COMPARISON OF TWO PROCESSING APPROACHES FOR SOLVING A CUSTOMER ORDER SCHEDULING PROBLEM

## PINAR YELOĞLU

COMPARISON OF TWO PROCESSING APPROACHES FOR SOLVING A CUSTOMER ORDER SCHEDULING PROBLEM

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

## STATEMENT OF NON PLAGIARISM

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name : Pınar Yeloğlu

Signature

Date

# ABSTRACT <br> COMPARISON OF TWO PROCESSING APPROACHES FOR SOLVING A CUSTOMER ORDER SCHEDULING PROBLEM 

YELOĞLU, Pınar<br>M.Sc., Department of Industrial Engineering<br>Supervisor: Prof. Dr. Ferda Can ÇETİNKAYA

February 2020, 83 pages

This study considers a customer order scheduling (COS) problem in which each customer requests a variety of products (jobs) processed on a single machine. A sequence-independent setup for the machine is needed before processing each product. All products in a customer order are delivered to the customer when the processing of these products is completed. The completion time of the product processed as the last product in a customer order defines the completion time of the customer order. We aim to find the best schedule of the customer orders and the products to minimize the total completion time of the customer orders. We have studied this customer order scheduling problem with order-based and job-based processing approaches. We have developed two mixed-integer linear programming models, which are capable of solving the small and medium-sized problem instances optimally for the job-based processing approach, which has not been studied in the literature, and a heuristic algorithm for large-sized problem instances. The results of our empirical study show that our tabu-search based heuristic algorithm gives optimal or near-optimal solutions in a very short time. In addition, we have compared the order-based, and job-based processing approaches for both setup and no-setup cases.

Keywords: Customer order scheduling; order-based processing, job-based processing, total completion time; mixed integer linear programming; tabu search

## ÖZ

# MÜŞTERİ SİPARİŞLERİNİ ÇİZELGELEME PROBLEMİ İÇíN İKİ İŞLEME YAKLAŞIMININ KARŞILAŞTIRILMASI 

YELOĞLU, Pınar<br>Yüksek Lisans, Endüstri Mühendisliği

Anabilim Dalı Tez Yöneticisi: Prof. Dr. Ferda Can ÇETİNKAYA

Şubat 2020, 83 sayfa

Bu çalışma, her bir müşterinin tek bir makinede işlenen çeşitli ürünleri (işleri) talep ettiği siparişlerin çizelgelenmesi problemini ele almaktadır. Her bir ürünü işlemeden önce makine için sıra-bağımsız bir hazırlık (kurulum) gereklidir. Bir müşterinin siparişindeki tüm ürünler, bu ürünlerin işlenmesi tamamlandığında müşteriye teslim edilir. Bir müşteri siparişinde son ürün olarak işlenmiş ürünün tamamlanma süresi müşteri siparişinin tamamlanma süresini belirler. Amacımız, müşteri siparişlerinin toplam tamamlanma süresini en aza indirmek için müşteri siparişleri ve ürünlerinin en iyi çizelgelemesini belirlemektir. Bu müşteri siparişlerini çizelgeleme problemini sipariş bazlı ve ürün bazlı işleme yaklaşımları ile çalışıık. Literatürde çalışılmamış olan ürün bazlı işlem yaklaşımı için küçük ve orta ölçekli problemleri en iyi şekilde çözebilen iki tane karışık tamsayılı doğrusal programlama modeli ile büyük ölçekli problemler için bir tabu arama esaslı sezgisel bir algoritma geliştirdik. Ayrıca, hazırlık sürelerinin olduğu ve olmadığı durumlar için sipariş ve iş bazlı işleme yaklaşımlarını karşılaştırdık.

Anahtar Kelimeler: Müşteri siparişlerini çizelgeleme; sipariş bazlı işleme, iş bazlı işleme, toplam tamamlanma süresi; karışık tamsayılı doğrusal programlama; tabu arama

## ACKNOWLEDGEMENTS

There are several people that I would like to acknowledge for their help and support throughout my MSc. Program. First, I would like to express my sincere gratitude to my supervisor Professor Ferda Can Çetinkaya. He has patiently advised and helped me stay on track. His careful editing contributed enormously to the production of this thesis.

I would also like to express my appreciation to Hale Akkocaoğlu Çatmakaş for her constant help and advice, which were determinant for the work presented in this thesis.

I am also grateful to İbrahim Ediz for his help in computer programming issues, which made my computational studies smoother. He has been there, providing his heartfelt support and helping out whenever questions of doubt arose during the process.

Words are inadequate to express my gratitude to my friends, Melike Ekren, Sevginur Bostan, Zeynep Korkmaz, and Eylül Öykü Demir for their endless support, motivation, and unforgettable friendships.

Last but not least, I have limitless thanks to my parents. Their support and love was my driving force. To them, I dedicate this thesis.

## TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM ..... iii
ABSTRACT ..... iv
ÖZ .....  V
ACKNOWLEDGEMENTS ..... vi
TABLE OF CONTENTS ..... vii
LIST OF FIGURES ..... ix
LIST OF TABLES ..... X
LIST OF ABBREVIATIONS ..... xi
CHAPTERS:

1. INTRODUCTION ..... 1
2. PROBLEM DEFINITION AND PRELIMINARY RESULTS ..... 4
2.1. Problem Definition ..... 4
2.2. An Illustrative Example ..... 5
2.3. Preliminary Results ..... 7
3. LITERATURE REVIEW ..... 12
3.1. Customer Order Scheduling ..... 12
3.2. Group Scheduling ..... 14
4. PROPOSED SOLUTION APPROACHES: MIXED INTEGER PROGRAMMING MODELS AND A TABU-SEARCH BASED HEURISTIC ALGORITHM ..... 17
4.1. Mixed Integer Programming Models ..... 17
4.1.1. The First Model (MILP-1) ..... 18
4.1.2. The Second Model (MILP-2) ..... 20
4.2. Heuristic Algorithm. ..... 21
4.3. A Numerical Example ..... 26
5. COMPUTATIONAL STUDY ..... 33
5.1. Problem Instances Design ..... 33
5.2. Performance Measures ..... 34
5.3. Discussion of the Results ..... 35
5.3.1. Performance of the MILP-2 Model for the Job-based Processing ..... 35
5.3.1.1. Setup Case ..... 35
5.3.1.2. No-setup Case ..... 36
5.3.2. Performance Evaluation of the Proposed Heuristic Algorithm. ..... 37
5.3.2.1. Computational Results of the Heuristic Algorithm for the Job- based Processing ..... 37
5.3.2.1.1. Setup Case ..... 37
5.3.2.1.2. No-setup Case ..... 41
5.3.3. Comparison of the Job-based and Order-based Processing Approaches ..... 48
5.3.3.1 Setup Case ..... 48
5.3.3.2 No-setup Case ..... 49
6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS ..... 51
REFERENCES ..... 53
APPENDICES ..... 57

## LIST OF FIGURES

Figure 1 Gantt chart for the example problem: (a) with order-based processing having no setup savings; (b) with order-based processing having setup savings; and (c) with job-based processing6
Figure 2 Positions of the customer orders in a job ..... 10
Figure 3 Gantt chart of the schedule for the numerical example problem ..... 32
Figure 4 Average CPU time of the heuristic algorithm for the setup case ..... 41
Figure 5 Average CPU time of the heuristic algorithm for the problem instances for no-setup case ..... 45

## LIST OF TABLES

Table 1 Customer orders, setup times, and unit-processing times ..... 6
Table 2 Data set for the numerical example ..... 26
Table 3 Performance of the MILP-2 model for the setup case ..... 35
Table 4 Performance of the MILP-2 model for the no-setup case ..... 36
Table 5 Heuristic solutions compared with MILP-2 solutions for the setup case when $K=5$ and $N=15$ ..... 38
Table 6 Heuristic solutions compared with MILP-2 solutions for the setup case when $K=5$ and $N=20$ ..... 39
Table 7 The average, maximum and minimum percent deviations between solutions obtained by the heuristic and the MILP-2 for the setup case ..... 40
Table 8 Heuristic solutions compared with MILP-2 solutions for the no-setup case when $K=5$ and $N=15$ ..... 42
Table 9 Heuristic solutions compared with MILP solutions for the no-setup case when $K=5$ and $N=20$ ..... 43
Table 10 The average, maximum and minimum percent deviations between solutions obtained by the heuristic and the MILP-2 for the no-setup case ..... 44
Table 11 Objective Function Improvement in Phase-2 for the setup case ..... 46
Table 12 Objective Function Improvement in Phase-2 for the no-setup case ..... 47
Table 13 Comparison of the job-based and order-based processing approaches for the setup case ..... 49
Table 14 Comparison of the job-based and order-based processing approaches for the no-setup case ..... 50

## LIST OF ABBREVIATIONS

| COS | Customer Order Scheduling |
| :--- | :--- |
| GAMS | General Algebraic Modelling System |
| GS | Group Scheduling |
| GT | Group Technology |
| JBP | Job-based Processing |
| MILP | Mixed Integer Linear Programming |
| NEH | Nawaz, Enscore, Ham |
| NP | Non-deterministic Polynomial-time |
| OBP | Order-based Processing |
| SCO | Sequence of Customer Orders |
| SPT | Shortest Processing Time |
| STT | Shortest Total Time |
| TS | Tabu Search |
| TT | Total Time |

## CHAPTER 1

## INTRODUCTION

Most of the existing research on classical scheduling problems, except the customer order scheduling (COS) problem, assumes that there is a single customer that orders multiple different products (jobs), or there are multiple orders, each of which consists of only a single product (job). However, in a real-world make-to-order manufacturing system, there are multiple customer orders, in which each order is a collection of several products (jobs) that are often produced in a job lot consisting of many customer orders demanding the same product. In such a system, an order is shipped as a group to the customer, but only on the completion time of the last job of that order (Liu, 2009). In the COS, the problem is to satisfy the demand of several customers, who give orders with a set of several products (jobs) having different quantities, by optimizing the scheduling performance (objective).

In manufacturing environments, there are two extreme processing approaches for producing the products: the order-based processing (OBP), and the job-based processing (JBP). In the order-based processing, which is most frequently used in previous COS studies in the literature, all different products in a customer order form an order lot (group) and all products in this order lot are processed successively without intermingled with products of other customer orders (Yang, 2011). In other words, if the processing of a product in a customer order starts on a machine, then all different products within that customer order should be processed before switching the machine to process the products of another customer order. This processing approach follows the so-called group technology (GT) assumption. Decisions in the order-based processing are made to simultaneously determine the sequence of the customer order lots and the sequence of products (jobs) in each customer order lot. However, in jobbased processing, the same products from different customer orders form a product lot
and are processed successively without intermingled with other products. In other words, all customer orders for a product should be processed before switching the machine to process the customer orders for another product. Decisions in the job-based processing are made to simultaneously determine the sequence of the products (jobs) and the sequence of customer orders in each job. While the order-based processing aims to manage the customer orders on the shop floor easily, the job-based processing aims to reduce the negative effect of the job setups, especially when setup times required before processing the products are significantly large.

The optimal solution of the COS problem with order-based processing in a singlemachine environment is easy and polynomial-time solvable, as shown in Section 2.2 when the scheduling performance is to minimize the total completion time, which is the sum of the completion times of the customer orders and is equivalent to minimizing total work-in-process inventory focusing on increasing the customer satisfaction. For the same scheduling performance, the COS problem with job-based processing is, however, not as easy as the problem with order-based processing. Thus, in our study, we will focus on the job-based processing problem, in which the aim is to determine a schedule that gives both the sequence of products (jobs) and the sequence of customer orders in each job sequence to minimize the total completion time of the customer orders. Furthermore, it is clear that the objective function values of the COS problem with these two extreme processing approaches are expected to be different so that, in our study, the order-based and job-based processing approaches for a single machine with both setup and no-setup cases will also be compared.

There are several contributions of our study. First, to the best of our knowledge, no previous research has considered our particular COS problem with the job-based processing for a single machine to minimize the total completion time, and we aim to contribute to the customer order literature in this direction. Second, we formulate a mixed-integer linear programming (MILP) model to solve the COS problem under consideration optimally. Third, our proposed heuristic algorithm for solving our COS problem is easy to implement for finding optimal and near-optimal solutions for medium and large-sized problem instances in which a solution cannot be obtained by solving the MILP model. Finally, we compare the order-based and job-based processing approaches.

The rest of this thesis is organized as follows. Chapter 2 defines the customer order scheduling problems with the order-based and job-based processing on a singlemachine in detail and presents some structural properties of the optimal schedules for both problems. Chapter 3 provides a brief review of the works most relevant to our study on customer order scheduling. An MILP model and a tabu-search based heuristic algorithm for solving the COS problem with job-based processing are presented in Chapter 4. We give our empirical studies to evaluate the performances of the MILP model and the heuristic algorithm, as well as the comparison of the order-based and job-based processing approaches, in Chapter 5. Finally, in Chapter 6, we discuss the main findings of our study and several directions for future research

## CHAPTER 2

## PROBLEM DEFINITION AND PRELIMINARY RESULTS

In this chapter, we first define our order-based and job-based processing problems in a joint statement in detail. Then, we present a numerical example to illustrate two extreme processing approaches, and finally establish some preliminary results that provide the basis for our analysis.

### 2.1. Problem Definition

For a planning period, consider a scheduling problem of $K$ customers ( $i=1,2, \ldots, K$ ) in which each customer $i$ gives an order $O_{i}$ with one or more products (jobs) from a set of $N$ jobs. Each customer order $O_{i}$ has a demand for $D_{i, j}$ units of identical items of product $j$. A sequence-independent setup with $s_{j}$ time units is needed to set up the machine before processing the product $j$. Sequence-independent setup means that the setup time is dependent only on the product to be processed next and is independent of the previous product. Each job has only one operation to be processed by a single machine, and the unit-processing time of the product $j$ on the machine is $p_{j}$ time units. All products (jobs) ordered by the same customer must be processed consecutively if the order-based processing approach is used. However, when the job-based processing approach is used, all customer orders for the same product must be processed consecutively. The following additional assumptions will be considered in describing our problem:

- All customer orders are available for processing at the same time, say time 0 .
- The machine is available continuously from time zero onwards, with no breakdowns or maintenance delays, to process the products.
- The setup cannot be performed while the machine is processing a job.
- The machine can process, at most, one job at a time.
- No precedence relations among the jobs exist.
- No priorities among the customers exist.
- Job processing cannot be interrupted; i.e., no preemption is allowed.
- All parameters are known with certainty and not subject to any change; i.e., the scheduling problem is deterministic and static.

