 

The MILP-1 model for solving the problem 𝑃𝐽𝐵𝑃 can be modeled as follows: 

Minimize ∑ 𝑇𝑜
𝐾
𝑜=1   (1) 

Subject to ∑ 𝑌𝑗,𝑝
𝑁
𝑗=1 = 1  for 𝑝 = 1,2, … , 𝑁  (2) 

 ∑ 𝑌𝑗,𝑝
𝑁
𝑝=1 = 1  for 𝑗 = 1,2, … , 𝑁  (3) 

 ∑ 𝐻𝑜,𝑗
𝐾
𝑜=1 𝑋𝑜,𝑗,𝑝,𝑟 = 𝑌𝑗,𝑝  for 𝑗, 𝑝 = 1,2, … , 𝑁; 𝑟 = 1,2, … , ‖𝑆𝐶𝑗‖     (4) 

 ∑ 𝐻𝑜,𝑗
‖𝑆𝐶𝑗‖

𝑟=1 𝑋𝑜,𝑗,𝑝,𝑟 = 𝑌𝑗,𝑝  for 𝑗, 𝑝 = 1,2, … , 𝑁; 𝑜 = 1,2, … , 𝐾        (5) 

 𝐶𝑜,𝑗,1,1 ≥ 𝑠𝑗 + 𝑡𝑗𝐷𝑜,𝑗𝑋𝑜,𝑗,1,1 − 𝑄(1 − 𝑋𝑜,𝑗,1,1)   

  for 𝑜 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝑁 (6) 

 𝐶𝑜,𝑗,𝑝,1 ≥ 𝐶𝑇𝑘,𝑝−1 + 𝑠𝑗 + 𝑡𝑗𝐷𝑜,𝑗𝑋𝑜,𝑗,𝑝,1 − 𝑄(1 − 𝑋𝑜,𝑗,𝑝,1)   
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                                  for 𝑜 = 1,2, … , 𝐾; 𝑗, 𝑘 = 1,2, … , 𝑁;  

       𝑝 = 2,3, … , 𝑁; 𝑗 ≠ 𝑙 (7) 

 𝐶𝑜,𝑗,𝑝,𝑟 ≥ 𝐶𝑚,𝑗,𝑝,𝑟−1 + 𝑡𝑗𝐷𝑜,𝑗𝑋𝑜,𝑗,𝑝,𝑟 − 𝑄(1 − 𝑋𝑜,𝑗,𝑝,𝑟)   

                                  for 𝑜, 𝑚 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝑁;  

       𝑝 = 2,3, … , 𝑁; 𝑟 = 2,3, … , ‖𝑆𝐶𝑗‖; 

       𝑚 ≠ 𝑜 (8) 

 𝐶𝑇𝑗,𝑝 ≥ 𝐶𝑜,𝑗,𝑝,𝑟 − 𝑄(1 − 𝑌𝑗,𝑝)   

  for 𝑜 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝑁;  

        𝑝 = 2,3, … , 𝑁; 𝑟 = 1,2, … , ‖𝑆𝐶𝑗‖ (9) 

 𝑇𝑜 ≥ 𝐶𝑜,𝑗,𝑝,𝑟  for 𝑜 = 1,2, … , 𝐾; 𝑗, 𝑝 = 1,2, … , 𝑁;  

        𝑟 = 1,2, … , ‖𝑆𝐶𝑗‖ (10) 

 𝐶𝑜,𝑗,𝑝,𝑟 ,  𝐶𝑇𝑗,𝑝,  𝑇𝑜 ≥ 0   for ∀ 𝑜, 𝑗, 𝑝, 𝑟  (11) 

 𝑋𝑜,𝑗,𝑝,𝑟 , 𝑌𝑗,𝑝 ∈ {0,1}   for  ∀ 𝑜, 𝑗, 𝑝, 𝑟  (12) 

 

In the above MILP-1 model, the objective in (1) is to minimize the total completion 

time of customer orders. Constraint sets (2) and (3) ensure that each position in the 

sequence of jobs is occupied by one job only, and each job is assigned to one position 

only, respectively. Constraint set (4) guarantees that each position in the sequence of 

customer orders in a job is occupied by one customer order only. Constraint set (5) 

ensures that each customer order in a job is assigned to a position in the sequence of 

customer orders in this job. Constraint sets (6) and (7) determines the completion time 

of the customer order assigned to the first position of customer orders in the job 

assigned to the first and remaining positions of the job sequence, respectively. 

Constraint set (8) defines the completion times of the customer orders assigned to the 

remaining positions of the sequence of customer orders in a job. Constraint set (9) 

determines the completion time of each job in each position of the job sequence. 

Constraint set (10) defines the completion time of each customer order. Constraint sets 

(11) and (12) impose the non-negativity and binary restrictions, respectively, on the 

decision variables. 

 

In our MILP-1 model, there are three sets of continuous variables, and the number of 

these variables are 𝑁2(𝐾2 + 1) + 𝐾.  Also, there are two sets of binary variables, and 

the number of binary decision variables is 𝑁2(𝐾2 + 1). This means that there is a total 
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of 2𝑁2(𝐾2 + 1) + 𝐾 decision variables. On the other hand, the MILP-1 model has a 

total of 𝑁3 − 2𝑁2 − 3𝑁 + 𝑁𝐾(𝐾2 − 2𝐾 + 3) constraints.  

 

4.1.2. The Second Model (MILP-2) 

In the second model, we rely on the precedence variables. 

 

Decision variables 

𝑌𝑗,𝑘 =  {
1      if job 𝑗 precedes job 𝑘
0     otherwise                       

 

𝑋𝑜,𝑚,𝑗 =  {
1    if customer order 𝑜 in job 𝑗 precedes customer order 𝑚 in job 𝑗
0    otherwise                                                                                                     

 

𝐶𝑜,𝑗 Completion time of customer order 𝑜 in job 𝑗. 

𝑇𝑜 Completion time of the customer order 𝑜. 

 

The MILP-2 model for solving the problem 𝑃𝐽𝐵𝑃 can be modeled as follows: 

Minimize ∑ 𝑇𝑜
𝐾
𝑜=1   (13) 

Subject to 𝑌𝑗,𝑘 +  𝑌𝑘,𝑗 = 1  for 𝑗, 𝑘 = 1,2, … , 𝑁; 𝑗 < 𝑘  (14) 

 𝑌𝑗,𝑘 +  𝑌𝑘,𝑙 + 𝑌𝑙,𝑗 ≤ 2  for 𝑗, 𝑘, 𝑙 = 1,2, … , 𝑁; 𝑗 ≠ 𝑘 ≠ 𝑙           (15) 

 𝑋𝑜,𝑚,𝑗 + 𝑋𝑚,𝑜,𝑗 = 1  for 𝑜, 𝑚 = 1,2, … , 𝐾; 𝑜 < 𝑚 ; 𝑗 = 1,2, … , 𝑁;  

                                            𝐷𝑜,𝑗 = 𝐷𝑚,𝑗 > 0                                      (16) 

 𝑋𝑜,𝑚,𝑗 + 𝑋𝑚,𝑢,𝑗 + 𝑋𝑢,𝑜,𝑗 ≤ 2  

  for 𝑜, 𝑚, 𝑢 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝑁;  

                                                 𝑜 ≠ 𝑚 ≠ 𝑢; 𝐷𝑜,𝑗 = 𝐷𝑚,𝑗 = 𝐷𝑢,𝑗 > 0   (17) 

 𝐶𝑜,𝑗 = ∑ (𝑠𝑘+𝑡𝑘𝐿𝑘)𝑌𝑘,𝑗 + 𝑠𝑗 + 𝑡𝑗𝐷𝑜,𝑗 + ∑  𝑡𝑗𝐷𝑚,𝑗𝑋𝑚,𝑜,𝑗
𝐾
𝑚=1
𝑚≠𝑜

𝑁
𝑘=1
𝑘≠𝑗

   

                                                for 𝑜 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝑁; 𝐷𝑜,𝑗 > 0  (18) 

 𝑇𝑜 ≥ 𝐶𝑜,𝑗   for 𝑜 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝑁  (19) 

 𝐶𝑜,𝑗,  𝑇𝑜 ≥ 0   for ∀ 𝑜, 𝑗  (20) 

 𝑋𝑜,𝑚,𝑗 , 𝑌𝑗,𝑘 ∈ {0,1}  for  ∀ 𝑜, 𝑚, 𝑗, 𝑘  (21) 

 

In the above MILP-2 model, the objective in (13) is to minimize the total completion 

time of customer orders. Constraint set (14) ensures the ordering of the jobs, and 

similarly, the constraint set (15) guarantees that for each pair of the orders, one of them 

should precede the other. Constraint sets (16) and (17) are triangular inequalities. 
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Constraint set (18) calculates the completion time of each customer order 𝑖 that 

demands job 𝑗. Constraint set (19) defines the completion time of each customer order. 

Constraint sets (20) and (21) impose non-negativity and binary restrictions, 

respectively, on the decision variables. 

 

In our MILP-2 model, there are two sets of continuous variables, and the number of 

these variables are 𝐾(𝑁 + 1).  Also, there are two sets of binary variables, and the 

number of binary decision variables is 𝑁(𝐾2 + 𝑁). This means that there is a total of 

𝐾(𝑁 + 1 + 𝐾𝑁) + 𝑁2 decision variables. On the other hand, the MILP-2 model has a 

total of 𝐾 + 𝑁 + 𝑁𝐾(1 + 𝑁(1 + 𝑁) + 𝑁𝐾(𝑁𝐾 + 1)) constraints.  

 

According to number of decision variables and number of constraints, first model 

(MILP-1) is efficient than the second model (MILP-2). However, from our preliminary 

experiments, we observed that the solution time of MILP-1 took longer than MILP-2. 