A completed product within a customer order has to wait until all finished products are being combined with other products belonging to the same customer order and shipped as a complete order. That is, each order is delivered to the customer when the processing of all products within that customer order is completed. Thus, the completion time of the product processed as the last product in a customer order defines the completion time of the customer order. Our goal is to find:

- a schedule with a sequence of customer orders and the sequence of jobs in each customer order when order-based processing approach is used, and
- a schedule with a sequence of the jobs and the sequence of the customer orders in each job when job-based processing approach is used,
so that the total completion time of the customer orders is minimized to increase the customer satisfaction in both processing approaches.

The order-based processing approach can be investigated in two forms:

- "Order-based processing without setup saving" in which setup time is required for each transition between products (jobs) while processing customer orders successively on a machine, and
- "Order-based processing with setup saving" in which setup times are eliminated between products (jobs) while processing customer orders successively on a machine.


### 2.2. An Illustrative Example

Before we proceed with our analysis, it seems appropriate to illustrate two extreme processing approaches by a numerical example. Consider a simple instance of the problem in which there are three customer orders and four products (jobs). Each customer gives order with a set of several products (jobs) having setup and unit
processing times, as in Table 1. For example, Customer 1 gives an order with 10, 5, and 20 units of Products 2, 3, and 4, respectively.

Table 1 Customer orders, setup times, and unit-processing times

| Jobs <br> (Products) | Demand (in units) of <br> the customer orders |  | Setup <br> time | Unit-processing <br> time |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $O_{1}$ | $O_{2}$ |  |  |  |
| $J_{1}$ | - | 5 | 15 | 10 | 1 |
| $J_{2}$ | 10 | - | - | 10 | 4 |
| $J_{3}$ | 5 | 15 | 5 | 10 | 2 |
| $J_{4}$ | 20 | - | 15 | 10 | 1 |

In Figures 1(a) and 1(b), the optimal schedules are illustrated for the order-based processing approach when there is no setup saving and a setup saving, respectively. In Figure 1(c), the optimal schedule for the job-based processing approach is given, and the setup and processing times are illustrated by the gray and blank blocks, respectively.

(a)

(b)

(c)

Figure 1 Gantt chart for the example problem: (a) with order-based processing having no setup savings; (b) with order-based processing having setup savings; and (c) with job-based processing

The optimal sequence of the customer orders is $O_{2}-O_{3}-O_{1}$, in which the customer orders 1,2 , and 3 are completed at 225 , 55 , and 125 time units, respectively, and the total completion time of the customer orders is $55+125+225=405$ time units. However, if we allow processing common jobs successively when switching over customer orders on a machine, the total completion time is decreased due to setup-time savings of jobs. The optimal sequence of the customer orders is $O_{2}-O_{3}-O_{1}$, in which the customer orders 1,2 , and 3 are completed at 205 , 55 , and 115 time units, respectively, and the total completion time is reduced to $55+115+205=375$ time units.

On the other hand, when we solve the problem with the job-based processing approach, the optimal job sequence is $J_{1}-J_{3}-J_{4}-J_{2}$, in which the customer orders 1,2 , and 3 are completed at 185,70 , and 115 time units, respectively, and the total completion time of the customer orders is $185+70+115=370$ time units.

### 2.3. Preliminary Results

We now give some definitions and theorems to investigate the complexities of the problems with different processing approaches, and derive some structural properties of the optimal solutions for these problems.

Definition 1. Let $P_{J B P}, P_{O B P}$ and $P_{O B P}^{\prime}$ denote the problems with job-based processing, order-based processing with setup savings, and order-based processing without setup savings, respectively.

Definition 2. Total Time (TT) of a customer order is the sum of the setup, if any, and processing times of all products (jobs) in this customer order.

Definition 3. The Shortest Total Time (STT) sequence is a sequence in which customer orders are sequenced in non-decreasing order of their total time (TT).

Since there are no restrictions that delay setups, jobs, and customer orders, we have the following result.

Lemma 1. For all problems $P_{J B P}, P_{O B P}$ and $P_{O B P}^{\prime}$, there exists an optimal schedule in which the machine has no idle time; that is, the machine is busy for either processing a customer order of a job or being set up.

The optimal schedule for problem $P_{O B P}^{\prime}$ is given by the following theorem.

Theorem 1. The Shortest Total Time (STT) sequence gives the optimal schedule for problem $P_{O B P}^{\prime}$.

Proof. It is clear that a sequence characterized by a string-based version of STT becomes optimal when each customer order may be treated as a pseudo-string of jobs, as it is given by Pinedo (2008).

Remark 1. It is obvious that the minimum total completion time of the problem $P_{O B P}$ is always less than or equal to the minimum total completion time of the problem $P_{O B P}^{\prime}$. Furthermore, the problem $P_{O B P}$, when there is no-setup time, turns into the problem $P_{O B P}^{\prime}$, which is optimally solved by Theorem 1.

The relevant definitions and theorems for the optimal solution of the problem $P_{O B P}$ can be seen in Akkocaoğlu (2014), and the mathematical model for solving the problem $P_{O B P}$ is given in Appendix A.

Remark 2. When each customer gives an order consisting of only one product different from those ordered by the other customers, we observe that the problem $P_{J B P}$ reduces to the scheduling problem of multiple products (jobs) to minimize the total completion time of the customer orders, which is equivalent to the sum of the job completion times. This reduced problem is equivalent to the classical single-machine problem $1 / \sum C_{j}$ in which there are multiple jobs. In this reduced problem, the STT rule minimizes the total completion time of the customer orders. On the other hand, when there is a single customer order, as an extreme case, with multiple products, we observe that the problem $P_{J B P}$ reduces to the scheduling problem of multiple products (jobs) to minimize the maximum completion time (makespan) of the jobs in that customer order. In this reduced problem, the makespan minimization becomes trivial, and the arbitrary sequence of the products (jobs) is the optimal solution. Therefore, to investigate the complexity of the problem $P_{J B P}$, we assume that the number of
customer orders is more than one, and at least one of the customers gives an order with more than one product (job) from a set of several jobs.

Definition 4. The Smallest Demand (SD) sequence is a sequence in which customer orders of a job are sequenced in non-decreasing order of their demand for this job.

The following lemma describes the sequence for the customer orders of the job in the last position of the optimal schedule for the problem $P_{J B P}$.

Lemma 2. For the problem $P_{J B P}$, there exists an optimal schedule, in which all customer orders of the job in the last position of the job sequence are processed by the SD rule.

Proof Note that the total completion time of the customer orders having no demand for the product (job) processed in the last position of the job sequence does not depend on the sequence of the customer orders in the job processed as the last in the job sequence. Thus, the problem of finding the sequence of the customer orders of the job in the last position of the job sequence can be considered as the single-job case, which is equivalent to the classical single-machine scheduling problem $1 / \sum C_{j}$. Smith (1956) showed that processing the jobs in the shortest processing time (SPT) rule minimizes the total completion time for the basic single-machine problem in which there are multiple jobs. In our problem, all customer orders for the last job in the job sequence can be thought of as the jobs in the classical single-machine scheduling problem, and they should be sequenced by the SD rule.

The following theorem gives the optimal sequence of the customer orders in each job when a product (job) sequence is given for the problem $P_{J B P}$.

Theorem 2. For a given product (job) sequence for the problem $P_{J B P}$, there is an optimal sequence of the customer orders in each job with the following properties:
(a) In each job, the customer orders completed with this job precede all the customer orders completed with the succeeding jobs, as illustrated in Figure 2.
(b) In each job, the set of customer orders completed with this job is scheduled in $S D$ sequence, whereas the set of customer orders completed with the succeeding jobs is sequenced in any order.

Proof. The proof of the first part is straightforward. Suppose that a customer order completed with the current job is preceded by a customer order completed with the succeeding job. The quality of the schedule does not decrease by moving this customer order completed with the succeeding job to the end of the sequence of customer orders in the current job and shifting forward all the customer orders currently succeeding it. The repetition of this argument shows the correctness of the first property.

The proof of the second property follows from the result by Smith (1956), who showed that processing the jobs with SPT rule minimizes the total completion time in a singlemachine scheduling problem $1 / \sum C_{j}$. Starting from the last minus one position of the job sequence, repetitive use of Lemma 2 in the job shows the correctness of the second property.


Figure 2 Positions of the customer orders in a job

Based on Theorem 2, the algorithm SCO below gives the optimal sequence of the customer orders in each job when a job sequence is given for the problem $P_{J B P}$.

## Algorithm SCO

Step 1 For the given job sequence, generate the initial sequence of the customer orders in each job by sorting the customer orders of each job in non-descending order of their demand for this job.

Step 2 a $\operatorname{Set} l=N-1$.
b Let the job in position $l$ of the given job sequence as the current job.
c Starting from the customer order in the first position of the customer orders sequence in the current job, check whether the customer order will be completed in the succeeding jobs. If the answer is yes, then sent this customer order to the last position of the customer orders in the current job; otherwise, keep this customer order in its current position. Repeat this step for all customer orders in the current job.
d Set $l=l-1$. If $l>0$, then go to Step 2b; otherwise, stop.

## CHAPTER 3

## LITERATURE REVIEW

Within the context of scheduling, a customer order and a product ordered by a customer in the COS problem may correspond to a group and a job in the group, respectively, in the Group Scheduling (GS) problem. Thus, the COS and GS are two closely related problems, and the problems under study fall in the intersection of these two main areas of research in the literature of scheduling.

In this chapter, we provide a brief overview of the COS and GS studies with a focus on the single-machine problems to facilitate the proper positioning of our study in the literature.

### 3.1. Customer Order Scheduling

Although the concept of customer order scheduling was first introduced nearly three decades ago by Julien and Magazine (1990), Ahmadi and Bagchi (1990), COS problems are scarce in the literature. Julien and Magazine (1990) considered multiple customer orders containing several products (jobs) processed on a single machine with a job-dependent setup time between two different types of jobs. They provided a dynamic programming algorithm for minimizing the total completion time of orders when there exist only two types of jobs, and the batch processing order is fixed. Subsequently, Bagchi et al. (1994) considered the COS problem on a single machine in which they aimed to determine the due dates of the customer orders and to schedule all jobs to minimize penalty function. Other early research efforts for COS problems of the single machine case are carried out by Baker (1988), Coffman et al. (1989), and Vickson et al. (1993). For more recent studies, Erel and Ghosh (2007) considered a single machine COS model in which orders consisted of various quantities of products coming from different families. Family dependent setup time is incurred between
different families of products. They discussed the complexity of the problem and proposed a dynamic programming algorithm for solving the problem.

One of the other recent studies carried out by Hazır et al. (2008) investigated the COS problem on a single facility, which aimed to minimize the average customer order flow time, and they proposed four metaheuristics: simulated annealing, genetic algorithm, tabu search, and ant colony, respectively. Then, they evaluated the performance of these heuristics.

As we can see from the previous studies, there are several variants for the COS related problems under different scheduling criteria such as maximum completion time (makespan), total completion time, and maximum lateness, and under different machine environments such as parallel machines and job shop environments. However, COS problems for the single machine case are quite a few in the literature. We review the most related and recent works done in the remainder of this section.

Yang (2017) addresses a similar COS problem on a single machine of which the lot description is considered as job in our study. Orders are indivisible, and each order has to be processed on the same lot. He provided the complexity of the problem, a binary integer programming model, and four efficient heuristics to minimize the makespan and the total completion time objectives, respectively. The main difference between the problem studied by Yang (2017) and the one studied in this thesis is the processing approach. He assumed that all orders in the same lot have the same processing times and same completion times. Furthermore, each lot has the capacity, and there are no setup times between different lots in his study, whereas our study tackles sequenceindependent setup times that exist between different products (jobs).

The study that has similar characteristics to our problem belongs to Akkocaoğlu (2014) which considers a COS problem with order-based processing approach, and there is a sequence-independent setup time between jobs in a customer order. It aims to avoid frequent product (job) switchovers, which aims to minimize the makespan and the total completion time. Hence, it is accomplished by combining the first job of a customer order with the last job of the immediately preceding customer order if these jobs are the same.

There is also one more recent study, namely by Yozgat (2018), which considers the job-based processing approach for the two-machine flow shop environment to find a sequence of the job lots as well as the sublots (customer orders) in each job, thereby minimizing the total completion time of the customer orders.

### 3.2. Group Scheduling

In the past two decades, the job grouping idea has received considerable attention. Family scheduling and group technology are prevalent aspects of recent scheduling problems. The main idea of these approaches is classifying the jobs that share similar properties into the same groups or families, which helps to improve the efficiency of operations and save time. The studies that incorporate benefits from job grouping, the reader is referred to the survey papers done by Webster and Baker (1995), Potts and Kovalyov (2000), Allahverdi et al. (2015), and Neufeld et al. (2016).

Group scheduling problems date back to the pioneering work of Gupta (1988). He studied a single-machine scheduling problem where jobs are divided into diverse classes of jobs, and setup time is required between different classes. A heuristic algorithm is proposed to minimize mean flow time. Similarly, Gupta et al. (1997) extended the scheduling problem under two different objective criteria: minimization of makespan and total carrying costs of the customer orders, respectively. Edwin et al. (1996) also provided a good framework for the problem of grouping jobs. In their study, jobs are classified into several groups, and the jobs within the same group processed contiguously. Sequence-independent setup time is defined. A schedule is determined by a sequence of the groups and a sequence of the jobs in each group. A polynomial-time algorithm is proposed to minimize maximum cost and total weighted completion time.

Another well-defined study for grouping jobs on a single machine is carried out by Liao and Chuang (1996). The various jobs of the customer orders are clustered into several groups, and setup time between different groups is required to process on a machine. Branch and bound algorithms are proposed to minimize the two objective criteria: number of tardy orders and the maximum tardiness, respectively. Gerodimos et al. (1999) addressed a similar problem of family scheduling model in which jobs
consist of multiple operations that belong to different families. Their study covered three objective criteria: the maximum lateness, the weighted number of late jobs, and the sum of job completion times, respectively. Karabati and Akkan (2006) presented a branch and bound algorithm for minimizing the total completion time in a singlemachine where jobs can be grouped into families, and a sequence-dependent family setup is incurred if the sequence requires a switch from a job in a particular family to a job in a different family. Wu and Lee (2006) focused on the same problem and determined total setup time and the total earliness as measures of performance for their problem. Gupta and Chantaravarapan (2008) considered the group scheduling problem with a sequence-independent setup time between families of jobs. A mixed-integer linear programming model and a simulated annealing algorithm are developed to minimize total tardiness.

On the other hand, job grouping problems are prevalent in the field of process industries and electronics manufacturing. One of the studies belongs to Sabouni and Logendran (2013) that considered a single machine group scheduling problem in the PCB manufacturing environment with carryover sequence-dependent setup times, and they proposed a branch-and-bound algorithm to minimize the makespan.

Several recent studies introduce new concepts of job deteriorating and learning effects into the group scheduling problems. We reviewed some of the them which are the most relevant to our study. One of the studies, which is done by Wang et al. (2012), considered a single machine problem under makespan minimization with the group technology assumption and the deterioration effect of jobs. Fixed group setup times and ready times of the jobs are assumed in this problem. In addition, the problem studied by He and Sun (2012) considered a single machine group scheduling with deterioration without ready times to minimize the total completion time. They showed that their problem could be polynomially solvable only under some conditions. In the case of jointly compressible setup and processing times, a polynomial-time algorithm to find the optimal solution to minimize the total job completion time on a single machine is presented in Ng et al. (2004).

The concepts of group technology and time-dependent processing times are also introduced in the study of Wang and Wang (2014). They proved that the problem is
solvable in polynomial-time and attempted to minimize the makespan when ready times of the jobs are available. The reader can find thorough surveys on related works that are mentioned in the study of Wang and Wang (2014). Moreover, He and Sun (2015) similarly studied the problem with deterioration and learning effect with the group technology assumption. They showed that the total completion time minimization could be solved in polynomial time. More recently, Liu et al. (2019) addressed a single-machine group scheduling problem with deterioration effect and job-ready times. An efficient heuristic and two exact algorithms are developed to minimize the makespan objective. Their study also covers the related works done in this area so that the reader can refer to the study of Liu et al. (2019) for the comprehensive review.

Apart from the above studies, single machine batch delivery problems also resemble the problem undertaken in this thesis. Batch delivery, especially in a single machine case, was first introduced by Santos and Magazine (1985). Mazdeh et al. (2007) adopted the concept of batch delivery on a single machine and aimed to minimize maximum tardiness and delivery costs.

There are several variants of studies in the scheduling literature that deal with customer order scheduling and group scheduling problems. However, to the best of our knowledge, the job-based processing approach for the single machine case is considered in our study for the first time.

## CHAPTER 4

## PROPOSED SOLUTION APPROACHES: MIXED INTEGER PROGRAMMING MODELS AND A TABU-SEARCH BASED HEURISTIC ALGORITHM

In this chapter, our two solution approaches, which are the mathematical programming model and the tabu-search based heuristic algorithm, for the job-based processing problem are explained in detail.

### 4.1. Mixed Integer Programming Models

In this section, we present two mixed-integer linear programming (MILP) models to solve the problem $P_{J B P}$ optimally. Our models provide the optimal schedule with the job sequence (i.e., the sequence of the products) and the sequence of the customer orders within each job to minimize the total completion time of the customer orders.

For developing our models, we first introduce the following parameters, indices and sets, which are commonly used in both MILP models.

## Parameters, indices and sets

$K \quad$ Number of customer orders.
$o, m, u$ Indices for customer orders ( $o, m, u=1,2, \ldots, K$ ).
$N \quad$ Number of jobs.
$j, k, l$ Indices for jobs $(j, k, l=1,2, \ldots, N)$.
$D_{o, j} \quad$ Demand (number of identical items) for job $j$ in customer order $o$.
$S C_{j} \quad$ Set of customer orders having demand for job $j$.
$L_{j} \quad$ Lot size (total demand) for job $j$, where $L_{j}=\sum_{o \in S C_{j}} D_{o, j}$.
$t_{j} \quad$ Unit processing time for job $j$.
$s_{j} \quad$ Setup time for job $j$.

### 4.1.1. The First Model (MILP-1)

In this first model, we use the sequence-position variables. Our additional parameters indices and sets are as follows:

## Additional parameters and indices

$H_{o, j} \quad 1$, if customer order $o$ has demand for job $j ; 0$, otherwise.
$\left\|S C_{j}\right\|$ Cardinality of the set of customer orders having demand for job $j$. That is, the number of customer orders having demand for job $j$.
$Q \quad$ Sufficiently large positive number.
$p \quad$ Index for positions in the job sequence $(p=1,2, \ldots, N)$.
$r$ Index for positions in the sequence of customer orders having demand for job $j\left(r=1,2, \ldots,\left\|S C_{j}\right\|\right)$.

## Decision variables

$Y_{j, p}= \begin{cases}1 & \text { if job } j \text { is assigned to position } p \text { of the job sequence } \\ 0 & \text { otherwise }\end{cases}$
$X_{o, j, p, r}= \begin{cases}1 & \text { if customer order } o \text { in job } j \text { at position } p \text { of the job sequence is } \\ \text { assigned to position } r \text { of the customer orders sequence in job } j \\ 0 & \text { otherwise }\end{cases}$
$C_{o, j, p, r}$ Completion time of customer order $o$ assigned to position $r$ of the customer orders sequence in job $j$ at position $p$ of the job sequence.
$C T_{j, p}$ Completion time of job $j$ assigned to position $p$ of the job sequence.
$T_{o} \quad$ Completion time of the customer order $o$.

The MILP-1 model for solving the problem $P_{J B P}$ can be modeled as follows:
Minimize $\quad \sum_{o=1}^{K} T_{o}$
Subject to

$$
\begin{equation*}
 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \text { for } o=1,2, \ldots, K ; j, k=1,2, \ldots, N \text {; } \\
& p=2,3, \ldots, N ; j \neq l  \tag{7}\\
& C_{o, j, p, r} \geq C_{m, j, p, r-1}+t_{j} D_{o, j} X_{o, j, p, r}-Q\left(1-X_{o, j, p, r}\right) \\
& \text { for } o, m=1,2, \ldots, K ; j=1,2, \ldots, N \text {; } \\
& p=2,3, \ldots, N ; r=2,3, \ldots,\left\|S C_{j}\right\| ; \\
& m \neq o  \tag{8}\\
& C T_{j, p} \geq C_{o, j, p, r}-Q\left(1-Y_{j, p}\right) \\
& \text { for } o=1,2, \ldots, K ; j=1,2, \ldots, N \text {; } \\
& p=2,3, \ldots, N ; r=1,2, \ldots,\left\|S C_{j}\right\|  \tag{9}\\
& T_{o} \geq C_{o, j, p, r} \quad \text { for } o=1,2, \ldots, K ; j, p=1,2, \ldots, N ; \\
& r=1,2, \ldots,\left\|S C_{j}\right\|  \tag{10}\\
& C_{o, j, p, r}, C T_{j, p}, T_{o} \geq 0 \quad \text { for } \forall o, j, p, r  \tag{11}\\
& X_{o, j, p, r}, Y_{j, p} \in\{0,1\} \quad \text { for } \forall o, j, p, r \tag{12}
\end{align*}
$$

In the above MILP-1 model, the objective in (1) is to minimize the total completion time of customer orders. Constraint sets (2) and (3) ensure that each position in the sequence of jobs is occupied by one job only, and each job is assigned to one position only, respectively. Constraint set (4) guarantees that each position in the sequence of customer orders in a job is occupied by one customer order only. Constraint set (5) ensures that each customer order in a job is assigned to a position in the sequence of customer orders in this job. Constraint sets (6) and (7) determines the completion time of the customer order assigned to the first position of customer orders in the job assigned to the first and remaining positions of the job sequence, respectively. Constraint set (8) defines the completion times of the customer orders assigned to the remaining positions of the sequence of customer orders in a job. Constraint set (9) determines the completion time of each job in each position of the job sequence. Constraint set (10) defines the completion time of each customer order. Constraint sets (11) and (12) impose the non-negativity and binary restrictions, respectively, on the decision variables.

In our MILP-1 model, there are three sets of continuous variables, and the number of these variables are $N^{2}\left(K^{2}+1\right)+K$. Also, there are two sets of binary variables, and the number of binary decision variables is $N^{2}\left(K^{2}+1\right)$. This means that there is a total
of $2 N^{2}\left(K^{2}+1\right)+K$ decision variables. On the other hand, the MILP-1 model has a total of $N^{3}-2 N^{2}-3 N+N K\left(K^{2}-2 K+3\right)$ constraints.

### 4.1.2. The Second Model (MILP-2)

In the second model, we rely on the precedence variables.

## Decision variables

$Y_{j, k}= \begin{cases}1 & \text { if job } j \text { precedes job } k \\ 0 & \text { otherwise }\end{cases}$
$X_{o, m, j}= \begin{cases}1 & \text { if customer order } o \text { in job } j \text { precedes customer order } m \text { in job } j \\ 0 & \text { otherwise }\end{cases}$
$C_{o, j} \quad$ Completion time of customer order $o$ in job $j$.
$T_{o} \quad$ Completion time of the customer order $o$.

The MILP-2 model for solving the problem $P_{J B P}$ can be modeled as follows:
Minimize $\quad \sum_{o=1}^{K} T_{o}$
Subject to

$$
\begin{array}{ll}
Y_{j, k}+Y_{k, j}=1 & \text { for } j, k=1,2, \ldots, N ; j<k \\
Y_{j, k}+Y_{k, l}+Y_{l, j} \leq 2 & \text { for } j, k, l=1,2, \ldots, N ; j \neq k \neq l \\
X_{o, m, j}+X_{m, o, j}=1 & \text { for } o, m=1,2, \ldots, K ; o<m ; j=1,2, \ldots, N ; \\
& D_{o, j}=D_{m, j}>0 \\
X_{o, m, j}+X_{m, u, j}+X_{u, o, j} \leq 2 \\
& \text { for } o, m, u=1,2, \ldots, K ; j=1,2, \ldots, N ; \\
& \quad o \neq m \neq u ; D_{o, j}=D_{m, j}=D_{u, j}>0 \\
C_{o, j}=\sum_{\substack{k=1 \\
k \neq j}}^{N}\left(s_{k}+t_{k} L_{k}\right) Y_{k, j}+s_{j}+t_{j} D_{o, j}+\sum_{\substack{m=1 \\
m \neq o}}^{K} t_{j} D_{m, j} X_{m, o, j} \\
& \text { for } o=1,2, \ldots, K ; j=1,2, \ldots, N ; D_{o, j}>0 \\
T_{o} \geq C_{o, j} & \text { for } o=1,2, \ldots, K ; j=1,2, \ldots, N \\
C_{o, j}, T_{o} \geq 0 & \text { for } \forall o, j \\
X_{o, m, j}, Y_{j, k} \in\{0,1\} & \text { for } \forall o, m, j, k \tag{21}
\end{array}
$$

In the above MILP-2 model, the objective in (13) is to minimize the total completion time of customer orders. Constraint set (14) ensures the ordering of the jobs, and similarly, the constraint set (15) guarantees that for each pair of the orders, one of them should precede the other. Constraint sets (16) and (17) are triangular inequalities.

Constraint set (18) calculates the completion time of each customer order $i$ that demands job $j$. Constraint set (19) defines the completion time of each customer order. Constraint sets (20) and (21) impose non-negativity and binary restrictions, respectively, on the decision variables.

In our MILP-2 model, there are two sets of continuous variables, and the number of these variables are $K(N+1)$. Also, there are two sets of binary variables, and the number of binary decision variables is $N\left(K^{2}+N\right)$. This means that there is a total of $K(N+1+K N)+N^{2}$ decision variables. On the other hand, the MILP-2 model has a total of $K+N+N K(1+N(1+N)+N K(N K+1))$ constraints.

According to number of decision variables and number of constraints, first model (MILP-1) is efficient than the second model (MILP-2). However, from our preliminary experiments, we observed that the solution time of MILP-1 took longer than MILP-2. Therefore, in the rest of our study, we considered our second model only, and called it MILP.

### 4.2. Heuristic Algorithm

The size of the MILP model increases tremendously as the number of products (jobs) and the number of customer orders increase. We observe from our experiments that the MILP model cannot provide optimal solutions for the large-sized problem instances in reasonable times. Therefore, we propose a heuristic algorithm that provides optimal or near-optimal solutions for the large-sized problem instances within relatively short times.

Our proposed heuristic algorithm consists of two phases: finding an initial schedule by the insertion algorithm and improving the initial schedule by the tabu search algorithm. The detailed descriptions of each phase in our heuristic algorithm are given below.

## Phase 1 - Finding an initial schedule by the insertion algorithm

This phase finds an initial schedule of jobs by applying the insertion algorithm, which is a kind of neighborhood algorithm. It is also known as the NEH algorithm since it was proposed first by Nawaz et al. (1983) for the makespan minimization problem in a flow shop. The NEH algorithm has been widely used to solve various scheduling problems with different scheduling criteria other than makespan. The algorithm generates $(N(N+1) / 2)-1$ different sequences of jobs, where $N$ of them are complete, and the rest are partial sequences. The NEH algorithm is based on the assumption that a job with a long total processing time is given higher priority than the job with a small total processing time. In our algorithm, we have modified this assumption as the job with more number of customer orders is given a higher priority than the job with fewer customer orders.