Therefore, in the rest of our study, we considered our second model only, and called it 

MILP. 

 

4.2. Heuristic Algorithm 

The size of the MILP model increases tremendously as the number of products (jobs) 

and the number of customer orders increase. We observe from our experiments that 

the MILP model cannot provide optimal solutions for the large-sized problem 

instances in reasonable times. Therefore, we propose a heuristic algorithm that 

provides optimal or near-optimal solutions for the large-sized problem instances within 

relatively short times. 

 

Our proposed heuristic algorithm consists of two phases: finding an initial schedule by 

the insertion algorithm and improving the initial schedule by the tabu search 

algorithm. The detailed descriptions of each phase in our heuristic algorithm are given 

below. 
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Phase 1 - Finding an initial schedule by the insertion algorithm 

This phase finds an initial schedule of jobs by applying the insertion algorithm, which is a 

kind of neighborhood algorithm. It is also known as the NEH algorithm since it was proposed 

first by Nawaz et al. (1983) for the makespan minimization problem in a flow shop. The NEH 

algorithm has been widely used to solve various scheduling problems with different scheduling 

criteria other than makespan. The algorithm generates (𝑁(𝑁 + 1)/2) − 1 different 

sequences of jobs, where 𝑁 of them are complete, and the rest are partial sequences. 

The NEH algorithm is based on the assumption that a job with a long total processing 

time is given higher priority than the job with a small total processing time. In our 

algorithm, we have modified this assumption as the job with more number of customer 

orders is given a higher priority than the job with fewer customer orders. 

 

The stepwise description of Phase 1 in our algorithm is given below. 

 

Step 1  Generate an initial job sequence by sorting the jobs in descending order of their 

number of customer orders. 

Step 2  In the initial job sequence, generate the initial sequence of the customer orders 

in each job by sorting the customer orders of each job in ascending order of 

their total demand. 

Step 3  a Select the jobs 𝐽[1] and 𝐽[2], which are in the first two positions of the initial 

job sequence obtained in Step 2.  

 b Form two partial job sequences such that the first selected job 𝐽[1] is in the 

first and second positions in these partial sequences, respectively. That is, 

Partial sequence 1: 𝐽[1] − 𝐽[2] 

Partial sequence 2: 𝐽[2] − 𝐽[1] 

 c Let the first partial sequence among all partial sequences be the current 

partial sequence.  

Step 4 a Let the job that is in the last position of the current partial sequence be the 

current job. Sort all customer orders of the current job in ascending order of 

their total demands. 

 b Consider the previous job as the new current job. 

 c Starting from the customer order in the first position of the customer orders 

sequence in the current job, check whether the customer order has the jobs 
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processed after the current job of the current partial job sequence. If the 

answer is yes, then sent this customer order to the last position of the 

customer orders in the current job; otherwise, keep this customer order in its 

current position. Repeat this step for all remaining customer orders in the 

current job. 

 d If the current job is in the first position of the current partial sequence, then 

compute the total completion time of the customer orders in the current 

partial sequence, and go to Step 4e; otherwise, go to Step 4b. 

 e If all partial sequences are considered, then select the best partial sequence 

giving the minimum total completion time and go to Step 5a; otherwise, 

consider the next partial sequence as the current partial sequence and go to 

Step 4a. 

Step 5 a If all jobs of the initial job sequence obtained in Step 2 are not considered 

yet, then go to Step 4a; otherwise, go to Phase 2. 

 b Pick the job that is in the next position of the initial job sequence obtained 

in Step 2, generate all possible partial sequences by placing this new job in 

all possible positions (beginning, between and ending) in the best partial 

sequence developed so far, and go to Step 4a. 

 

Phase 2 – Improving the initial schedule by the tabu search algorithm 

Tabu Search (TS), which was first proposed by Glover (1989), is a local-search based 

metaheuristic algorithm for solving many combinatorial optimization problems. TS 

algorithm has attracted many researchers working on scheduling problems and widely 

used in the literature. It starts with an initial solution (schedule) generated randomly 

or obtained by a simple rule or a heuristic algorithm. The initial solution is considered 

as the best solution. Then a local search mechanism is applied to find a better solution 

in the neighborhood of the current solution, which is defined as all solutions (also 

called mutations) obtained by an alternative solutions generation mechanism using the 

current solution. This neighborhood generation mechanism can be an adjacent 

pairwise interchange of the jobs or inserting every job in every position in the current 

schedule. In our TS procedure, we use the schedule obtained by Phase 1 of our 

algorithm as the initial schedule, and the neighborhood is generated by adjacent 

pairwise interchanges of the jobs in this initial schedule. The mutation with the lowest 
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objective function (total completion time of the customer orders) value is selected as 

a candidate solution. The local changes providing the candidate solution among the 

solutions in the neighborhood of a current solution is called a move. To keep the search 

history, a list called tabu list is used to avoid cycling (i.e., returning to a solution that 

has been visited before) and guide the search towards unexplored regions of the 

solution space of the problem. The move providing the candidate solution is put into 

the tabu list if this move is not tabu, and the candidate solution becomes the new best 

solution if the objective function value of the candidate solution is better than the 

objective function value of the current best solution. This is the aspiration criterion 

used in our TS procedure. Once a move is entered the tabu list, the oldest move in the 

tabu list is deleted since the tabu list has a fixed size, which is called tabu list size, say 

l. Tabu list size, which is also called tabu tenure, allows the new move added to the 

tabu list to remain in the list for the next l iterations.  

 

Tabu-search iterations are conducted until one of the stopping criteria is reached. In 

the literature, there are several applications of the TS algorithm using different 

stopping criteria, which determine the length of the search. One approach is to set the 

number of iterations to a pre-specified value. That is, the TS procedure stops when no 

improvement can be obtained after several iterations. It is clear that setting the number 

of iterations to a large number may increase the search space and solution time. In our 

algorithm, we let the TS procedure run for 𝑁𝐼 = 2 × 𝑁 iteration, where 𝑁 is the 

number of jobs. Our second stopping criterion is that the TS procedure terminates if 

all possible mutations are worse than the parent.  

 

Tabu tenure is also an important parameter that affects the performance of the TS 

procedure since the tabu list directs the search. The tabu tenure can be fixed (usually 

preferred in the literature) or variable. Setting the tabu tenure to a small number may 

cause an occurrence of cycling, i.e., returning to the solution already visited before. 

That is, it is very hard to escape from local optima when the tabu tenure is too small. 

However, setting the tabu tenure to a large number may result deterioration in the 

quality of the solutions found. In other words, the algorithm spends more time to 

compare with the current solution one by one. Tabu list size can be a variable or a fixed 

number. In our algorithm, we set the tabu list size to 5. 

The stepwise description of Phase 2 in our algorithm is given below. 
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Step 1  Set the iteration counter 𝑖𝑐 to 1, i.e., set 𝑖𝑐 = 1. Set the initial schedule 𝜎1 to 

the schedule obtained in Phase 1 of the algorithm. Set the best schedule 𝜎𝐵 to 

𝜎1, i.e., set 𝜎𝐵 = 𝜎1. 

Step 2  a  Generate the neighborhood of the schedule 𝜎𝑖𝑐 by adjacent pairwise 

interchanges of the jobs in the schedule 𝜎𝑖𝑐. 

 b For each of the mutation in the neighborhood of the schedule 𝜎𝑖𝑐, apply 

the algorithm SCO.  

 c If the total completion time value of each mutation is bigger than the total 

completion time of the parent schedule 𝜎𝑖𝑐, then stop; otherwise, from the 

neighborhood of the schedule 𝜎𝑖𝑐, select the schedule with the lowest total 

completion time value as the candidate schedule 𝜎𝐶. 

Step 3 a  If the move  𝜎𝑖𝑐 → 𝜎𝐶  is prohibited by a mutation on the tabu list, set 

𝜎𝑖𝑐+1 = 𝜎𝑖𝑐 and go to step 4; otherwise,  

i Delete the entry at the bottom of the tabu list. 

ii Push all other entries in the tabu list one position down. 

iii. Enter reverse mutation at the top of the tabu list. 

iv. Set 𝜎𝑖𝑐+1 = 𝜎𝐶. 

v. Set the new best schedule to the candidate schedule (i.e., set 𝜎𝐵 = 𝜎𝐶) 

if the total completion time value of the candidate schedule is smaller  

than the total completion time value of the current best schedule, i.e., 

𝑇𝐶𝑇(𝜎𝐶) < 𝑇𝐶𝑇(𝜎𝐵). 

vi. Go to step 4. 

Step 4  a  Increment the iteration counter 𝑖𝑐 by 1. i.e., set 𝑖𝑐 = 𝑖𝑐 + 1. 

 b If the iteration counter 𝑖𝑐 is equal to the pre-specified value 𝑁𝐼 for the 

number of iterations (i.e., 𝑖𝑐 = 𝑁𝐼), then stop; otherwise, go to step 2. 
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4.3. A Numerical Example 

 

We close this chapter with the following numerical example to demonstrate our 

proposed heuristic algorithm. Consider a problem instance in which five customers 

give orders for five products (jobs). Products demanded by the customer orders, the 

sequence-independent setup times, and the unit-processing times are given in Table 2. 