The stepwise description of Phase 1 in our algorithm is given below.

Step 1 Generate an initial job sequence by sorting the jobs in descending order of their number of customer orders.

Step 2 In the initial job sequence, generate the initial sequence of the customer orders in each job by sorting the customer orders of each job in ascending order of their total demand.

Step 3 a Select the jobs $J_{[1]}$ and $J_{[2]}$, which are in the first two positions of the initial job sequence obtained in Step 2.
b Form two partial job sequences such that the first selected job $J_{[1]}$ is in the first and second positions in these partial sequences, respectively. That is,

Partial sequence 1: $J_{[1]}-J_{[2]}$
Partial sequence 2: $J_{[2]}-J_{[1]}$
c Let the first partial sequence among all partial sequences be the current partial sequence.

Step 4 a Let the job that is in the last position of the current partial sequence be the current job. Sort all customer orders of the current job in ascending order of their total demands.
b Consider the previous job as the new current job.
c Starting from the customer order in the first position of the customer orders sequence in the current job, check whether the customer order has the jobs
processed after the current job of the current partial job sequence. If the answer is yes, then sent this customer order to the last position of the customer orders in the current job; otherwise, keep this customer order in its current position. Repeat this step for all remaining customer orders in the current job.
d If the current job is in the first position of the current partial sequence, then compute the total completion time of the customer orders in the current partial sequence, and go to Step 4e; otherwise, go to Step 4b.
e If all partial sequences are considered, then select the best partial sequence giving the minimum total completion time and go to Step 5a; otherwise, consider the next partial sequence as the current partial sequence and go to Step 4a.

Step 5 a If all jobs of the initial job sequence obtained in Step 2 are not considered yet, then go to Step 4a; otherwise, go to Phase 2.
b Pick the job that is in the next position of the initial job sequence obtained in Step 2, generate all possible partial sequences by placing this new job in all possible positions (beginning, between and ending) in the best partial sequence developed so far, and go to Step 4 a .

## Phase 2 - Improving the initial schedule by the tabu search algorithm

Tabu Search (TS), which was first proposed by Glover (1989), is a local-search based metaheuristic algorithm for solving many combinatorial optimization problems. TS algorithm has attracted many researchers working on scheduling problems and widely used in the literature. It starts with an initial solution (schedule) generated randomly or obtained by a simple rule or a heuristic algorithm. The initial solution is considered as the best solution. Then a local search mechanism is applied to find a better solution in the neighborhood of the current solution, which is defined as all solutions (also called mutations) obtained by an alternative solutions generation mechanism using the current solution. This neighborhood generation mechanism can be an adjacent pairwise interchange of the jobs or inserting every job in every position in the current schedule. In our TS procedure, we use the schedule obtained by Phase 1 of our algorithm as the initial schedule, and the neighborhood is generated by adjacent pairwise interchanges of the jobs in this initial schedule. The mutation with the lowest
objective function (total completion time of the customer orders) value is selected as a candidate solution. The local changes providing the candidate solution among the solutions in the neighborhood of a current solution is called a move. To keep the search history, a list called tabu list is used to avoid cycling (i.e., returning to a solution that has been visited before) and guide the search towards unexplored regions of the solution space of the problem. The move providing the candidate solution is put into the tabu list if this move is not tabu, and the candidate solution becomes the new best solution if the objective function value of the candidate solution is better than the objective function value of the current best solution. This is the aspiration criterion used in our TS procedure. Once a move is entered the tabu list, the oldest move in the tabu list is deleted since the tabu list has a fixed size, which is called tabu list size, say $l$. Tabu list size, which is also called tabu tenure, allows the new move added to the tabu list to remain in the list for the next $l$ iterations.

Tabu-search iterations are conducted until one of the stopping criteria is reached. In the literature, there are several applications of the TS algorithm using different stopping criteria, which determine the length of the search. One approach is to set the number of iterations to a pre-specified value. That is, the TS procedure stops when no improvement can be obtained after several iterations. It is clear that setting the number of iterations to a large number may increase the search space and solution time. In our algorithm, we let the TS procedure run for $N I=2 \times N$ iteration, where $N$ is the number of jobs. Our second stopping criterion is that the TS procedure terminates if all possible mutations are worse than the parent.

Tabu tenure is also an important parameter that affects the performance of the TS procedure since the tabu list directs the search. The tabu tenure can be fixed (usually preferred in the literature) or variable. Setting the tabu tenure to a small number may cause an occurrence of cycling, i.e., returning to the solution already visited before. That is, it is very hard to escape from local optima when the tabu tenure is too small. However, setting the tabu tenure to a large number may result deterioration in the quality of the solutions found. In other words, the algorithm spends more time to compare with the current solution one by one. Tabu list size can be a variable or a fixed number. In our algorithm, we set the tabu list size to 5 .

The stepwise description of Phase 2 in our algorithm is given below.

Step 1 Set the iteration counter ic to 1 , i.e., set $i c=1$. Set the initial schedule $\sigma_{1}$ to the schedule obtained in Phase 1 of the algorithm. Set the best schedule $\sigma_{B}$ to $\sigma_{1}$, i.e., set $\sigma_{B}=\sigma_{1}$.

Step 2 a Generate the neighborhood of the schedule $\sigma_{i c}$ by adjacent pairwise interchanges of the jobs in the schedule $\sigma_{i c}$.
b For each of the mutation in the neighborhood of the schedule $\sigma_{i c}$, apply the algorithm SCO.
c If the total completion time value of each mutation is bigger than the total completion time of the parent schedule $\sigma_{i c}$, then stop; otherwise, from the neighborhood of the schedule $\sigma_{i c}$, select the schedule with the lowest total completion time value as the candidate schedule $\sigma_{C}$.

Step 3 a If the move $\sigma_{i c} \rightarrow \sigma_{C}$ is prohibited by a mutation on the tabu list, set $\sigma_{i c+1}=\sigma_{i c}$ and go to step 4; otherwise,
i Delete the entry at the bottom of the tabu list.
ii Push all other entries in the tabu list one position down.
iii. Enter reverse mutation at the top of the tabu list.
iv. Set $\sigma_{i c+1}=\sigma_{C}$.
v. Set the new best schedule to the candidate schedule (i.e., set $\sigma_{B}=\sigma_{C}$ ) if the total completion time value of the candidate schedule is smaller than the total completion time value of the current best schedule, i.e., $\operatorname{TCT}\left(\sigma_{C}\right)<\operatorname{TCT}\left(\sigma_{B}\right)$.
vi. Go to step 4.

Step 4 a Increment the iteration counter $i c$ by 1. i.e., set $i c=i c+1$.
b If the iteration counter ic is equal to the pre-specified value $N I$ for the number of iterations (i.e., $i c=N I$ ), then stop; otherwise, go to step 2.

### 4.3. A Numerical Example

We close this chapter with the following numerical example to demonstrate our proposed heuristic algorithm. Consider a problem instance in which five customers give orders for five products (jobs). Products demanded by the customer orders, the sequence-independent setup times, and the unit-processing times are given in Table 2.

Table 2 Data set for the numerical example

| Jobs <br> (Products) | Demand (in units) of the <br> customer orders |  |  |  |  | Setup <br> time | Unit-processing <br> time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $O_{1}$ | $O_{2}$ | $O_{3}$ | $O_{4}$ | $O_{5}$ |  | 4 |
| $J_{1}$ | 9 | 3 | 1 | 6 | 3 | 41 | 4 |
| $J_{2}$ | - | - | - | 5 | - | 48 | 6 |
| $J_{3}$ | - | - | 3 | 8 | 7 | 5 | 4 |
| $J_{4}$ | - | 6 | 5 | - | - | 40 | 6 |
| $J_{5}$ | - | - | - | 5 | 4 | 47 | 8 |

Phase 1 - Finding an initial schedule by the insertion algorithm
Step 1 Sorting the jobs in descending order of their number of customer orders gives the initial job sequence as:

$$
J_{1}\left\{O_{1}, O_{2}, O_{3}, O_{4}, O_{5}\right\}-J_{3}\left\{O_{3}, O_{4}, O_{5}\right\}-J_{4}\left\{O_{2}, O_{3}\right\}-J_{5}\left\{O_{4}, O_{5}\right\}-J_{2}\left\{O_{4}\right\}
$$

Step 2 In the initial job sequence, sorting the customer orders of each job in ascending order of their total demand yields the following initial sequence of jobs with the sorted customer orders:

$$
\begin{aligned}
& J_{1}\left\{O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6], O_{1}[9]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}- \\
& J_{4}\left\{O_{3}[5], O_{2}[6]\right\}-J_{5}\left\{O_{5}[4], O_{4}[5]\right\}-J_{2}\left\{O_{4}[5]\right\}
\end{aligned}
$$

Step 3 From the initial job sequence $J_{1}-J_{3}-J_{4}-J_{5}-J_{2}$ obtained in Step 2, we select the first two jobs $J_{1}$ and $J_{3}$. We form two partial sequences $J_{1}-J_{3}$ and $J_{3}-J_{1}$.

Step 4 In the first partial sequence $J_{1}-J_{3}$, the optimal sequence of the customer orders in each job is:

$$
J_{1}\left\{\boldsymbol{O}_{2}[3], \boldsymbol{O}_{1}[9], O_{3}[1], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{\boldsymbol{O}_{3}[3], \boldsymbol{O}_{5}[7], \boldsymbol{O}_{4}[8]\right\}
$$

with the total completion time of customer orders

$$
T C T\left(J_{1}-J_{3}\right)=C T_{2}+C T_{1}+C T_{3}+C T_{5}+C T_{4}
$$

$$
\begin{aligned}
& =53+89+146+174+206 \\
& =668
\end{aligned}
$$

In the second partial sequence $J_{3}-J_{1}$, the optimal sequence of the customer orders in each job is:

$$
J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}-J_{1}\left\{\boldsymbol{O}_{3}[\mathbf{1}], \boldsymbol{O}_{2}[3], \boldsymbol{O}_{5}[3], \boldsymbol{O}_{4}[\mathbf{6}], \boldsymbol{O}_{1}[9]\right\}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{3}-J_{1}\right) & =C T_{3}+C T_{2}+C T_{5}+C T_{4}+C T_{1} \\
& =122+134+146+174+206 \\
& =778 .
\end{aligned}
$$

We select the partial sequence $J_{1}-J_{3}$ since its total completion time is smaller than that of the partial sequence $J_{3}-J_{1}$.

Step 5 All jobs of the initial job sequence obtained in Step 2 are not considered yet. Thus, we go to Step 4.
Step 4 We select the next job, which is job $J_{4}$, from the initial job sequence obtained in Step 2, and form three partial sequences $\boldsymbol{J}_{4}-J_{1}-J_{3}, J_{1}-J_{4}-J_{3}$, and $J_{1}-$ $J_{3}-J_{4}$.

Step 5 In the first partial sequence $\boldsymbol{J}_{4}-J_{1}-J_{3}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{4}\left\{O_{3}[5], O_{2}[6]\right\}-J_{1}\left\{\boldsymbol{O}_{2}[3], \boldsymbol{O}_{1}[9], O_{3}[1], O_{5}[3], O_{4}[6]\right\}- \\
& J_{3}\left\{\boldsymbol{O}_{3}[3], \boldsymbol{O}_{5}[7], \boldsymbol{O}_{4}[\mathbf{8}]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{4}-J_{1}-J_{3}\right) & =C T_{2}+C T_{1}+C T_{3}+C T_{5}+C T_{4} \\
& =159+195+252+280+312 \\
& =1,198
\end{aligned}
$$

In the second partial sequence $J_{1}-J_{4}-J_{3}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[9], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{4}\left\{\boldsymbol{O}_{2}[\mathbf{6}], O_{3}[5]\right\}- \\
& J_{3}\left\{\boldsymbol{O}_{3}[3], \boldsymbol{O}_{5}[7], \boldsymbol{O}_{4}[\boldsymbol{8}]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{4}-J_{3}\right) & =C T_{1}+C T_{2}+C T_{3}+C T_{5}+C T_{4} \\
& =77+205+252+280+312 \\
& =1,126 .
\end{aligned}
$$

In the third partial sequence $J_{1}-J_{3}-J_{4}$, the optimal sequence of the customer
orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[\mathbf{9}], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}- \\
& J_{3}\left\{\boldsymbol{O}_{5}[7], \boldsymbol{O}_{4}[\mathbf{8}], O_{3}[3]\right\}-J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{o}_{2}[\mathbf{6}]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{4}\right) & =C T_{1}+C T_{5}+C T_{4}+C T_{4}+C T_{2} \\
& =77+162+194+276+312 \\
& =1,021
\end{aligned}
$$

Among these three partial sequences, we select the partial sequence $J_{1}-J_{3}-$ $J_{4}$ since its total completion time is smaller than those of other partial sequences.

Step 4 We select the next job, which is job $J_{5}$, from the initial job sequence obtained in Step 2, and form four partial sequences $J_{5}-J_{1}-J_{3}-J_{4}, J_{1}-J_{5}-J_{3}-J_{4}$, $J_{1}-J_{3}-J_{5}-J_{4}$, and $J_{1}-J_{3}-J_{4}-J_{5}$

Step 5 In the first partial sequence $J_{5}-J_{1}-J_{3}-J_{4}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{5}\left\{O_{5}[4], O_{4}[5]\right\}-J_{1}\left\{\boldsymbol{o}_{1}[9], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}- \\
& J_{3}\left\{\boldsymbol{o}_{5}[7], \boldsymbol{o}_{4}[\mathbf{8}], O_{3}[3]\right\}-J_{4}\left\{\boldsymbol{o}_{3}[5], \boldsymbol{o}_{2}[6]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{5}-J_{1}-J_{3}-J_{4}\right) & =C T_{1}+C T_{5}+C T_{4}+C T_{3}+C T_{2} \\
& =196+281+313+395+431 \\
& =1,616 .
\end{aligned}
$$

In the second partial sequence $J_{1}-J_{5}-J_{3}-J_{4}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[9], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{5}\left\{O_{5}[4], O_{4}[5]\right\}- \\
& J_{3}\left\{\boldsymbol{O}_{5}[7], \boldsymbol{O}_{4}[\boldsymbol{8}], O_{3}[3]\right\}-J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{4}-J_{5}\right) & =C T_{1}+C T_{5}+C T_{4}+C T_{3}+C T_{2} \\
& =77+281+313+395+431 \\
& =1,497
\end{aligned}
$$

In the third partial sequence $J_{1}-J_{3}-J_{5}-J_{4}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[9], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}- \\
& J_{5}\left\{\boldsymbol{O}_{5}[4], \boldsymbol{O}_{4}[5]\right\}-J_{4}\left\{\boldsymbol{O}_{3}[5], \boldsymbol{O}_{2}[6]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{5}-J_{4}\right) & =C T_{1}+C T_{5}+C T_{4}+C T_{3}+C T_{2} \\
& =77+285+325+395+431 \\
& =1,513 .
\end{aligned}
$$

In the fourth partial sequence $J_{1}-J_{3}-J_{4}-J_{5}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[\mathbf{9}], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}- \\
& J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[4], \boldsymbol{O}_{4}[5]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{4}-J_{5}\right) & =C T_{1}+C T_{3}+C T_{2}+C T_{5}+C T_{4} \\
& =77+276+312+391+431 \\
& =1,487
\end{aligned}
$$

Among these four partial sequences, we select the partial sequence $J_{1}-J_{3}-$ $J_{4}-J_{5}$ since its total completion time is smaller than those of other partial sequences.
Step 4 We select the next job, which is job $J_{2}$, from the initial job sequence obtained in Step 2, and form five complete sequences $\boldsymbol{J}_{2}-J_{1}-J_{3}-J_{4}-J_{5}, J_{1}-\boldsymbol{J}_{2}-$ $J_{3}-J_{4}-J_{5}, J_{1}-J_{3}-J_{2}-J_{4}-J_{5}, J_{1}-J_{3}-J_{4}-J_{2}-J_{5}$, and $J_{1}-J_{3}-$ $J_{4}-J_{5}-J_{2}$.

Step 5 In the first complete sequence $\boldsymbol{J}_{2}-J_{1}-J_{3}-J_{4}-J_{5}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{2}\left\{O_{4}[5]\right\}-J_{1}\left\{\boldsymbol{O}_{1}[\mathbf{9}], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}- \\
& J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}-J_{4}\left\{\boldsymbol{O}_{3}[5], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[4], \boldsymbol{O}_{4}[5]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{2}-J_{1}-J_{3}-J_{4}-J_{5}\right) & =C T_{1}+C T_{3}+C T_{2}+C T_{5}+C T_{4} \\
& =1,877 .
\end{aligned}
$$

In the second complete sequence $J_{1}-J_{2}-J_{3}-J_{4}-J_{5}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{\mathbf{1}}[\mathbf{9}], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{2}\left\{O_{4}[5]\right\}- \\
& J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}-J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[4], \boldsymbol{O}_{4}[5]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{2}-J_{3}-J_{4}-J_{5}\right) & =C T_{1}+C T_{3}+C T_{2}+C T_{5}+C T_{4} \\
& =1,799 .
\end{aligned}
$$

In the third complete sequence $J_{1}-J_{3}-J_{2}-J_{4}-J_{5}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[9], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}- \\
& J_{2}\left\{O_{4}[5]\right\}-J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[\mathbf{4}], \boldsymbol{o}_{4}[\mathbf{5}]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{2}-J_{4}-J_{5}\right) & =C T_{1}+C T_{3}+C T_{2}+C T_{5}+C T_{4} \\
& =1,799 .
\end{aligned}
$$

In the fourth complete sequence $J_{1}-J_{3}-J_{4}-J_{2}-J_{5}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[9], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\}- \\
& J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{2}\left\{O_{4}[5]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[\mathbf{4}], \boldsymbol{o}_{4}[5]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{4}-J_{2}-J_{5}\right) & =C T_{1}+C T_{3}+C T_{2}+C T_{5}+C T_{4} \\
& =1,643 .
\end{aligned}
$$

In the fifth complete sequence $J_{1}-J_{3}-J_{4}-J_{5}-J_{2}$, the optimal sequence of the customer orders in each job is:

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[\mathbf{9}], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\} \\
& J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[4], O_{4}[5]\right\}-J_{2}\left\{\boldsymbol{O}_{4}[\mathbf{5}]\right\}
\end{aligned}
$$

with the total completion time of customer orders

$$
\begin{aligned}
\operatorname{TCT}\left(J_{1}-J_{3}-J_{4}-J_{5}-J_{2}\right) & =C T_{1}+C T_{3}+C T_{2}+C T_{5}+C T_{4} \\
& =1,565 .
\end{aligned}
$$

Among these five complete sequences, we select the sequence $J_{1}-J_{3}-J_{4}-$ $J_{5}-J_{2}$ since its total completion time, which is 1,565 time units, is smaller than those of other complete sequences. Thus, the initial schedule obtained by Phase 1 is

$$
\begin{aligned}
& J_{1}\left\{\boldsymbol{O}_{1}[\mathbf{9}], O_{3}[1], O_{2}[3], O_{5}[3], O_{4}[6]\right\}-J_{3}\left\{O_{3}[3], O_{5}[7], O_{4}[8]\right\} \\
& J_{4}\left\{\boldsymbol{O}_{3}[\mathbf{5}], \boldsymbol{O}_{2}[\mathbf{6}]\right\}-J_{5}\left\{\boldsymbol{O}_{5}[4], O_{4}[5]\right\}-J_{2}\left\{\boldsymbol{O}_{4}[5]\right\}
\end{aligned}
$$

Phase 2 -Improving the initial schedule by the tabu search algorithm

Step 1 Set $i c=1$. We set the initial schedule $\sigma_{1}$ to the schedule obtained in Phase 3 of the algorithm, and set the best schedule $\sigma_{B}$ to $\sigma_{1}$, i.e.,

$$
\sigma_{B}=\sigma_{1}=J_{1}-J_{3}-J_{4}-J_{5}-J_{2}
$$

with $\operatorname{TCT}\left(\sigma_{B}\right)=1,565$.

Step 2 When we apply the adjacent pairwise interchanges of the jobs in the current schedule $\sigma_{1}$, we generate four mutations $\boldsymbol{J}_{\mathbf{3}}-\boldsymbol{J}_{\mathbf{1}}-J_{4}-J_{5}-J_{2}, J_{1}-\boldsymbol{J}_{4}-$ $\boldsymbol{J}_{3}-J_{5}-J_{2}, J_{1}-J_{3}-J_{5}-J_{4}-J_{2}$, and $J_{1}-J_{3}-J_{4}-J_{2}-J_{5}$. When we apply the algorithm SCO for each of these mutations, the candidate schedule $\sigma_{C}$ becomes $J_{1}-\boldsymbol{J}_{\mathbf{4}}-\boldsymbol{J}_{\mathbf{3}}-J_{5}-J_{2}$ since $\min \left\{\operatorname{TCT}\left(\boldsymbol{J}_{\mathbf{3}}-\boldsymbol{J}_{\mathbf{1}}-J_{4}-J_{5}-J_{2}\right)\right.$, $\operatorname{TCT}\left(J_{1}-J_{4}-J_{3}-J_{5}-J_{2}\right), \operatorname{TCT}\left(J_{1}-J_{3}-J_{5}-J_{4}-J_{2}\right), \operatorname{TCT}\left(J_{1}-J_{3}-\right.$ $\left.\left.J_{4}-J_{2}-J_{5}\right)\right\}=\min \{1,642 ; 1,434 ; 1697 ; 1,643\}=1,434$.
Step 3 The tabu list is updated with a pair of $\left(J_{3}, J_{4}\right)$. We set $\sigma_{2}=\sigma_{C}=J_{1}-J_{4}-J_{3}-J_{5}-J_{2}$, and set the new best schedule to the current schedule since the total completion time of the current schedule is smaller than that of the best schedule. That is, $\sigma_{B}=\sigma_{C}=J_{1}-J_{4}-J_{3}-J_{5}-J_{2}$ since $\operatorname{TCT}\left(\sigma_{C}\right)=\operatorname{TCT}\left(J_{1}-J_{4}-J_{3}-J_{5}-J_{2}\right)=1,434<\operatorname{TCT}\left(\sigma_{B}\right)=\operatorname{TCT}\left(J_{1}-\right.$ $\left.J_{3}-J_{4}-J_{5}-J_{2}\right)=1,565$.
Step 4 We set $i c=i c+1=1+1=2$. Go to Step 2 since the iteration counter $i c$ is smaller than the pre-specified value NI for the number of iterations, i.e., $i c=$ $2<N I=2 \times N=2 \times 5=10$.

Step 2 When we apply the adjacent pairwise interchanges of the jobs in the current schedule $\sigma_{2}=J_{1}-J_{4}-J_{3}-J_{5}-J_{2}$, we generate three mutations $\boldsymbol{J}_{4}-\boldsymbol{J}_{1}-$ $J_{3}-J_{5}-J_{2}, J_{1}-J_{4}-J_{\mathbf{5}}-\boldsymbol{J}_{3}-J_{2}$, and $J_{1}-J_{4}-J_{3}-\boldsymbol{J}_{\mathbf{2}}-\boldsymbol{J}_{\mathbf{5}}$. Note that the mutation $J_{1}-\boldsymbol{J}_{3}-\boldsymbol{J}_{4}-J_{5}-J_{2}$ is not possible since the pair of $\left(J_{3}, J_{4}\right)$ is in the tabu list. When we apply the algorithm SCO for each of the three possible mutations, we observe that $\min \left\{\operatorname{TCT}\left(\left(J_{4}-J_{1}-J_{3}-J_{5}-J_{2}\right)\right), \operatorname{TCT}\left(J_{1}-\right.\right.$ $\left.\left.J_{4}-J_{5}-J_{3}-J_{2}\right), \operatorname{TCT}\left(J_{1}-J_{4}-J_{3}-J_{2}-J_{5}\right)\right\}=\min \{1,530 ;$ $1,561 ; 1,512\}=1,512>\operatorname{TCT}\left(\sigma_{B}\right)=\operatorname{TCT}\left(J_{1}-J_{4}-J_{3}-J_{5}-J_{2}\right)=1,434$.
Thus, the TS algorithm terminates before reaching the tabu-search iterationsize of 10 .

The total completion time of the schedule obtained by the heuristic algorithm is 1,434 time units and is equal to that of the optimal schedule found by solving the MILP model. Figure 3 illustrates the Gantt chart for this optimal schedule.


Figure 3 Gantt chart of the schedule for the numerical example problem

## CHAPTER 5

## COMPUTATIONAL STUDY

In this chapter, we describe our computational experiments to evaluate the performance of the mathematical programming model and the heuristic algorithm in finding optimal or near-optimal schedules. The MILP models for problems $P_{J B P}$ and $P_{O B P}$ are solved by using version 24.1 of the software package General Algebraic Modeling System (GAMS), the proposed heuristic algorithm for solving the problem $P_{J B P}$ is programmed in Python in Visual Studio Code. In addition, the optimal schedule for the problem $P_{O B P}^{\prime}$ is obtained in Microsoft Excel VBA. All computations are conducted on a computer with $\operatorname{Intel}(\mathrm{R})$ Core(TM) i7-9750H processor running at 2.60 GHz , with 16 GB of RAM under Windows 10 operating system.

### 5.1. Problem Instances Design

Problem size is mainly determined by the number of customer orders and the number of jobs (products). We generate the values of the parameters used in our experiments, as in Çetinkaya et al. (2019):

1. Number of customer orders ( $K$ ): They are taken as 5, 10, 15 and 20.
2. Number of jobs $(N)$ : They are taken as $5,10,15$ and 20.
3. Number of customer orders having demandfor each job $\left(\left\|S C_{j}\right\|\right)$ : They are randomly generated from a DU $[1, K]$.
4. Demand (number of identical items) for each job in each customer order ( $D_{o, j}$ ): They are randomly generated from a discrete uniform distribution DU [1, 10].
5. Unit processing times $\left(t_{j}\right)$ : They are randomly generated from a discrete uniform distribution DU $[1,10]$.
6. Setup times $\left(s_{j}\right)$ : They are randomly generated from a discrete uniform distribution $\mathrm{DU}[0,100 f]$, where $f$ is taken as $0.5,1.0,1.5$, and 2.0.

For each possible combination of the above parameters, 25 replicates (problem instances) are generated, and a total of 400 problem instances are tested for the setup case. In addition, 25 replicates are generated for each possible combination of the above parameters, excluding setup times, and a total of 400 problem instances are tested. Hence, the total number of problem instances for both setup and no-setup cases is 800 .