 

Table 2 Data set for the numerical example  

Jobs 

(Products)  

Demand (in units) of the 

customer orders Setup 

time 

Unit-processing 

time 
𝑂1 𝑂2 𝑂3 𝑂4 𝑂5 

𝐽1 9 3 1 6 3 41 4 

𝐽2 - - - 5 - 48 6 

𝐽3 - - 3 8 7 5 4 

𝐽4 - 6 5 - - 40 6 

𝐽5 - - - 5 4 47 8 

 

Phase 1 - Finding an initial schedule by the insertion algorithm 

Step 1  Sorting the jobs in descending order of their number of customer orders gives 

the initial job sequence as: 

𝐽1{𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5} − 𝐽3{𝑂3, 𝑂4, 𝑂5} − 𝐽4{𝑂2, 𝑂3} − 𝐽5{𝑂4, 𝑂5} − 𝐽2{𝑂4}  

Step 2  In the initial job sequence, sorting the customer orders of each job in ascending 

order of their total demand yields the following initial sequence of jobs with 

the sorted customer orders: 

𝐽1{𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6], 𝑂1[9]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 

𝐽4{𝑂3[5], 𝑂2[6]} − 𝐽5{𝑂5[4], 𝑂4[5]} − 𝐽2{𝑂4[5]}  

Step 3 From the initial job sequence 𝐽1 − 𝐽3 − 𝐽4 − 𝐽5 − 𝐽2 obtained in Step 2, we 

select the first two jobs 𝐽1 and 𝐽3. We form two partial sequences 𝐽1 − 𝐽3 and 

𝐽3 − 𝐽1.  

Step 4 In the first partial sequence 𝐽1 − 𝐽3, the optimal sequence of the customer orders 

in each job is: 

𝐽1{𝑶𝟐[𝟑], 𝑶𝟏[𝟗], 𝑂3[1], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑶𝟑[𝟑], 𝑶𝟓[𝟕], 𝑶𝟒[𝟖]} 

 with the total completion time of customer orders  

𝑇𝐶𝑇(𝐽1 − 𝐽3) = 𝐶𝑇2 + 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇5 + 𝐶𝑇4 
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 = 53 + 89 + 146 + 174 + 206 

 = 668. 

 In the second partial sequence 𝐽3 − 𝐽1, the optimal sequence of the customer 

orders in each job is: 

𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 𝐽1{𝑶𝟑[𝟏], 𝑶𝟐[𝟑], 𝑶𝟓[𝟑], 𝑶𝟒[𝟔], 𝑶𝟏[𝟗]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽3 − 𝐽1) = 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 + 𝐶𝑇1 

 = 122 + 134 + 146 + 174 + 206 

   = 778. 

We select the partial sequence 𝐽1 − 𝐽3 since its total completion time is smaller 

than that of the partial sequence 𝐽3 − 𝐽1. 

Step 5 All jobs of the initial job sequence obtained in Step 2 are not considered yet. 

Thus, we go to Step 4. 

Step 4 We select the next job, which is job 𝐽4, from the initial job sequence obtained 

in Step 2, and form three partial sequences 𝑱𝟒 − 𝐽1 − 𝐽3, 𝐽1 − 𝑱𝟒 − 𝐽3, and 𝐽1 −

𝐽3 − 𝑱𝟒.  

Step 5 In the first partial sequence 𝑱𝟒 − 𝐽1 − 𝐽3, the optimal sequence of the customer 

orders in each job is: 

𝐽4{𝑂3[5], 𝑂2[6]} − 𝐽1{𝑶𝟐[𝟑], 𝑶𝟏[𝟗], 𝑂3[1], 𝑂5[3], 𝑂4[6]} − 

𝐽3{𝑶𝟑[𝟑], 𝑶𝟓[𝟕], 𝑶𝟒[𝟖]} 

 with the total completion time of customer orders  

𝑇𝐶𝑇(𝐽4 − 𝐽1 − 𝐽3) = 𝐶𝑇2 + 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇5 + 𝐶𝑇4 

         = 159 + 195 + 252 + 280 + 312 

         = 1,198. 

 In the second partial sequence 𝐽1 − 𝑱𝟒 − 𝐽3, the optimal sequence of the 

customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽4{𝑶𝟐[𝟔], 𝑂3[5]} − 

𝐽3{𝑶𝟑[𝟑], 𝑶𝟓[𝟕], 𝑶𝟒[𝟖]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽4 − 𝐽3) = 𝐶𝑇1 + 𝐶𝑇2 + 𝐶𝑇3 + 𝐶𝑇5 + 𝐶𝑇4 

         = 77 + 205 + 252 + 280 + 312 

           = 1,126. 

 In the third partial sequence 𝐽1 − 𝐽3 − 𝑱𝟒, the optimal sequence of the customer 
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orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 

𝐽3{𝑶𝟓[𝟕], 𝑶𝟒[𝟖], 𝑂3[3]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽4) = 𝐶𝑇1 + 𝐶𝑇5 + 𝐶𝑇4 + 𝐶𝑇4 + 𝐶𝑇2 

         = 77 + 162 + 194 + 276 + 312 

           = 1,021. 

Among these three partial sequences, we select the partial sequence 𝐽1 − 𝐽3 −

𝐽4 since its total completion time is smaller than those of other partial 

sequences. 

Step 4 We select the next job, which is job 𝐽5, from the initial job sequence obtained 

in Step 2, and form four partial sequences 𝑱𝟓 − 𝐽1 − 𝐽3 − 𝐽4, 𝐽1 − 𝑱𝟓 − 𝐽3 − 𝐽4, 

𝐽1 − 𝐽3 − 𝑱𝟓 − 𝐽4, and 𝐽1 − 𝐽3 − 𝐽4 −  𝑱𝟓.  

Step 5 In the first partial sequence 𝑱𝟓 − 𝐽1 − 𝐽3 − 𝐽4, the optimal sequence of the 

customer orders in each job is: 

𝐽5{𝑂5[4], 𝑂4[5]} − 𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 

𝐽3{𝑶𝟓[𝟕], 𝑶𝟒[𝟖], 𝑂3[3]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} 

 with the total completion time of customer orders  

𝑇𝐶𝑇(𝐽5 − 𝐽1 − 𝐽3 − 𝐽4) = 𝐶𝑇1 + 𝐶𝑇5 + 𝐶𝑇4 + 𝐶𝑇3 + 𝐶𝑇2 

                 = 196 + 281 + 313 + 395 + 431 

                 = 1,616. 

 In the second partial sequence 𝐽1 − 𝑱𝟓 − 𝐽3 − 𝐽4, the optimal sequence of the 

customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽5{𝑂5[4], 𝑂4[5]} − 

𝐽3{𝑶𝟓[𝟕], 𝑶𝟒[𝟖], 𝑂3[3]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽4 −  𝐽5) = 𝐶𝑇1 + 𝐶𝑇5 + 𝐶𝑇4 + 𝐶𝑇3 + 𝐶𝑇2 

       = 77 + 281 + 313 + 395 + 431 

          = 1,497. 

 In the third partial sequence 𝐽1 − 𝐽3 − 𝑱𝟓 − 𝐽4, the optimal sequence of the 

customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 

𝐽5{𝑶𝟓[𝟒], 𝑶𝟒[𝟓]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} 
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 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽5 − 𝐽4) = 𝐶𝑇1 + 𝐶𝑇5 + 𝐶𝑇4 + 𝐶𝑇3 + 𝐶𝑇2 

       = 77 + 285 + 325 + 395 + 431 

          = 1,513. 

 In the fourth partial sequence 𝐽1 − 𝐽3 − 𝐽4 −  𝑱𝟓, the optimal sequence of the 

customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 

𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽5{𝑶𝟓[𝟒], 𝑶𝟒[𝟓]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽4 −  𝐽5) = 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 

        = 77 + 276 + 312 + 391 + 431 

                    = 1,487. 

Among these four partial sequences, we select the partial sequence 𝐽1 − 𝐽3 −

𝐽4 −  𝐽5 since its total completion time is smaller than those of other partial 

sequences. 

Step 4 We select the next job, which is job 𝐽2, from the initial job sequence obtained 

in Step 2, and form five complete sequences 𝑱𝟐 − 𝐽1 − 𝐽3 − 𝐽4 − 𝐽5, 𝐽1 − 𝑱𝟐 −

𝐽3 − 𝐽4 −  𝐽5, 𝐽1 − 𝐽3 − 𝑱𝟐 − 𝐽4 − 𝐽5, 𝐽1 − 𝐽3 − 𝐽4 − 𝑱𝟐 −  𝐽5, and 𝐽1 − 𝐽3 −

𝐽4 −  𝐽5 − 𝑱𝟐.  

Step 5 In the first complete sequence 𝑱𝟐 − 𝐽1 − 𝐽3 − 𝐽4 −  𝐽5, the optimal sequence of 

the customer orders in each job is: 

𝐽2{𝑂4[5]} − 𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 

𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽5{𝑶𝟓[𝟒], 𝑶𝟒[𝟓]} 

 with the total completion time of customer orders  

𝑇𝐶𝑇(𝐽2 − 𝐽1 − 𝐽3 − 𝐽4 −  𝐽5) = 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 

                = 1,877. 

 In the second complete sequence 𝐽1 − 𝑱𝟐 − 𝐽3 − 𝐽4 −  𝐽5, the optimal sequence 

of the customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽2{𝑂4[5]} − 

𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽5{𝑶𝟓[𝟒], 𝑶𝟒[𝟓]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽2 − 𝐽3 − 𝐽4 −  𝐽5) = 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 

                           = 1,799. 
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 In the third complete sequence 𝐽1 − 𝐽3 − 𝑱𝟐 − 𝐽4 −  𝐽5, the optimal sequence of 

the customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 

𝐽2{𝑂4[5]} − 𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽5{𝑶𝟓[𝟒], 𝑶𝟒[𝟓]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽2 − 𝐽4 −  𝐽5) = 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 

                            = 1,799. 

 In the fourth complete sequence 𝐽1 − 𝐽3 − 𝐽4 − 𝑱𝟐 −  𝐽5, the optimal sequence 

of the customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} − 

𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽2{𝑂4[5]} − 𝐽5{𝑶𝟓[𝟒], 𝑶𝟒[𝟓]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽4 − 𝐽2 −  𝐽5) = 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 

         = 1,643. 