### 5.2. Performance Measures

To measure the effectiveness of two solution approaches, we compared the objective function solutions obtained with the MILP model solved by GAMS and the proposed heuristic algorithm. For the problem instances in which the optimal solution is not obtained, but the best integer solution is achieved by the MILP model, we take the best integer solutions of the MILP to compare with the heuristic solutions. The average, the maximum and minimum deviations of objective values over the optimal solutions (or best integer solutions) are used as the performance measures. For a problem instance $k$, in which the optimal solution is obtained by the MILP model, we define the percent deviation $P D_{k}$ of the total completion time obtained by the proposed heuristic algorithm from the total completion time of the optimal solution. That is,

$$
P D_{k}=\frac{\left(T C_{k}^{H}-T C_{k}^{O}\right)}{T C_{k}^{O}} \times 100
$$

where $T C_{k}^{H}$ and $T C_{k}^{O}$ are the total completion times of the solutions obtained by the heuristic algorithm and the MILP model, respectively. For the problem instances in which the optimal solution is not obtained (but the best integer solution exists) by the MILP-2 model, $T C_{k}^{O}$ is replaced by $T C_{k}^{B}$ where $T C_{k}^{B}$ is the total completion time of the best integer solution obtained by the MILP model.
The computational time also serves as an efficient measure to compare performances of the MILP and the heuristic algorithm. The average computing time in CPU seconds is calculated in our experiments. The running time of the GAMS's CPLEX solver is set at 10,800 seconds ( 3 hours), and it exceeds the time limit for the large-sized problem instances. The running time of the proposed heuristic algorithm is recorded for all test problems, and it is relatively very small. The experiments in the following subsections demonstrate that the computational time of the heuristic algorithm
increases as both the number of customer orders and jobs are increased. However, the computational time is very small in general, which is less than a minute. On the other hand, the MILP model has much longer computation time when it is compared to heuristic.

### 5.3. Discussion of the Results

In this section, the performances of the MILP-2 model and the heuristic algorithm for the setup and no-setup cases are presented. These solution approaches are examined concerning the number of customer orders and the number of jobs.

### 5.3.1. Performance of the MILP-2 Model for the Job-based Processing

### 5.3.1.1. Setup Case

This part investigates the performance of the MILP-2 model for the setup case when we solve problem instances with job-based processing approach. As shown in Table 3, the MILP-2 gives the optimal solutions for all problem instances up to 15 jobs. As the number of jobs increase, the mathematical model cannot find optimal solutions and exceeds the three-hour time limit. When the number of customer orders is 5 , and the number of jobs is 15 , there are 19 problem instances with optimal solutions, and there is no optimal solution is found when the number of jobs are increased to 20 . For the problem instances with 10 customer orders and 15 jobs, there are 13 problem instances optimally solved. In the same problem set with 20 jobs; however, there is no optimal solution is found. Optimal solutions are obtained for only 2 problem instances when the number of customer orders is 15 , and the number of jobs is 15 , while no optimal solution is obtained when the number of jobs increased to 20. Lastly, any optimal solution is found for the problem instances of 20 customer orders with 15 jobs and 20 jobs, respectively.

Table 3 Performance of the MILP-2 model for the setup case

| K | 5 |  |  |  | 10 |  |  |  | 15 |  |  |  | 20 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 |
| Number of problem instances | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
| Number of optimum solutions | 25 | 25 | 19 | 0 | 25 | 25 | 13 | 0 | 25 | 25 | 2 | 0 | 25 | 25 | 0 | 0 |
| Number of best integer solutions | 0 | 0 | 6 | 25 | 0 | 0 | 12 | 25 | 0 | 0 | 23 | 25 | 0 | 0 | 25 | 25 |
| Average gap (\%) | 0 | 0 | 12 | 24 | 0 | 0 | 12 | 32 | 0 | 0 | 22 | 45 | 0 | 0 | 48 | 58 |

To emphasize the performance of the MILP-2 model, we should investigate the quality of solutions that are not optimal. It is a common phenomenon that GAMS's CPLEX ends up with a gap between the best integer solution and the best possible solution. Therefore, we examined the gap values to investigate the percent deviation of the integer solution from the theoretical optimum. We analyzed the gap values for 166 non-optimally solved problems which are the problem instances with 15 jobs and 20 jobs. For these problems, so many iterations are done, and integer solutions found become closer to the theoretical optimum after each iteration. However, GAMS is terminated because of time limitation before reaching the optimum solution. Therefore, the gap values are considerable enough for these problem instances. When the number of customer orders are 5 and 10 , respectively and the number of jobs are 5 and 10 , respectively, all of the gap values equal to zero, which proves that the mathematical model can solve all problem instances optimally.

### 5.3.1.2. No-setup Case

In this part, we demonstrate the performance of the MILP-2 model for the no-setup case. As shown in Table 4, the mathematical model cannot find the optimal solutions for the problem instances with 15 jobs and 20 jobs regardless of the number of customer orders.

Table 4 Performance of the MILP-2 model for the no-setup case

| K | 5 |  |  |  | 10 |  |  |  | 15 |  |  |  | 20 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 |
| Number of problem instances | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
| Number of optimum solutions | 25 | 25 | 21 | 0 | 25 | 25 | 19 | 0 | 25 | 25 | 7 | 1 | 25 | 25 | 1 | 0 |
| Number of best integer solutions | 0 | 0 | 4 | 25 | 0 | 0 | 6 | 25 | 0 | 0 | 18 | 24 | 0 | 0 | 24 | 25 |
| Average gap (\%) | 0 | 0 | 4 | 17 | 0 | 0 | 10 | 29 | 0 | 0 | 21 | 42 | 0 | 0 | 45 | 56 |

When the number of customer orders are 5 , and the number of jobs are 15 , there are 21 optimally solved problem instances while there is no optimal solution when the number of jobs is increased to 20 . For the problem instances with 10 customer orders, 19 test problems are optimally solved when the number of jobs is 15 , and there is no optimal solution is obtained when the number of jobs is 20 for the same problem set. The MILP-2 finds the optimal solution for 7 problem instances when the number of customer orders is 15 , and the number of jobs is 15 ; however, only 1 optimal solution
is obtained when the number of jobs is 20 . Lastly, when the number of customer orders is 20 , and the number of jobs is 15 , the model finds the optimal solution for only 1 problem instance. However, any optimal solution is found when the number of jobs is 20. We also investigated the gap values for 151 non-optimally solved problems for the no-setup case. As can be seen in Table 4, the gap values for the no-setup case are also considerable when the number of jobs are increased, as in the setup case.

### 5.3.2. Performance Evaluation of the Proposed Heuristic Algorithm

In this section, we undertake computational tests in order to gauge the quality of solutions and computational time of the proposed heuristic algorithm. We also investigate a comparative study and solution improvement analysis for the proposed heuristic in the following subsections.

### 5.3.2.1. Computational Results of the Heuristic Algorithm for the Job-based Processing

### 5.3.2.1.1. Setup Case

In this part, we compare the computational solutions of the proposed heuristic algorithm with the MILP-2 for the setup case. The comparison of objective function values that are obtained by the proposed heuristic algorithm and the MILP-2 for problem instances when $K=5$ and $N=15$ are shown in Table 5 . As it was explained before, best integer solutions are used for comparison when any optimal solution is found by the MILP-2.

Table 5 Heuristic solutions compared with MILP-2 solutions for the setup case when $K=5$ and $N=15$

| Problem <br> Instance | Total Completion Time |  | $\%$ |
| :---: | :---: | :---: | :---: |
|  | HEURISTIC | MILP-2 |  |
| 51 | 5645 | 5178 | 9,02 |
| 52 | 7474 | 7243 | 3,19 |
| 53 | 4642 | 4489 | 3,41 |
| 54 | 8906 | 8232 | 8,19 |
| 55 | 6987 | 6987 | 0,00 |
| 56 | 8495 | 8486 | 0,11 |
| 57 | 6794 | 6687 | 1,60 |
| 58 | 8587 | 8099 | 6,03 |
| 59 | 7706 | 7253 | 6,25 |
| 60 | 13501 | 13487 | 0,10 |
| 61 | 9661 | 9474 | 1,97 |
| 62 | 8354 | 8169 | 2,26 |
| 63 | 6239 | 6031 | 3,45 |
| 64 | 9028 | 8746 | 3,22 |
| 65 | 6871 | 6814 | 0,84 |
| 66 | 14240 | 13874 | 2,64 |
| 67 | 6226 | 5876 | 5,96 |
| 68 | 8099 | 7725 | 4,84 |
| 69 | 8337 | 8003 | 4,17 |
| 70 | 11536 | 11106 | 3,87 |
| 71 | 4758 | 4604 | 3,34 |
| 72 | 6241 | 6025 | 3,59 |
| 73 | 9858 | 9305 | 5,94 |
| 74 | 12660 | 12173 | 4,00 |
| 75 | 5454 | 5383 | 1,32 |
| AVG | 8251,96 | 7977,96 | 3,57 |
| MAX | 14240 | 13874 | 9,02 |
| MIN | 4642 | 4489 | 0,00 |

We can observe that the proposed heuristic has a good performance on finding nearoptimal solutions for the problems when $K=5$ and $N=15$. The average deviation from the MILP-2 solutions is \%3.57. Maximum and minimum percent deviations are \%9.02 and $\% 0.00$, respectively.

Table 6 shows the total completion time values obtained by the heuristic and the MILP2 model for the problem instances when $K=5$ and $N=20$, respectively.

Table 6 Heuristic solutions compared with MILP-2 solutions for the setup case when

$$
K=5 \text { and } N=20
$$

| Problem | Total Completion Time |  | $\%$ |
| :---: | :---: | :---: | :---: |
| Instance | HEURISTIC | MILP- 2 |  |
| 76 | 7449 | 7351 | 1,33 |
| 77 | 10941 | 10553 | 3,68 |
| 78 | 14177 | 14027 | 1,07 |
| 79 | 13068 | 12535 | 4,25 |
| 80 | 15257 | 14220 | 7,29 |
| 81 | 10878 | 10636 | 2,28 |
| 82 | 13998 | 13972 | 0,19 |
| 83 | 7514 | 7365 | 2,02 |
| 84 | 11456 | 11415 | 0,36 |
| 85 | 10128 | 9428 | 7,42 |
| 86 | 11765 | 11765 | 0,00 |
| 87 | 8366 | 8366 | 0,00 |
| 88 | 7651 | 7564 | 1,15 |
| 89 | 8805 | 8786 | 0,22 |
| 90 | 10850 | 10579 | 2,56 |
| 91 | 7997 | 7997 | 0,00 |
| 92 | 10016 | 10015 | 0,01 |
| 93 | 8146 | 7849 | 3,78 |
| 94 | 9607 | 9607 | 0,00 |
| 95 | 10822 | 10632 | 1,79 |
| 96 | 7794 | 7501 | 3,91 |
| 97 | 13550 | 13231 | 2,41 |
| 98 | 18115 | 18124 | $-0,05$ |
| 99 | 10855 | 10112 | 7,35 |
| 100 | 10484 | 10368 | 1,12 |
| AVG | 10787,56 | 10559,92 | 2,17 |
| MAX | 18115 | 18124 | 7,42 |
| MIN | 7449 | 7351 | $-0,05$ |

We can see that the proposed heuristic yields near-optimal solutions when the number of jobs are increased to 20. The average deviation of heuristic solutions from MILP-2 solutions is $\% 2.17$. Maximum and minimum percent deviations are $\% 7.42$ and $\%-0.05$, respectively. We observed negative percent deviations for some of the non-optimal problems especially for the problem instances having 15 and 20 number of jobs which indicates the heuristic yields better solution than the best integer solution of the MILP2.

Appendix B provides the remaining tables of our computational tests for the comparison of heuristic and MILP-2 for the setup case.

On the other hand, the summary table of the performance of heuristic for different problem sizes are presented in Table 7.

Table 7 The average, maximum and minimum percent deviations between solutions obtained by the heuristic and the MILP-2 for the setup case

| K | $N$ | Number of Problem Instances | Average Percent Deviation | Maximum Percent Deviation | Minimum Percent Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 5 | 25 | 1,84 | 11,60 | 0,00 |
|  | 10 | 25 | 2,40 | 10,30 | 0,00 |
|  | 15 | 25 | 3,57 | 9,02 | 0,00 |
|  | 20 | 25 | 2,17 | 7,42 | -0,05 |
| Total \& Averages |  | 100 | 2,49 | 9,59 | -0,01 |
| 10 | 5 | 25 | 1,15 | 8,01 | 0,00 |
|  | 10 | 25 | 3,26 | 19,10 | 0,00 |
|  | 15 | 25 | 3,28 | 28,03 | 0,00 |
|  | 20 | 25 | 2,96 | 12,19 | -1,34 |
| Total \& Averages |  | 100 | 2,66 | 16,83 | -0,33 |
| 15 | 5 | 25 | 1,77 | 8,28 | 0,00 |
|  | 10 | 25 | 2,12 | 7,02 | 0,00 |
|  | 15 | 25 | 3,35 | 10,07 | 0,17 |
|  | 20 | 25 | 3,69 | 12,40 | -0,69 |
| Total \& Averages |  | 100 | 2,73 | 9,44 | -0,13 |
| 20 | 5 | 25 | 1,14 | 2,80 | 0,00 |
|  | 10 | 25 | 1,91 | 7,87 | 0,00 |
|  | 15 | 25 | 1,45 | 7,41 | -4,68 |
|  | 20 | 25 | 2,48 | 6,07 | -0,39 |
| Total \& Averages |  | 100 | 1,74 | 6,04 | -1,27 |
| Total \& Grand Averages |  | 400 | 2,41 | 10,48 | -0,44 |

The grand averages of the problems when $K=5, K=10, K=15$, and $K=20$ are \%2.49, $\% 2.66, \% 2.73$, and $\% 1.74$, respectively. The average percent deviation for total of 400 problem instances is $\% 2.41$ which is relatively low and indicates that the heuristic is very practical for finding near-optimal solutions.

Figure 4 demonstrates the average computational time of the heuristic algorithm for different problem sizes for the setup case. Computational time tends to increase with respect to the number of jobs; however, it is relatively small in general. As a result, the heuristic algorithm yields significantly good results within a much lower computing time when we compare with the mathematical model.

Figure 4 Average CPU time of the heuristic algorithm for the setup case


### 5.3.2.1.2. No-setup Case

In this part, we compare the computational solutions of our heuristic algorithm with the proposed MILP-2 according to experiments for the no-setup case. Table 8 below shows the total completion time values that are obtained by the heuristic and the MILP- 2 when $K=5$ and $N=15$, respectively.