 In the fifth complete sequence 𝐽1 − 𝐽3 − 𝐽4 − 𝐽5 − 𝑱𝟐, the optimal sequence of 

the customer orders in each job is: 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} 

𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽5{𝑶𝟓[𝟒], 𝑂4[5]} − 𝐽2{𝑶𝟒[𝟓]} 

 with the total completion time of customer orders 

𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝐽4 −  𝐽5 − 𝐽2) = 𝐶𝑇1 + 𝐶𝑇3 + 𝐶𝑇2 + 𝐶𝑇5 + 𝐶𝑇4 

          = 1,565. 

Among these five complete sequences, we select the sequence 𝐽1 − 𝐽3 − 𝐽4 −

 𝐽5 − 𝐽2 since its total completion time, which is 1,565 time units, is smaller 

than those of other complete sequences. Thus, the initial schedule obtained by 

Phase 1 is 

𝐽1{𝑶𝟏[𝟗], 𝑂3[1], 𝑂2[3], 𝑂5[3], 𝑂4[6]} − 𝐽3{𝑂3[3], 𝑂5[7], 𝑂4[8]} 

𝐽4{𝑶𝟑[𝟓], 𝑶𝟐[𝟔]} − 𝐽5{𝑶𝟓[𝟒], 𝑂4[5]} − 𝐽2{𝑶𝟒[𝟓]} 

 

Phase 2 – Improving the initial schedule by the tabu search algorithm 

Step 1  Set 𝑖𝑐 = 1. We set the initial schedule 𝜎1 to the schedule obtained in Phase 3 

of the algorithm, and set the best schedule 𝜎𝐵 to 𝜎1, i.e., 

𝜎𝐵 = 𝜎1 = 𝐽1 − 𝐽3 − 𝐽4 −  𝐽5 − 𝐽2 

with 𝑇𝐶𝑇(𝜎𝐵) = 1,565. 
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Step 2  When we apply the adjacent pairwise interchanges of the jobs in the current 

schedule 𝜎1, we generate four mutations 𝑱𝟑 − 𝑱𝟏 − 𝐽4 −  𝐽5 − 𝐽2, 𝐽1 − 𝑱𝟒 −

𝑱𝟑 −  𝐽5 − 𝐽2, 𝐽1 − 𝐽3 − 𝑱𝟓 −  𝑱𝟒 − 𝐽2, and 𝐽1 − 𝐽3 − 𝐽4 −  𝑱𝟐 − 𝑱𝟓. When we 

apply the algorithm SCO for each of these mutations, the candidate schedule 

𝜎𝐶 becomes 𝐽1 − 𝑱𝟒 − 𝑱𝟑 −  𝐽5 − 𝐽2 since 𝑚𝑖𝑛{ 𝑇𝐶𝑇(𝑱𝟑 − 𝑱𝟏 − 𝐽4 −  𝐽5 − 𝐽2),

𝑇𝐶𝑇(𝐽1 − 𝑱𝟒 − 𝑱𝟑 −  𝐽5 − 𝐽2), 𝑇𝐶𝑇(𝐽1 − 𝐽3 − 𝑱𝟓 −  𝑱𝟒 − 𝐽2), 𝑇𝐶𝑇(𝐽1 − 𝐽3 −

𝐽4 −  𝑱𝟐 − 𝑱𝟓) } = 𝑚𝑖𝑛{1,642;  1,434; 1697; 1,643} = 1,434.  

Step 3 The tabu list is updated with a pair of (𝐽3, 𝐽4). We set  

𝜎2 = 𝜎𝐶 = 𝐽1 − 𝐽4 − 𝐽3 −  𝐽5 − 𝐽2, and set the new best schedule to the current 

schedule since the total completion time of the current schedule is smaller than 

that of the best schedule. That is, 𝜎𝐵 = 𝜎𝐶 = 𝐽1 − 𝐽4 − 𝐽3 − 𝐽5 − 𝐽2 since 

𝑇𝐶𝑇(𝜎𝐶) = 𝑇𝐶𝑇(𝐽1 − 𝑱𝟒 − 𝑱𝟑 −  𝐽5 − 𝐽2) = 1,434 < 𝑇𝐶𝑇(𝜎𝐵) = 𝑇𝐶𝑇(𝐽1 −

𝐽3 − 𝐽4 −  𝐽5 − 𝐽2) = 1,565. 

Step 4 We set 𝑖𝑐 = 𝑖𝑐 + 1 = 1 + 1 = 2. Go to Step 2 since the iteration counter 𝑖𝑐 is 

smaller than the pre-specified value 𝑁𝐼 for the number of iterations, i.e., 𝑖𝑐 =

2 < 𝑁𝐼 = 2 × 𝑁 = 2 × 5 = 10. 

Step 2  When we apply the adjacent pairwise interchanges of the jobs in the current 

schedule 𝜎2 = 𝐽1 − 𝐽4 − 𝐽3 −  𝐽5 − 𝐽2, we generate three mutations 𝑱𝟒 − 𝑱𝟏 −

𝐽3 −  𝐽5 − 𝐽2, 𝐽1 − 𝐽4 − 𝑱𝟓 −  𝑱𝟑 − 𝐽2, and 𝐽1 − 𝐽4 − 𝐽3 −  𝑱𝟐 − 𝑱𝟓. Note that the 

mutation 𝐽1 − 𝑱𝟑 − 𝑱𝟒 −  𝐽5 − 𝐽2 is not possible since the pair of (𝐽3, 𝐽4) is in the 

tabu list. When we apply the algorithm SCO for each of the three possible 

mutations, we observe that 𝑚𝑖𝑛{ 𝑇𝐶𝑇((𝑱𝟒 − 𝑱𝟏 − 𝐽3 −  𝐽5 − 𝐽2) ), 𝑇𝐶𝑇(𝐽1 −

𝐽4 − 𝑱𝟓 −  𝑱𝟑 − 𝐽2), 𝑇𝐶𝑇(𝐽1 − 𝐽4 − 𝐽3 −  𝑱𝟐 − 𝑱𝟓) } = min {1,530;  

 1,561; 1,512} = 1,512 > 𝑇𝐶𝑇(𝜎𝐵) = 𝑇𝐶𝑇(𝐽1 − 𝐽4 − 𝐽3 − 𝐽5 − 𝐽2) = 1,434. 

Thus, the TS algorithm terminates before reaching the tabu-search iteration-

size of 10. 

 

The total completion time of the schedule obtained by the heuristic algorithm is 1,434 

time units and is equal to that of the optimal schedule found by solving the MILP 

model.  Figure 3 illustrates the Gantt chart for this optimal schedule. 
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Figure 3 Gantt chart of the schedule for the numerical example problem 
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CHAPTER 5 

 

 

COMPUTATIONAL STUDY 

 

 

 

In this chapter, we describe our computational experiments to evaluate the 

performance of the mathematical programming model and the heuristic algorithm in 

finding optimal or near-optimal schedules. The MILP models for problems 𝑃𝐽𝐵𝑃 and 

𝑃𝑂𝐵𝑃 are solved by using version 24.1 of the software package General Algebraic 

Modeling System (GAMS), the proposed heuristic algorithm for solving the problem 

𝑃𝐽𝐵𝑃 is programmed in Python in Visual Studio Code. In addition, the optimal schedule 

for the problem 𝑃𝑂𝐵𝑃
′  is obtained in Microsoft Excel VBA. All computations are 

conducted on a computer with Intel(R) Core(TM) i7-9750H processor running at 

2.60GHz, with 16 GB of RAM under Windows 10 operating system. 

 

5.1. Problem Instances Design 

 

Problem size is mainly determined by the number of customer orders and the number 

of jobs (products). We generate the values of the parameters used in our experiments, 

as in Çetinkaya et al. (2019): 

1. Number of customer orders (𝐾): They are taken as 5, 10, 15 and 20. 

2. Number of jobs (𝑁): They are taken as 5, 10, 15 and 20. 

3. Number of customer orders having demand for each job (‖𝑆𝐶𝑗‖): They are randomly 

generated from a DU 1, 𝐾. 

4. Demand (number of identical items) for each job in each customer order (𝐷𝑜,𝑗): 

They are randomly generated from a discrete uniform distribution DU 1, 10. 

5. Unit processing times (𝑡𝑗): They are randomly generated from a discrete uniform 

distribution DU 1, 10.  

6. Setup times (𝑠𝑗): They are randomly generated from a discrete uniform distribution 

DU 0, 100𝑓, where 𝑓 is taken as 0.5, 1.0, 1.5, and 2.0.  
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For each possible combination of the above parameters, 25 replicates (problem 

instances) are generated, and a total of 400 problem instances are tested for the setup 

case. In addition, 25 replicates are generated for each possible combination of the 

above parameters, excluding setup times, and a total of 400 problem instances are 

tested. Hence, the total number of problem instances for both setup and no-setup cases 

is 800. 

5.2. Performance Measures 

 

To measure the effectiveness of two solution approaches, we compared the objective 

function solutions obtained with the MILP model solved by GAMS and the proposed 

heuristic algorithm. For the problem instances in which the optimal solution is not 

obtained, but the best integer solution is achieved by the MILP model, we take the best 

integer solutions of the MILP to compare with the heuristic solutions. The average, the 

maximum and minimum deviations of objective values over the optimal solutions (or 

best integer solutions) are used as the performance measures. For a problem instance 

𝑘, in which the optimal solution is obtained by the MILP model, we define the percent 

deviation 𝑃𝐷𝑘  of the total completion time obtained by the proposed heuristic 

algorithm from the total completion time of the optimal solution. That is, 

 

𝑃𝐷𝑘 =
(𝑇𝐶𝑘

𝐻 − 𝑇𝐶𝑘
𝑂)

𝑇𝐶𝑘
𝑂 × 100 

 

where 𝑇𝐶𝑘
𝐻 and 𝑇𝐶𝑘

𝑂 are the total completion times of the solutions obtained by the 

heuristic algorithm and the MILP model, respectively. For the problem instances in 

which the optimal solution is not obtained (but the best integer solution exists) by the 

MILP-2 model, 𝑇𝐶𝑘
𝑂 is replaced by 𝑇𝐶𝑘

𝐵 where 𝑇𝐶𝑘
𝐵 is the total completion time of the 

best integer solution obtained by the MILP model. 

The computational time also serves as an efficient measure to compare performances 

of the MILP and the heuristic algorithm. The average computing time in CPU seconds 

is calculated in our experiments. The running time of the GAMS's CPLEX solver is 

set at 10,800 seconds (3 hours), and it exceeds the time limit for the large-sized 

problem instances. The running time of the proposed heuristic algorithm is recorded 

for all test problems, and it is relatively very small. The experiments in the following 

subsections demonstrate that the computational time of the heuristic algorithm 
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increases as both the number of customer orders and jobs are increased. However, the 

computational time is very small in general, which is less than a minute. On the other 

hand, the MILP model has much longer computation time when it is compared to 

heuristic. 

5.3. Discussion of the Results 

 

In this section, the performances of the MILP-2 model and the heuristic algorithm for 

the setup and no-setup cases are presented. These solution approaches are examined 

concerning the number of customer orders and the number of jobs. 

5.3.1. Performance of the MILP-2 Model for the Job-based Processing 

5.3.1.1. Setup Case 

 

This part investigates the performance of the MILP-2 model for the setup case when 

we solve problem instances with job-based processing approach. As shown in Table 

3, the MILP-2 gives the optimal solutions for all problem instances up to 15 jobs. As 

the number of jobs increase, the mathematical model cannot find optimal solutions and 

exceeds the three-hour time limit. When the number of customer orders is 5, and the 

number of jobs is 15, there are 19 problem instances with optimal solutions, and there 

is no optimal solution is found when the number of jobs are increased to 20. For the 

problem instances with 10 customer orders and 15 jobs, there are 13 problem instances 

optimally solved. In the same problem set with 20 jobs; however, there is no optimal 

solution is found. Optimal solutions are obtained for only 2 problem instances when 

the number of customer orders is 15, and the number of jobs is 15, while no optimal 

solution is obtained when the number of jobs increased to 20. Lastly, any optimal 

solution is found for the problem instances of 20 customer orders with 15 jobs and 20 

jobs, respectively. 

 

Table 3 Performance of the MILP-2 model for the setup case 

 
K  5  10  15  20 

N  5 10 15 20  5 10 15 20  5 10 15 20  5 10 15 20 

Number of 

problem instances 
 25 25 25 25  25 25 25 25  25 25 25 25  25 25 25 25 

Number of 

optimum solutions 
 25 25 19 0  25 25 13 0  25 25 2 0  25 25 0 0 

Number of best 

integer solutions 
 0 0 6 25  0 0 12 25  0 0 23 25  0 0 25 25 

Average gap (%)  0 0 12 24  0 0 12 32  0 0 22 45  0 0 48 58 
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To emphasize the performance of the MILP-2 model, we should investigate the quality 

of solutions that are not optimal. It is a common phenomenon that GAMS's CPLEX 

ends up with a gap between the best integer solution and the best possible solution. 

Therefore, we examined the gap values to investigate the percent deviation of the 

integer solution from the theoretical optimum. We analyzed the gap values for 166 

non-optimally solved problems which are the problem instances with 15 jobs and 20 

jobs. For these problems, so many iterations are done, and integer solutions found 

become closer to the theoretical optimum after each iteration. However, GAMS is 

terminated because of time limitation before reaching the optimum solution. 

Therefore, the gap values are considerable enough for these problem instances. When 

the number of customer orders are 5 and 10, respectively and the number of jobs are 5 

and 10, respectively, all of the gap values equal to zero, which proves that the 

mathematical model can solve all problem instances optimally. 

 

5.3.1.2. No-setup Case 

In this part, we demonstrate the performance of the MILP-2 model for the no-setup 

case. As shown in Table 4, the mathematical model cannot find the optimal solutions 

for the problem instances with 15 jobs and 20 jobs regardless of the number of 

customer orders. 

Table 4 Performance of the MILP-2 model for the no-setup case 

K  5  10  15  20 

N  5 10 15 20  5 10 15 20  5 10 15 20  5 10 15 20 

Number of 

problem instances 
 25 25 25 25  25 25 25 25  25 25 25 25  25 25 25 25 

Number of 

optimum solutions 
 25 25 21 0  25 25 19 0  25 25 7 1  25 25 1 0 

Number of best 

integer solutions 
 0 0 4 25  0 0 6 25  0 0 18 24  0 0 24 25 

Average gap (%)  0 0 4 17  0 0 10 29  0 0 21 42  0 0 45 56 

 

 When the number of customer orders are 5, and the number of jobs are 15, there are 

21 optimally solved problem instances while there is no optimal solution when the 

number of jobs is increased to 20. For the problem instances with 10 customer orders, 

19 test problems are optimally solved when the number of jobs is 15, and there is no 

optimal solution is obtained when the number of jobs is 20 for the same problem set. 

The MILP-2 finds the optimal solution for 7 problem instances when the number of 

customer orders is 15, and the number of jobs is 15; however, only 1 optimal solution 
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is obtained when the number of jobs is 20. Lastly, when the number of customer orders 

is 20, and the number of jobs is 15, the model finds the optimal solution for only 1 

problem instance. However, any optimal solution is found when the number of jobs is 

20. We also investigated the gap values for 151 non-optimally solved problems for the 

no-setup case. As can be seen in Table 4, the gap values for the no-setup case are also 

considerable when the number of jobs are increased, as in the setup case.  

 

5.3.2. Performance Evaluation of the Proposed Heuristic Algorithm  

In this section, we undertake computational tests in order to gauge the quality of 

solutions and computational time of the proposed heuristic algorithm. We also 

investigate a comparative study and solution improvement analysis for the proposed 

heuristic in the following subsections. 

 

5.3.2.1. Computational Results of the Heuristic Algorithm for the Job-based 

Processing 

 

5.3.2.1.1. Setup Case 

 

In this part, we compare the computational solutions of the proposed heuristic 

algorithm with the MILP-2 for the setup case. The comparison of objective function 

values that are obtained by the proposed heuristic algorithm and the MILP-2 for 

problem instances when K =5 and N =15 are shown in Table 5. As it was explained 

before, best integer solutions are used for comparison when any optimal solution is 

found by the MILP-2.  
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Table 5 Heuristic solutions compared with MILP-2 solutions for the setup case when 

K=5 and N=15 

 
Problem 

Instance 

Total Completion Time 
% 

HEURISTIC MILP-2 

51 5645 5178 9,02 

52 7474 7243 3,19 

53 4642 4489 3,41 

54 8906 8232 8,19 

55 6987 6987 0,00 

56 8495 8486 0,11 

57 6794 6687 1,60 

58 8587 8099 6,03 

59 7706 7253 6,25 

60 13501 13487 0,10 

61 9661 9474 1,97 

62 8354 8169 2,26 

63 6239 6031 3,45 

64 9028 8746 3,22 

65 6871 6814 0,84 

66 14240 13874 2,64 

67 6226 5876 5,96 

68 8099 7725 4,84 

69 8337 8003 4,17 

70 11536 11106 3,87 

71 4758 4604 3,34 

72 6241 6025 3,59 

73 9858 9305 5,94 

74 12660 12173 4,00 

75 5454 5383 1,32 

AVG 8251,96 7977,96 3,57 

MAX 14240 13874 9,02 

MIN 4642 4489 0,00 

 

We can observe that the proposed heuristic has a good performance on finding near- 

optimal solutions for the problems when K=5 and N=15. The average deviation from 

the MILP-2 solutions is %3.57. Maximum and minimum percent deviations are %9.02 

and %0.00, respectively.  

Table 6 shows the total completion time values obtained by the heuristic and the MILP-

2 model for the problem instances when K =5 and N =20, respectively.  
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Table 6 Heuristic solutions compared with MILP-2 solutions for the setup case when 

K=5 and N=20 

Problem 

Instance 

Total Completion Time 
% 

HEURISTIC MILP-2 

76 7449 7351 1,33 

77 10941 10553 3,68 

78 14177 14027 1,07 

79 13068 12535 4,25 

80 15257 14220 7,29 

81 10878 10636 2,28 

82 13998 13972 0,19 

83 7514 7365 2,02 

84 11456 11415 0,36 

85 10128 9428 7,42 

86 11765 11765 0,00 

87 8366 8366 0,00 

88 7651 7564 1,15 

89 8805 8786 0,22 

90 10850 10579 2,56 

91 7997 7997 0,00 

92 10016 10015 0,01 

93 8146 7849 3,78 

94 9607 9607 0,00 

95 10822 10632 1,79 

96 7794 7501 3,91 

97 13550 13231 2,41 

98 18115 18124 -0,05 

99 10855 10112 7,35 

100 10484 10368 1,12 

AVG 10787,56 10559,92 2,17 

MAX 18115 18124 7,42 

MIN 7449 7351 -0,05 

 

We can see that the proposed heuristic yields near-optimal solutions when the number 

of jobs are increased to 20. The average deviation of heuristic solutions from MILP-2 

solutions is %2.17. Maximum and minimum percent deviations are %7.42 and %-0.05, 

respectively. We observed negative percent deviations for some of the non-optimal 

problems especially for the problem instances having 15 and 20 number of jobs which 

indicates the heuristic yields better solution than the best integer solution of the MILP-

2.  