Table 8 Heuristic solutions compared with MILP-2 solutions for the no-setup case when $K=5$ and $N=15$

| Problem | Total Completion Time |  | $\%$ |
| :---: | :---: | :---: | :---: |
| Instance | HEURISTIC | MILP-2 |  |
| 51_N | 3971 | 3811 | 4,20 |
| 52_N | 6031 | 5596 | 7,77 |
| 53_N | 2276 | 2174 | 4,69 |
| 54_N | 6255 | 5859 | 6,76 |
| 55_N | 2622 | 2557 | 2,54 |
| 56_N | 6828 | 6828 | 0,00 |
| 57_N | 4489 | 4311 | 4,13 |
| 58_N | 5461 | 5405 | 1,04 |
| 59_N | 4339 | 4134 | 4,96 |
| 60_N | 7906 | 7892 | 0,18 |
| 61_N | 5622 | 5612 | 0,18 |
| 62_N | 3776 | 3663 | 3,08 |
| 63_N | 2456 | 2328 | 5,50 |
| 64_N | 7183 | 7183 | 0,00 |
| 65_N | 2098 | 2083 | 0,72 |
| 66_N | 6744 | 6744 | 0,00 |
| 67_N | 4968 | 4740 | 4,81 |
| 68_N | 5020 | 4867 | 3,14 |
| 69_N | 5400 | 5225 | 3,35 |
| 70_N | 6384 | 6130 | 4,14 |
| 71_N | 3384 | 3351 | 0,98 |
| 72_N | 5073 | 4903 | 3,47 |
| 73_N | 4618 | 4242 | 8,86 |
| 74_N | 7254 | 7224 | 0,42 |
| 75_N | 3959 | 3931 | 0,71 |
| AVG | 4964,68 | 4831,72 | 3,03 |
| MAX | 7906 | 7892 | 8,86 |
| MIN | 2098 | 2083 | 0,00 |

As can be seen from the Table 8, total completion time values that are obtained by the heuristic do not differ much than the values obtained by the mathematical model which indicates heuristic still provides near-optimal solutions when we ignore setup times between jobs. The average deviation from the MILP-2 solutions is \%3.03. Maximum and minimum percent deviations are $\% 8.86$ and $\% 0.00$, respectively.

Table 9 illustrates the total completion time values obtained by the heuristic and the MILP-2 for the problem instances when $K=5$ and $N=20$.

Table 9 Heuristic solutions compared with MILP solutions for the no-setup case when $K=5$ and $N=20$

| Problem <br> Instance | Total Completion Time |  | $\%$ |
| :---: | :---: | :---: | :---: |
| 76 HEURISTIC | MILP-2 |  |  |
| 77_N | 5647 | 5641 | 0,11 |
| 78_N | 6065 | 5977 | 1,47 |
| 79_N | 8654 | 8650 | 0,05 |
| 80_N | 7190 | 6900 | 4,20 |
| 81_N | 6123 | 6122 | 0,02 |
| 82_N | 5652 | 5419 | 4,30 |
| 83_N | 6174 | 5982 | 3,21 |
| 84_N | 5708 | 5613 | 1,69 |
| 85_N | 9169 | 9160 | 0,10 |
| 86_N | 5300 | 5156 | 2,79 |
| 87_N | 6228 | 6228 | 0,00 |
| 88_N | 4744 | 4591 | 3,33 |
| 89_N | 3955 | 3955 | 0,00 |
| 90_N | 6952 | 6737 | 3,19 |
| 91_N | 8726 | 8516 | 2,47 |
| 92_N | 6113 | 5940 | 2,91 |
| 93_N | 5974 | 5950 | 0,40 |
| 94_N | 5862 | 5494 | 6,70 |
| 95_N | 7304 | 7304 | 0,00 |
| 96_N | 8425 | 8347 | 0,93 |
| 97_N | 6154 | 5912 | 4,09 |
| 98_N | 7501 | 7437 | 0,86 |
| 99_N | 9265 | 9226 | 0,42 |
| 100_N | 6253 | 6143 | 1,79 |
| AVG | 6513 | 8417 | 1,14 |
| MAXX | 9265 | 6592,68 | 1,85 |
| MIN | 3955 | 9226 | 6,70 |

We can say that the proposed heuristic yields satisfactory results comparing to those of the mathematical model when the number of jobs are increased to 20 . The average deviation from the MILP-2's solutions is $\% 1.85$. Maximum and minimum percent deviations are $\% 6.70$ and $\% 0.00$, respectively.
The remaining tables for the solutions of the heuristic algorithm compared with the MILP-2 solutions for the no-setup case are provided in Appendix C.

Lastly, the summary table of the heuristic performance for different problem sizes are presented in Table 10.

Table 10 The average, maximum and minimum percent deviations between solutions obtained by the heuristic and the MILP-2 for the no-setup case

| $K$ | $N$ | Number <br> of <br> Problem <br> Instances | Average <br> Percent <br> Deviation | Maximum <br> Percent <br> Deviation | Minimum <br> Percent <br> Deviation |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 5 | 5 | 25 | 2,06 | 19,20 | 0,00 |
|  | 10 | 25 | 2,40 | 10,30 | 0,00 |
|  | 15 | 25 | 3,57 | 8,86 | 0,00 |
| Total \& Averages | 20 | 25 | 2,17 | 6,70 | 0,00 |
| 10 | 5 | 100 | 2,55 | 11,27 | 0,00 |
|  | 10 | 25 | 2,58 | 8,95 | 0,00 |
|  | 15 | 25 | 2,11 | 12,69 | 0,00 |
|  | 20 | 25 | 2,27 | 10,58 | 0,00 |
| Total \& Averages |  | 100 | 2,56 | 13,84 | 0,00 |
| 15 | 5 | 25 | 2,10 | 9,52 | 0,00 |
|  | 10 | 25 | 2,30 | 6,60 | 0,00 |
|  | 15 | 25 | 3,34 | 9,86 | 0,00 |
| Total \& Averages | 20 | 25 | 4,08 | 16,43 | $-0,04$ |
| 20 | 100 | 2,95 | 10,58 | $-0,23$ |  |
|  | 5 | 25 | 1,31 | 5,50 | $-0,07$ |
|  | 10 | 25 | 1,78 | 8,49 | 0,00 |
|  | 15 | 25 | 2,16 | 7,09 | $-2,56$ |
| Total \& Averages | 20 | 25 | 2,52 | 9,38 | $-6,65$ |
| Total \& Grand | 100 | 1,94 | 7,62 | $-2,30$ |  |
| Averages | 400 | 2,50 | 10,24 | $-0,59$ |  |

The grand averages of percent deviations are $\% 2.55, \% 2.56, \% 2.95$, and $\% 1.94$ for the problems when $K=5, K=10, K=15$, and $K=20$, respectively. The grand percent deviation of the heuristic for the no-setup case is $\% 2.50$. Minimum percent deviations are obtained in some of non-optimal problems solved by MILP-2; however, heuristic provides better solutions.

Figure 5 depicts the average computational time of the heuristic algorithm for different problem sizes for the no-setup case. Computational time tends to increase with respect to the number of jobs; whereas, it is small in general.

Figure 5 Average CPU time of the heuristic algorithm for the no-setup case


### 5.3.2.2 A Comparative Analysis of the Proposed Heuristic Algorithm

In this section, in order to analyze the behavior of the proposed heuristic algorithm, we investigated its search space and compared the results against complete enumeration technique. As we already know that a complete algorithm explores the whole search space however, computational effort raises exponentially. On the other hand, effective heuristic algorithms do not carry out a complete search on the solution space; instead, it explores some part of the solution space using heuristic information within a limited time. Therefore, it is important for us to report how effective our proposed heuristic on finding near-optimal solutions in whole search space. First, we analyzed the number of job sequences generated for each problem instance for setup and no-setup case, respectively. We obtained the number of job sequences generated for each problem instance when finding optimal sequence of jobs by the algorithm. Then, to analyse the search space used by the heuristics, the ratio of generated job sequences divided by all possible number of solutions ( $N$ !) is defined. It is obvious that there are $N$ ! possible solutions of complete job sequences for each problem instance. For instance, there are 5 !, 10 !, 15 ! and 20 ! possible solutions when the number of jobs are 5, 10, 15 and 20 , respectively.

The tables of the computational experiments for setup case and no-setup case are provided in Appendix D and Appendix E, respectively. We can easily deduce from the
computational results that the proposed heuristic is very good on finding optimal solutions in a reasonable time. The heuristic carries out only small proportion of the solution space and finds optimal solutions for all problem instances. In other words, the algorithm reaches optimal solutions only within two or three more iterations since the last best solution was found after the Phase-1 of the algorithm.

### 5.3.2.3 Initial Solution Improvement for the Proposed Heuristic Algorithm

In order to assess the contribution of each phase of the proposed heuristic, we compared the solutions that are obtained from Phase-1 and Phase-2 (Tabu Search) of the algorithm separately. As we said the algorithm works in two phases: Phase 1 prepares heuristic solution which will be used in Phase 2 with tabu-search method thereafter. Table 13 shows the computational results for the improvement in the solutions in Phase-2 (Tabu Search) that are found in Phase-1 for the setup case.

Table 11 Objective Function Improvement in Phase-2 for the setup case

| $K$ | $N$ | Number of <br> Problem <br> Instances | Number of <br> Improved <br> Solutions in <br> Phase-2 | Average Objective <br> Improvement (\%) |
| :--- | :---: | :---: | :---: | :---: |
| 5 | 5 | 25 | 14 | 1,95 |
|  | 10 | 25 | 14 | 0,98 |
|  | 15 | 25 | 12 | 0,57 |
| Total \& Averages | 20 | 25 | 16 | 0,51 |
| 10 | 5 | 100 | 56 | 1,00 |
|  | 10 | 25 | 17 | 4,08 |
|  | 15 | 25 | 8 | 0,65 |
|  | 20 | 25 | 10 | 0,52 |
| Total \& Averages |  | 100 | 15 | 0,59 |
| 15 | 5 | 25 | 12 | 1,46 |
|  | 10 | 25 | 16 | 3,22 |
|  | 15 | 25 | 11 | 0,79 |
| Total \& Averages | 20 | 25 | 10 | 0,52 |
| 20 | 100 | 49 | 0,22 |  |
|  | 25 | 20 | 1,18 |  |
| Total \& Averages | 20 | 25 | 13 | 0,48 |
| Total \& Grand |  | 25 | 16 | 0,66 |
| Averages | 10 | 13 | 0,93 |  |

As expected, Phase-1 has a major impact in the quality of the obtained solutions due to generation of a richer neighborhood in Phase-2. There are 217 problems out of total 400 problem instances for the setup case are improved in Phase-2 of the algorithm. Average improvement percentages are relatively low due to strong initial solution provided in Phase-1 and the grand improvement percentage for a total of 400 problem instances is \%1.32.

On the other hand, Table 14 shows the summary results for the improvement in the solutions in Phase-2 (Tabu Search) that are found in Phase-1 for the no-setup case.

Table 12 Objective Function Improvement in Phase-2 for the no-setup case

| $K$ | $N$ | Number of <br> Problem <br> Instances | Number of <br> Improved <br> Solutions in <br> Phase-2 | Average <br> Objective <br> Improvement <br> $(\%)$ |
| :--- | :---: | :---: | :---: | :---: |
| 5 | 5 | 25 | 13 | 3,29 |
|  | 10 | 25 | 11 | 0,77 |
|  | 15 | 25 | 12 | 0,86 |
| Total \& Averages | 20 | 25 | 13 | 0,57 |
| 10 | 5 | 100 | 49 | 1,37 |
|  | 10 | 25 | 14 | 4,10 |
|  | 15 | 25 | 8 | 0,87 |
| Total \& Averages | 20 | 25 | 11 | 0,58 |
| 15 | 5 | 100 | 14 | 0,58 |
|  | 10 | 25 | 47 | 1,53 |
| Total \& Averages | 20 | 25 | 14 | 4,77 |
| 20 | 5 | 10 | 9 | 0,53 |
|  | 10 | 25 | 6 | 0,46 |
|  | 15 | 25 | 40 | 0,12 |
| Total \& Averages | 20 | 25 | 18 | 1,47 |
| Total \& Grand |  | 100 | 12 | 6,04 |
| Averages | 400 | 12 | 0,72 |  |

As can be seen, the scenario is similar for the no-setup case. There are 189 problems out of 400 problem instances are improved in Phase-2 of the algorithm. The grand improvement percentage is $\% 1.56$ which is relatively low again.

The detailed tables for the comparison of two phases of the algorithm for all problem instances for setup case and no-setup case are provided in Appendices F and G, respectively.

### 5.3.3. Comparison of the Job-based and Order-based Processing Approaches

In this section, we discuss the results of our experiments on the mathematical models of both job-based and order-based processing approaches.

### 5.3.3.1 Setup Case

First, we analyzed the results of the experiments with setup times. As it was mentioned in Lemma 3 in Chapter 2, the problem $P_{O B P}$ gives optimal sequence of customer orders when there are setup times. Even though there is a significant amount of reduction in setup times in the problem $P_{O B P}$, the solutions of the problem $P_{J B P}$ outperforms it from the results of the experiments. The job-based processing approach yields better solutions for 310 problems out of 400 test problems when the setup times are involved. Experiment results also demonstrates that large size problems are not optimally solved by the job-based approach, however provides the best integer solutions which are still smaller than the solutions obtained for the problems $P_{\text {OBP }}$. For example, for the problem set with 10 customer orders and 15 jobs, there are 12 non-optimal solutions found by the job-based approach and these solutions are smaller than the order-based approach. As shown in Table 7, job-based processing approach yields negative mean percent deviations which indicate the results obtained by the job-based processing approach is better than the results obtained by the order-based processing approach with setup saving. As the number of customer orders and jobs increase, the percent deviation gets larger and the job-based approach provides better solutions for the setup case.