Appendix B provides the remaining tables of our computational tests for the 

comparison of heuristic and MILP-2 for the setup case. 

 

On the other hand, the summary table of the performance of heuristic for different 

problem sizes are presented in Table 7.  
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Table 7 The average, maximum and minimum percent deviations between solutions 

obtained by the heuristic and the MILP-2 for the setup case 

 

K N Number 

of 

Problem 

Instances 

Average 

Percent 

Deviation 

Maximum 

Percent 

Deviation 

Minimum 

Percent 

Deviation 

5 5 25 1,84 11,60 0,00 

10 25 2,40 10,30 0,00 

15 25 3,57 9,02 0,00 

20 25 2,17 7,42 -0,05 

Total & Averages 100 2,49 9,59 -0,01 

10 5 25 1,15 8,01 0,00 

10 25 3,26 19,10 0,00 

15 25 3,28 28,03 0,00 

20 25 2,96 12,19 -1,34 

Total & Averages  100 2,66 16,83 -0,33 

15 5 25 1,77 8,28 0,00 

10 25 2,12 7,02 0,00 

15 25 3,35 10,07 0,17 

20 25 3,69 12,40 -0,69 

Total & Averages 100 2,73 9,44 -0,13 

20 5 25 1,14 2,80 0,00 

10 25 1,91 7,87 0,00 

15 25 1,45 7,41 -4,68 

20 25 2,48 6,07 -0,39 

Total & Averages 100 1,74 6,04 -1,27 

Total & Grand 

Averages 
          400      2,41         10,48         -0,44 

 

The grand averages of the problems when K=5, K=10, K=15, and K=20 are %2.49, 

%2.66, %2.73, and %1.74, respectively. The average percent deviation for total of 400 

problem instances is %2.41 which is relatively low and indicates that the heuristic is 

very practical for finding near-optimal solutions. 

 

Figure 4 demonstrates the average computational time of the heuristic algorithm for 

different problem sizes for the setup case. Computational time tends to increase with 

respect to the number of jobs; however, it is relatively small in general.  As a result, 

the heuristic algorithm yields significantly good results within a much lower 

computing time when we compare with the mathematical model. 
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Figure 4 Average CPU time of the heuristic algorithm for the setup case 

 

 
 

 

 

 

5.3.2.1.2. No-setup Case 

In this part, we compare the computational solutions of our heuristic algorithm 

with the proposed MILP-2 according to experiments for the no-setup case. Table 8 

below shows the total completion time values that are obtained by the heuristic and the 

MILP-2 when K =5 and N =15, respectively. 
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Table 8 Heuristic solutions compared with MILP-2 solutions for the no-setup case 

when K=5 and N=15 

Problem 

Instance 

Total Completion Time 
% 

HEURISTIC MILP-2 

51_N 3971 3811 4,20 

52_N 6031 5596 7,77 

53_N 2276 2174 4,69 

54_N 6255 5859 6,76 

55_N 2622 2557 2,54 

56_N 6828 6828 0,00 

57_N 4489 4311 4,13 

58_N 5461 5405 1,04 

59_N 4339 4134 4,96 

60_N 7906 7892 0,18 

61_N 5622 5612 0,18 

62_N 3776 3663 3,08 

63_N 2456 2328 5,50 

64_N 7183 7183 0,00 

65_N 2098 2083 0,72 

66_N 6744 6744 0,00 

67_N 4968 4740 4,81 

68_N 5020 4867 3,14 

69_N 5400 5225 3,35 

70_N 6384 6130 4,14 

71_N 3384 3351 0,98 

72_N 5073 4903 3,47 

73_N 4618 4242 8,86 

74_N 7254 7224 0,42 

75_N 3959 3931 0,71 

AVG 4964,68 4831,72 3,03 

MAX 7906 7892 8,86 

MIN 2098 2083 0,00 

 

As can be seen from the Table 8, total completion time values that are obtained by the 

heuristic do not differ much than the values obtained by the mathematical model which 

indicates heuristic still provides near-optimal solutions when we ignore setup times 

between jobs. The average deviation from the MILP-2 solutions is %3.03. Maximum 

and minimum percent deviations are %8.86 and %0.00, respectively.  

Table 9 illustrates the total completion time values obtained by the heuristic and the 

MILP-2 for the problem instances when K =5 and N =20. 
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Table 9 Heuristic solutions compared with MILP solutions for the no-setup case 

when K=5 and N=20 

Problem 

Instance 

Total Completion Time 
% 

HEURISTIC MILP-2 

76_N 5647 5641 0,11 

77_N 6065 5977 1,47 

78_N 8654 8650 0,05 

79_N 7190 6900 4,20 

80_N 6123 6122 0,02 

81_N 5652 5419 4,30 

82_N 6174 5982 3,21 

83_N 5708 5613 1,69 

84_N 9169 9160 0,10 

85_N 5300 5156 2,79 

86_N 6228 6228 0,00 

87_N 4744 4591 3,33 

88_N 3955 3955 0,00 

89_N 6952 6737 3,19 

90_N 8726 8516 2,47 

91_N 6113 5940 2,91 

92_N 5974 5950 0,40 

93_N 5862 5494 6,70 

94_N 7304 7304 0,00 

95_N 8425 8347 0,93 

96_N 6154 5912 4,09 

97_N 7501 7437 0,86 

98_N 9265 9226 0,42 

99_N 6253 6143 1,79 

100_N 8513 8417 1,14 

AVG 6706,04 6592,68 1,85 

MAX 9265 9226 6,70 

MIN 3955 3955 0,00 

 

We can say that the proposed heuristic yields satisfactory results comparing to those 

of the mathematical model when the number of jobs are increased to 20. The average 

deviation from the MILP-2’s solutions is %1.85. Maximum and minimum percent 

deviations are %6.70 and %0.00, respectively.   

The remaining tables for the solutions of the heuristic algorithm compared with the 

MILP-2 solutions for the no-setup case are provided in Appendix C. 

 

Lastly, the summary table of the heuristic performance for different problem sizes are 

presented in Table 10.   
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Table 10 The average, maximum and minimum percent deviations between solutions 

obtained by the heuristic and the MILP-2 for the no-setup case 

 

K N Number 

of 

Problem 

Instances 

Average 

Percent 

Deviation 

Maximum 

Percent 

Deviation 

Minimum 

Percent 

Deviation 

5 5 25 2,06 19,20 0,00 

10 25 2,40 10,30 0,00 

15 25 3,57 8,86 0,00 

20 25 2,17 6,70 0,00 

Total & Averages 100 2,55 11,27 0,00 

10 5 25 2,58 8,95 0,00 

10 25 2,11 12,69 0,00 

15 25 3,28 10,58 0,00 

20 25 2,27 13,84 0,00 

Total & Averages 100 2,56 11,52 0,00 

15 5 25 2,10 9,42 0,00 

10 25 2,30 6,60 0,00 

15 25 3,34 9,86 -0,04 

20 25 4,08 16,43 -0,23 

Total & Averages 100 2,95 10,58 -0,07 

20 5 25 1,31 5,50 0,00 

10 25 1,78 8,49 0,00 

15 25 2,16 7,09 -2,56 

20 25 2,52 9,38 -6,65 

Total & Averages 100 1,94 7,62 -2,30 

 Total & Grand 

Averages 
 400 2,50 10,24 -0,59 

 

 

The grand averages of percent deviations are %2.55, %2.56, %2.95, and %1.94 for the 

problems when K=5, K=10, K=15, and K=20, respectively. The grand percent 

deviation of the heuristic for the no-setup case  is %2.50. Minimum percent deviations 

are obtained in some of non-optimal problems solved by MILP-2; however, heuristic 

provides better solutions. 

Figure 5 depicts the average computational time of the heuristic algorithm for different 

problem sizes for the no-setup case. Computational time tends to increase with respect 

to the number of jobs; whereas, it is small in general. 
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Figure 5 Average CPU time of the heuristic algorithm for the no-setup case 

 

 

5.3.2.2 A Comparative Analysis of the Proposed Heuristic Algorithm 
 

In this section, in order to analyze the behavior of the proposed heuristic algorithm, 

we investigated its search space and compared the results against complete 

enumeration technique. As we already know that a complete algorithm explores the 

whole search space however, computational effort raises exponentially. On the other 

hand, effective heuristic algorithms do not carry out a complete search on the solution 

space; instead, it explores some part of the solution space using heuristic information 

within a limited time. Therefore, it is important for us to report how effective our 

proposed heuristic on finding near-optimal solutions in whole search space. First, we 

analyzed the number of job sequences generated for each problem instance for setup 

and no-setup case, respectively. We obtained the number of job sequences generated 

for each problem instance when finding optimal sequence of jobs by the algorithm. 

Then, to analyse the search space used by the heuristics, the ratio of generated job 

sequences divided by all possible number of solutions (𝑁!) is defined. It is obvious 

that there are 𝑁! possible solutions of complete job sequences for each problem 

instance. For instance, there are 5!, 10!, 15! and 20! possible solutions when the 

number of jobs are 5, 10, 15 and 20, respectively.  

 

The tables of the computational experiments for setup case and no-setup case are 

provided in Appendix D and Appendix E, respectively. We can easily deduce from the 
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computational results that the proposed heuristic is very good on finding optimal 

solutions in a reasonable time. The heuristic carries out only small proportion of the 

solution space and finds optimal solutions for all problem instances. In other words, 

the algorithm reaches optimal solutions only within two or three more iterations since 

the last best solution was found after the Phase-1 of the algorithm.  

 

5.3.2.3 Initial Solution Improvement for the Proposed Heuristic Algorithm 
 

In order to assess the contribution of each phase of the proposed heuristic, we 

compared the solutions that are obtained from Phase-1 and Phase-2 (Tabu Search) of 

the algorithm separately. As we said the algorithm works in two phases: Phase 1 

prepares heuristic solution which will be used in Phase 2 with tabu-search method 

thereafter. Table 13 shows the computational results for the improvement in the 

solutions in Phase-2 (Tabu Search) that are found in Phase-1 for the setup case.  

 

Table 11 Objective Function Improvement in Phase-2 for the setup case 

 

K N 
Number of 

Problem 

Instances 

Number of 

Improved 

Solutions in 

Phase-2 

Average Objective 

Improvement (%) 

5 5 25 14 1,95 

10 25 14 0,98 

15 25 12 0,57 

20 25 16 0,51 

Total & Averages 100 56 1,00 

10 5 25 17 4,08 

10 25 8 0,65 

15 25 10 0,52 

20 25 15 0,59 

Total & Averages 100 50 1,46 

15 5 25 12 3,22 

10 25 16 0,79 

15 25 11 0,52 

20 25 10 0,22 

Total & Averages 100 49 1,18 

20 5 25 20 4,48 

10 25 13 0,66 

15 25 16 0,93 

20 25 13 0,43 

Total & Averages 100 62 1,63 

Total & Grand 

Averages 
  400 217 1,32 
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As expected, Phase-1 has a major impact in the quality of the obtained solutions due 

to generation of a richer neighborhood in Phase-2. There are 217 problems out of 

total 400 problem instances for the setup case are improved in Phase-2 of the 

algorithm. Average improvement percentages are relatively low due to strong initial 

solution provided in Phase-1 and the grand improvement percentage for a total of 

400 problem instances is %1.32.  

 

On the other hand, Table 14 shows the summary results for the improvement in the 

solutions in Phase-2 (Tabu Search) that are found in Phase-1 for the no-setup case. 

 

Table 12 Objective Function Improvement in Phase-2 for the no-setup case 

 

K N 
Number of 

Problem 

Instances 

Number of 

Improved 

Solutions in 

Phase-2 

Average 

Objective 

Improvement 

(%) 

5 5 25 13 3,29 

10 25 11 0,77 

15 25 12 0,86 

20 25 13 0,57 

Total & Averages 100 49 1,37 

10 5 25 14 4,10 

10 25 8 0,87 

15 25 11 0,58 

20 25 14 0,58 

Total & Averages 100 47 1,53 

15 5 25 14 4,77 

10 25 11 0,53 

15 25 9 0,46 

20 25 6 0,12 

Total & Averages 100 40 1,47 

20 5 25 18 6,04 

10 25 12 0,72 

15 25 11 0,39 

20 25 12 0,25 

Total & Averages 100 53 1,85 

Total & Grand 

Averages 
  400 189 1,56 

 

As can be seen, the scenario is similar for the no-setup case. There are 189 problems 

out of 400 problem instances are improved in Phase-2 of the algorithm. The grand 

improvement percentage is %1.56 which is relatively low again. 
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The detailed tables for the comparison of two phases of the algorithm for all problem 

instances for setup case and no-setup case are provided in Appendices F and G, 

respectively. 

 

5.3.3. Comparison of the Job-based and Order-based Processing Approaches  

In this section, we discuss the results of our experiments on the mathematical models 

of both job-based and order-based processing approaches. 

5.3.3.1 Setup Case  

First, we analyzed the results of the experiments with setup times. As it was mentioned 

in Lemma 3 in Chapter 2, the problem 𝑃𝑂𝐵𝑃 gives optimal sequence of customer orders 

when there are setup times. Even though there is a significant amount of reduction in 

setup times in the problem 𝑃𝑂𝐵𝑃, the solutions of the problem 𝑃𝐽𝐵𝑃 outperforms it from 

the results of the experiments. The job-based processing approach yields better 

solutions for 310 problems out of 400 test problems when the setup times are involved. 

Experiment results also demonstrates that large size problems are not optimally solved 

by the job-based approach, however provides the best integer solutions which are still 

smaller than the solutions obtained for the problems 𝑃𝑂𝐵𝑃. For example, for the 

problem set with 10 customer orders and 15 jobs, there are 12 non-optimal solutions 

found by the job-based approach and these solutions are smaller than the order-based 

approach. As shown in Table 7, job-based processing approach yields negative mean 

percent deviations which indicate the results obtained by the job-based processing 

approach is better than the results obtained by the order-based processing approach 

with setup saving. As the number of customer orders and jobs increase, the percent 

deviation gets larger and the job-based approach provides better solutions for the setup 

case. 

 

 

 

 

 

 

 

 

 



 

 

49  

Table 13 Comparison of the job-based and order-based processing approaches for 

the setup case 

K N Number of 

problem 

instances  

Average % 

difference  

5 5 25 -6,69 

10 25 -7,70 

15 25 -8,68 

20 25 -7,63 

Total & Averages   100 -7,67 

10 5 25 -7,05 

10 25 -8,75 

15 25 -15,50 

20 25 -24,00 

Total & Averages   100 -13,82 

15 5 25 -9,53 

10 25 -11,35 

15 25 -15,88 

20 25 -17,08 

Total & Averages   100 -13,46 

20 5 25 -12,50 

10 25 -14,70 

15 25 -18,26 

20 25 -19,30 

Total & Averages   100 -16,19 

Total & Grand 

Averages 
  400 -12,79 

 

 

5.3.3.2 No-setup Case  

The results of the problem instances when there is no setup time between jobs differ 

significantly. As it was described in Remark 1 in Section 2, the problem 𝑃𝑂𝐵𝑃 turns 

into the problem 𝑃𝑂𝐵𝑃
′  when we ignore setup times. Thus, both problems provide the 

same sequence of customer orders for the problem instances. As can be seen in Table 

8, in contrast, the difference between job-based and order-based processing approaches 

now yields high positive average percent deviations between the solutions, which 

indicate that the order-based processing approach is better than the job-based 

processing approach when we ignore setup times in the same problem instances.  
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Table 14 Comparison of the job-based and order-based processing approaches for 

the no-setup case 

K N Number of 

problem 

instances  

Average % 

difference  

5 5 25 23,18 

10 25 40,74 

15 25 47,98 

20 25 50,92 

Total & Averages   100 40,71 

10 5 25 32,31 

10 25 34,49 

15 25 54,91 

20 25 58,53 

Total & Averages   100 45,06 

15 5 25 29,73 

10 25 38,49 

15 25 69,94 

20 25 74,25 

Total & Averages   100 53,10 

20 5 25 30,52 

10 25 41,05 

15 25 79,76 

20 25 82,15 

Total & Averages   100 58,37 

Total & Grand 

Averages 
  400 49,31 

 

 

We can deduce that customer order scheduling with the job-based processing approach 

yields better results when there is setup time. On the other hand, the order-based 

processing approach is more preferable when there is no setup time. However, the 

importance of setup times in production scheduling cannot be underestimated. 

Therefore, manufacturers or decision-makers should tailor processing methods to their 

needs for effective scheduling of customer orders. 
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

In this study, we consider a customer order scheduling problem in a single machine to 

find a schedule with a sequence of jobs and the sequence of customer orders in each 

job when the job-based processing approach is used and compare this schedule with 

the schedule having the order-based processing approach. The total completion time 

of the customer orders is minimized in each processing approach. 

 

We have proved that the problem 𝑃𝑂𝐵𝑃
′  with order-based processing in a single-

machine environment is easy and polynomial-time solvable, and developed two MILP 

models and a tabu-search based heuristic algorithm that obtain optimal and near-

optimal solutions, respectively, for the problem 𝑃𝐽𝐵𝑃. Our empirical study shows that 

the second model (MILP-2) finds optimal solutions for problems up to 10 jobs 

regardless of what the number of customer orders is in less than 3 hours of CPU time. 

However, there are problems with 15 and 20 jobs were not solved optimally. From 

these observations, it is clear that solving the problem with a standard MILP solver 

seems to be ineffective, especially for large-sized problem instances. The results also 

show that our proposed heuristic algorithm provides satisfactory solutions as it solves 

small and medium-sized problem instances optimally and finds near-optimal solutions 

for large-sized instances in a very short computational time.  

 

We have also compared the order-based and job-based processing approaches, and 

observed that the job-based processing approach gives better results than the order-

based processing approach when a setup on the machine is needed before starting to 

process each job (product). On the other hand, if there is no-setup, our observation was 

reversed towards the order-based processing as we expected. 
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We believe that there are several fruitful issues for future research in the customer 

order scheduling problem with job-based processing. First, it would be interesting to 

develop a branch and bound algorithm as another exact solution procedure for the job-

based processing problem 𝑃𝐽𝐵𝑃 considered in our study. Second, the complexity of the 

problem 𝑃𝐽𝐵𝑃 is open for future investigation. Third, more elaborated metaheuristics, 

such as simulated annealing and genetic algorithm, could be developed and compared 

with our tabu-search algorithm. Fourth, total tardiness, maximum lateness, and the 

number of tardy customer orders could be other scheduling criteria to be investigated 

if there are due dates for the customer orders. Finally, considering the job-based 

processing approach on more complex machining environments, including parallel 

machines, flow shop, job shop, and open shop, would be other subjects of future study. 
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APPENDICES 

 

APPENDIX A – MATHEMATICAL MODEL FOR THE PROBLEM 𝑷𝑶𝑩𝑷 

 

Parameters, indices and sets 

𝐾 Number of customer orders. 

𝑖 Index for customer orders (𝑖 = 1,2, … , 𝐾). 

𝑗 Index for jobs. (𝑗 = 1,2, … , 𝑁). 

𝑘 Index for position of customer orders in the sequence (𝑘 = 1,2, … , 𝐾). 

𝐷𝑖,𝑗 𝐷𝑖,𝑗 = 1 if customer order 𝑂𝑖 has job 𝐽𝑗; otherwise, 𝐷𝑖,𝑗 = 0 

𝑝𝑗 Processing time for job 𝐽𝑗. 

𝑠𝑗 Setup time for job 𝐽𝑗. 

𝑁𝑖 Set of different jobs in customer 𝑂𝑖. 

𝐴  Set of customer orders having more than one job to be processed. 

𝑇𝑇𝑖 Total (sum of setup and processing) time of all jobs in customer order 𝑂𝑖, 

where  𝑇𝑇𝑖 = ∑ (𝑠𝑗 + 𝑝𝑗)𝐽𝑗 ∈ 𝑂𝑖  

𝑆𝑇ℎ𝑗 Setup time between jobs 𝐽ℎ and 𝐽𝑗 if job 𝐽𝑗 immediately follows job 𝐽ℎ, where 

𝑆𝑇ℎ𝑗 = 𝑠𝑗 if j ≠ h; otherwise, 𝑆𝑇ℎ𝑗 = 0. 

Decision variables 

𝑋𝑖𝑘 =  {   
1 if customer order 𝑂𝑖 assigned to position 𝑘 

    0 otherwise                                                                    
 

Fjik =  {
1 if job 𝐽𝑗is the first job in customer order 𝑂𝑖 assigned to position 𝑘  

         0 otherwise                                                                                                                     
 

𝐿𝑗𝑖𝑘 =  {
1 if job 𝐽𝑗is the last job in customer order 𝑂𝑖 assigned to position 𝑘 

          0 otherwise                                                                                                                  
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𝑌ℎ𝑖𝑗𝑙𝑘 =  {

1 if both 𝐿ℎ𝑖𝑘and 𝐹𝑗𝑙,𝑘+1are equal to 1 (i. e. , last job of a customer order              

   and the first job of the immediately following custmer order are not same. ) 
0  otherwise                                                                                                                              

 

𝑅𝑇𝑖𝑘      Realized total (sum of setup and processing) time of customer orders 𝑂𝑖  

              assigned to position k. 

TC     Total completion time of customer orders. 

MILP model 

Minimize    𝑇𝐶 = ∑ (𝐾 − 𝑘 + 1) ∑ (𝑅𝑇𝑖𝑘)𝐾
𝑖=1

𝐾
𝑖=1              (A.1) 

Subject to   ∑ 𝑋𝑖𝑘
𝐾
𝑖=1 = 1          for 𝑘 = 1,2, … , 𝐾   (A.2) 

                      ∑ 𝑋𝑖𝑘
𝐾
𝑘=1 = 1          for 𝑖 = 1,2, … , 𝐾   (A.3) 

                      ∑ ∑ 𝐹𝑗𝑖𝑘
𝐾
𝑖=1𝒋∈𝑵𝒊

= 1  for 𝑘 = 1,2, … , 𝐾   (A.4) 

                      ∑ ∑ 𝐿𝑗𝑖𝑘
𝐾
𝑖=1𝒋∈𝑵𝒊

= 1  for 𝑘 = 1,2, … , 𝐾    (A.5) 

 𝐹𝑗𝑖𝑘 ≤ 𝐷𝑙𝑗𝑋𝑙𝑘                  for 𝑗 ∈ 𝑁𝑖; 𝑖 = 1,2, … , 𝐾;  𝑘 = 1,2, … , 𝐾  (A.6)                     

 𝐿𝑗𝑖𝑘 ≤ 𝐷𝑙𝑗𝑋𝑙𝑘              for 𝑗 ∈ 𝑁𝑖; 𝑖 = 1,2, … , 𝐾;  𝑘 = 1,2, … , 𝐾   (A.7) 

       𝐿ℎ𝑖𝑘 + 𝐹𝑗𝑙𝑘+1 − 1 ≤ 𝑌ℎ𝑖𝑗𝑙𝑘  for 𝑗 ∈ 𝑁𝑖; ℎ ∈ 𝑁𝑖; 𝑗 ≠ ℎ; 𝑖 = 1,2, … , 𝐾 

         𝑙 = 1,2, … , 𝐾; 𝑙 ≠ 𝑖;  𝑘 = 1,2, … , 𝐾    (A.8)    

                   𝐹𝑗𝑖𝑘 + 𝐿𝑗𝑖𝑘 ≤ 1               for 𝑗 ∈ 𝑁𝑖; 𝑖 ∈ 𝐴; 𝑘 = 1,2, … , 𝐾        (A.9)        

                  𝑅𝑇𝑖1 ≥ 𝑇𝑇𝑖𝑋𝑖1  for 𝑖 = 1,2, … , 𝐾  (A.10) 

      𝑅𝑇𝑖𝑘 ≥ 𝑇𝑇𝑖𝑋𝑖𝑘 − ∑ 𝑠𝑗𝑗∈𝑁𝑖
𝐹𝑗𝑖𝑘 ∑ ∑ ∑ 𝑆𝑇ℎ𝑗𝑌ℎ𝑖𝑗𝑙𝑘−1

𝐾
𝑙=1𝑗∈𝑁𝑖ℎ∈𝑁𝑖

  

   for 𝑖 = 1,2, … , 𝐾; 𝑘 ≥ 2          (A.11) 

      𝑅𝑇𝑖𝑘 ≥ 0      for ∀𝑖, 𝑘                     (A.12) 

                 𝑋𝑖𝑘, 𝐹𝑗𝑖𝑘 , 𝐿𝑗𝑖𝑘 , 𝑌ℎ𝑖𝑗𝑙𝑘 ∈ {0,1} for ∀ ℎ, 𝑖, 𝑗, 𝑘, 𝑙  (A.13) 
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“In the above MILP model, the objective in (A.1) is to minimize the total completion 

time. Constraint sets (A.2) and (A.3) ensure that each position in the sequence of 

customer orders is occupied by one customer only and each customer order is assigned 

to one position only, respectively. Constraint sets (A.4) and (A.5) guarantee only one 

job in each customer order can be processed as the first or last job in its customer order, 

respectively. Constraint sets (A.6) and (A.7) ensure that a job cannot be the first or last 

job of a customer order assigned to a position if this customer order does not include 

the job. Constraint set (A.8) satisfies the condition that no setup time is necessary 

before the processing of the first job of a customer order if this first job is same as the 

last job of the immediately preceding customer order. Constraint set (A.9) guarantees 

that each job in a customer order can be the first, immediate or last job of this customer 

order. Constraint sets (A.10) and (A.11) define the realized total (sum of setup and 

processing) time of the customer orders assigned to the first and other positions, 

respectively. Constraint sets (A.12) and (A.13) impose non-negativity and binary 

restrictions on the decision variables, respectively.” (Akkocaoğlu, 2014, p.22-25) 
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APPENDIX B – TOTAL COMPLETION TIME VALUES OBTAINED BY THE HEURISTIC AND THE MILP-2 FOR THE SETUP 

CASE 

 

 

 

Table B.1 Total Completion Time Values when K=5 
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Table B.2 Total Completion Time Values when K=10 
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Table B.3 Total Completion Time Values when K=15 
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Table B.4 Total Completion Time Values when K=20 
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APPENDIX C – TOTAL COMPLETION TIME VALUES OBTAINED BY THE HEURISTIC AND THE MILP-2 FOR THE NO-

SETUP CASE 

 
Table C.1 Total Completion Time Values when K=5 
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Table C.2 Total Completion Time Values when K=10 
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Table C.3 Total Completion Time Values when K=15 
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Table C.4 Total Completion Time Values when K=20 
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APPENDIX D –   COMPARATIVE ANALYSIS OF THE PROPOSED HEURISTIC ALGORITHM FOR THE SETUP CASE 

 

Table D.1 The number of job sequences generated by the heuristic when N=5 
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Table D.2 The number of job sequences generated by the heuristic when N=10 
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Table D.3 The number of job sequences generated by the heuristic when N=15 
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Table D.4 The number of job sequences generated by the heuristic when N=20 
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APPENDIX E –   COMPARATIVE ANALYSIS OF THE PROPOSED HEURISTIC ALGORITHM FOR THE NO-SETUP CASE 

 
Table E.1 The number of job sequences generated by the heuristic when N=5 
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Table E.2 The number of job sequences generated by the heuristic when N=10 
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Table E.3 The number of job sequences generated by the heuristic when N=15 
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Table E.4 The number of job sequences generated by the heuristic when N=20 
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APPENDIX F –   ANALYSES OF SOLUTION IMPROVEMENT IN PHASE-2 FOR THE SETUP CASE 

 

Table F.1 Objective Function Improvement in Phase-2 (Tabu Search) when K=5 
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Table F.2 Objective Function Improvement in Phase-2 (Tabu Search) when K=10 
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Table F.3 Objective Function Improvement in Phase-2 (Tabu Search) when K=15 
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Table F.4 Objective Function Improvement in Phase-2 (Tabu Search) when K=20 
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APPENDIX G – ANALYSES OF SOLUTION IMPROVEMENT IN PHASE-2 FOR THE NO-SETUP CASE 

 

Table G.1 Objective Function Improvement in Phase-2 (Tabu Search) when K=5 
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Table G.2 Objective Function Improvement in Phase-2 (Tabu Search) when K=10 
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Table G.3 Objective Function Improvement in Phase-2 (Tabu Search) when K=15 
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Table G.4 Objective Function Improvement in Phase-2 (Tabu Search) when K=20 

 