Table 13 Comparison of the job-based and order-based processing approaches for the setup case

| $K$ | $N$ | Number of <br> problem <br> instances | Average $\%$ <br> difference |
| :--- | :--- | :--- | :--- |
| 5 | 5 | 25 | $-6,69$ |
|  | 10 | 25 | $-7,70$ |
|  | 15 | 25 | $-8,68$ |
| Total \& Averages |  | 25 | $-7,63$ |
| 10 | 5 | 25 | $-7,67$ |
|  | 10 | 25 | $-7,05$ |
|  | 15 | 25 | $-8,75$ |
|  | 20 | 25 | $-15,50$ |
| Total \& Averages |  | 100 | $-24,00$ |
| 15 | 5 | 25 | $-13,82$ |
|  | 10 | 25 | $-9,53$ |
|  | 15 | 25 | $-11,35$ |
|  | 20 | 25 | $-15,88$ |
| Total \& Averages | 5 | 100 | $-17,08$ |
| 20 | 10 | 25 | $-13,46$ |
|  | 25 | $-12,50$ |  |
|  | 20 | 25 | $-14,70$ |
|  | 25 | $-18,26$ |  |
| Total \& Averages |  | 100 | $-19,30$ |
| Total \& Grand |  | 400 | $-16,19$ |
| Averages |  | $-12,79$ |  |

### 5.3.3.2 No-setup Case

The results of the problem instances when there is no setup time between jobs differ significantly. As it was described in Remark 1 in Section 2, the problem $P_{O B P}$ turns into the problem $P_{O B P}^{\prime}$ when we ignore setup times. Thus, both problems provide the same sequence of customer orders for the problem instances. As can be seen in Table 8, in contrast, the difference between job-based and order-based processing approaches now yields high positive average percent deviations between the solutions, which indicate that the order-based processing approach is better than the job-based processing approach when we ignore setup times in the same problem instances.

Table 14 Comparison of the job-based and order-based processing approaches for the no-setup case

| $K$ | $N$ | Number of <br> problem <br> instances | Average \% <br> difference |
| :--- | :--- | :--- | :--- |
| 5 | 5 | 25 | 23,18 |
|  | 10 | 25 | 40,74 |
|  | 15 | 25 | 47,98 |
| Total \& Averages | 20 | 25 | 50,92 |
| 10 | 5 | 100 | 40,71 |
|  | 10 | 25 | 32,31 |
|  | 15 | 25 | 34,49 |
| Total \& Averages | 20 | 25 | 54,91 |
| 15 | 5 | 100 | 58,53 |
|  | 10 | 25 | 45,06 |
| Total \& Averages | 20 | 25 | 29,73 |
| 20 | 5 | 25 | 69,49 |
|  | 10 | 100 | 74,25 |
|  | 15 | 25 | 53,10 |
| Total \& Averages | 20 | 25 | 30,52 |
| Total \& Grand |  | 25 | 79,05 |
| Averages |  | 400 | 89,76 |

We can deduce that customer order scheduling with the job-based processing approach yields better results when there is setup time. On the other hand, the order-based processing approach is more preferable when there is no setup time. However, the importance of setup times in production scheduling cannot be underestimated. Therefore, manufacturers or decision-makers should tailor processing methods to their needs for effective scheduling of customer orders.

## CHAPTER 6

## CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this study, we consider a customer order scheduling problem in a single machine to find a schedule with a sequence of jobs and the sequence of customer orders in each job when the job-based processing approach is used and compare this schedule with the schedule having the order-based processing approach. The total completion time of the customer orders is minimized in each processing approach.

We have proved that the problem $P_{O B P}^{\prime}$ with order-based processing in a singlemachine environment is easy and polynomial-time solvable, and developed two MILP models and a tabu-search based heuristic algorithm that obtain optimal and nearoptimal solutions, respectively, for the problem $P_{J B P}$. Our empirical study shows that the second model (MILP-2) finds optimal solutions for problems up to 10 jobs regardless of what the number of customer orders is in less than 3 hours of CPU time. However, there are problems with 15 and 20 jobs were not solved optimally. From these observations, it is clear that solving the problem with a standard MILP solver seems to be ineffective, especially for large-sized problem instances. The results also show that our proposed heuristic algorithm provides satisfactory solutions as it solves small and medium-sized problem instances optimally and finds near-optimal solutions for large-sized instances in a very short computational time.

We have also compared the order-based and job-based processing approaches, and observed that the job-based processing approach gives better results than the orderbased processing approach when a setup on the machine is needed before starting to process each job (product). On the other hand, if there is no-setup, our observation was reversed towards the order-based processing as we expected.

We believe that there are several fruitful issues for future research in the customer order scheduling problem with job-based processing. First, it would be interesting to develop a branch and bound algorithm as another exact solution procedure for the jobbased processing problem $P_{J B P}$ considered in our study. Second, the complexity of the problem $P_{J B P}$ is open for future investigation. Third, more elaborated metaheuristics, such as simulated annealing and genetic algorithm, could be developed and compared with our tabu-search algorithm. Fourth, total tardiness, maximum lateness, and the number of tardy customer orders could be other scheduling criteria to be investigated if there are due dates for the customer orders. Finally, considering the job-based processing approach on more complex machining environments, including parallel machines, flow shop, job shop, and open shop, would be other subjects of future study.

## REFERENCES

Ahmadi, R.H., and Bagchi, U. (1990). Scheduling of multi-job customer orders in multi-machine environments. ORSA/TIMS, Philadelphia.
Akkocaoğlu, H. (2014). A new customer order scheduling problem on a singlemachine with job setup times, MS Thesis, Çankaya University.

Allahverdi, A. (2015). The third comprehensive survey on scheduling with setup times/costs. European Journal of Operational Research, 246(2), 345-378.
Bagchi, U., Julien, F.M., \& Magazine, M.J. (1994). Note: due-date assignment to multi-job customer orders. Management Science, 40(10), 1389-1392.

Baker, K.R. (1988). Scheduling the production of components at a common facility. IIE Transactions, 20(1), 32-35.

Cheng, T.C.E, Kovalyov, M.Y. \& Tuzikov, A.V. (1996). Single machine group scheduling with two ordered criteria. The Journal of the Operational Research Society, 47(2), 315.

Coffman, E.G., Nozari, A., \& Yannakakis, M. (1989). Optimal scheduling of products with two subassemblies on a single machine. Operations Research, 37(3), 426-436.

Çetinkaya, F.C., Çatmakaş, H.A., \& Görür, A.K. (2019). Single-machine scheduling of indivisible multi-operation jobs. South African Journal of Industrial Engineering, 30(3), 78-93.

Erel, E., \& Ghosh, J.B. (2007). Customer order scheduling on a single machine with family setup times: Complexity and algorithms. Applied Mathematics and Computation, 185(1), 11-18.

Gerodimos, A.E., Glass, C.A., Potts, C.N., \& Tautenhahn, T. (1999). Scheduling multi-operation jobs on a single machine. Annals of Operations Research, 92(1-4), 87-105.

Glover F. (1989). Tabu search - Part I. ORSA Journal of Computing, 1, 190-206
Gupta, J.N.D. (1988). Single facility scheduling with multiple job classes. European Journal of Operational Research, 8, 42-45.

Gupta, J.N.D., Ho, J.C., \& van der Veen, J.A.A. (1997). Single machine hierarchical scheduling with customer orders and multiple job classes. Annals of Operations Research, 70(1-4), 127-143.

Gupta, J.N.D., \& Chantaravarapan, S. (2008). Single machine group scheduling with family setups to minimize total tardiness. International Journal of Production Research, 46(6), 1707-1722.

Hazır, O., Günalay, Y., \& Erel, E. (2008). Customer order scheduling problem: A comparative metaheuristics study. International Journal of Advanced Manufacturing Technology, 3(5-6), 589-598.

He, Y., \& Sun, L. (2012). Single-machine group scheduling problems with deterioration to minimize the sum of completion times. Mathematical Problems in Engineering, 1-9.

He, Y., \& Sun, L. (2015). One-machine scheduling problems with deteriorating jobs and position-dependent learning effects under group technology considerations. International Journal of Systems Science, 46(7), 1319-1326.

Julien, F.M., \& Magazine, M.J. (1990). Scheduling customer orders: an alternative production scheduling approach. Journal of Manufacturing and Operations Management, 3, 177-199.

Karabati, S., \& Akkan, C. (2006). Minimizing sum of completion times on a single machine with sequence-dependent family setup times. Journal of the Operational Research Society, 57(3), 271-280.

Liao, C.J., \& Chuang, C.H. (1996). Sequencing with setup time and order tardiness trade-offs. Naval Research Logistics, 43(7), 971-984.

Liu, C.H. (2009). Lot streaming for customer order scheduling problem in job shop environments. International Journal of Computer Integrated Manufacturing 22(9), 890-907.

Liu, F., Yang, J., \& Lu, Y.Y. (2019). Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs. Engineering Optimization, 51(5), 862-874.

Mason, S.J., \& Chen, J.S. (2010). Scheduling multiple orders per job in a single machine to minimize total completion time, European Journal of Operational Research, 207(1), 70-77.

Mazdeh, M.M., Sarhadi, M., \& Hindi, K.S. (2007). A branch-and-bound algorithm for single machine scheduling with batch delivery minimizing flow times and delivery costs. European Journal of Operational Research, 183(1), 74-86.

Nawaz, M., Enscore, E., \& Ham, I. (1983). A heuristic for the m-machine, n-job flow shop sequencing problem, Omega, 5(11), 91.

Neufeld, J. S., Gupta, J.N.D., \& Buscher, U. (2016). A comprehensive review of flowshop group scheduling literature. Computers \& Operations Research, 70(1), 56-74.

Ng, D., Cheng, E.T., \& Kovalyov, M.Y. (2004). Single machine batch scheduling with jointly compressible setup and processing times. European Journal of Operational Research, 162, 211-219.

Pinedo, M.L. (2008). Scheduling: Theory, Algorithms and Systems. Springer: New York.

Potts, C.N. (1991). Scheduling two job classes on a single machine. Computers \& Operations Research, 18(5), 411-415.

Potts, C.N., \& Kovalyov, M.Y. (2000). Scheduling with batching: A review. European Journal of Operational Research, 120(2), 228-249.

Sabouni, Y.M., \& Logendran, R. (2013). A single machine carryover sequencedependent group scheduling in PCB manufacturing. Computers \& Operations Research, 40(1), 236-247.

Santos, C. \& Magazine, M. (1985). Batching in single operation manufacturing systems, Operations Research Letters, 4(3), 99-103.

Smith, W.E. (1956). Various optimizers for single stage production. Naval Research Logistics Quarterly, 3(1), 59-66.

Vickson, R.G., Magazine, M.J., \& Santos, C.A. (1993) Batching and sequencing of components at a single facility. IIE Transactions, 25(2), 65-70.

Wang, J.B., Huang, X., Wu, Y.B., \& Ji, P. (2012). Group scheduling with independent setup times, ready times, and deteriorating job processing times. International Journal of Advanced Manufacturing Technology, 60(5-8), 643-649.

Wang, J.B., \& Wang, J.J. (2014). Single machine group scheduling with time dependent processing times and ready times. Information Sciences, 275, 226-231.

Webster, S., and Baker, K.R. (1995). Scheduling groups of jobs on a single machine. Operations Research, 43(4), 692-703.

Wu, C.C., \& Lee, W.C. (2006). Single machine scheduling to minimize the setup time and the earliness. Journal of Information \& Optimization Sciences, 27(2), 499-510.

Xu, X., Ma, Y., Zhou, Z., \& Zhao, Y. (2015). Customer order scheduling on unrelated parallel machines to minimize total completion time, IEEE Transactions on Automation Science and Engineering, 12(1), 244-257.

Yang, D.L., Hou, Y.T., \& Kuo, W.H. (2017). A note on a single-machine lot scheduling problem with indivisible orders. Computers and Operations Research, 79, 34-38.

Yang, J. (2011). Customer order scheduling in a two machine flowshop, International Journal of Management Science, 17(1), 1921-1939.
Yozgat, G. (2018). Customer order scheduling with lot streaming to minimize the total order completion time in a two-machine flow shop, MS Thesis, Çankaya University.

## APPENDICES

## APPENDIX A - MATHEMATICAL MODEL FOR THE PROBLEM $P_{o b P}$

## Parameters, indices and sets

$K \quad$ Number of customer orders.
$i \quad$ Index for customer orders $(i=1,2, \ldots, K)$.
$j \quad$ Index for jobs. $(j=1,2, \ldots, N)$.
$k$ Index for position of customer orders in the sequence $(k=1,2, \ldots, K)$.
$D_{i, j} \quad D_{i, j}=1$ if customer order $O_{i}$ has job $J_{j} ;$ otherwise, $D_{i, j}=0$
$p_{j} \quad$ Processing time for job $J_{j}$.
$s_{j} \quad$ Setup time for job $J_{j}$.
$N_{i} \quad$ Set of different jobs in customer $O_{i}$.

A Set of customer orders having more than one job to be processed.
$T T_{i}$ Total (sum of setup and processing) time of all jobs in customer order $O_{i}$, where $T T_{i}=\sum_{J_{j} \in o_{i}}\left(s_{j}+p_{j}\right)$
$S T_{h j} \quad$ Setup time between jobs $J_{h}$ and $J_{j}$ if job $J_{j}$ immediately follows job $J_{h}$, where $S T_{h j}=s_{j}$ if $j \neq h$; otherwise, $S T_{h j}=0$.

Decision variables
$X_{i k}=\left\{\begin{array}{l}1 \text { if customer order } O_{i} \text { assigned to position } k \\ 0 \text { otherwise }\end{array}\right.$
$\mathrm{F}_{\mathrm{jik}}=\left\{\begin{array}{l}1 \text { if job } J_{j} \text { is the first job in customer order } O_{i} \text { assigned to position } k \\ 0 \text { otherwise }\end{array}\right.$
$L_{j i k}=\left\{\begin{array}{l}1 \text { if job } J_{j} \text { is the last job in customer order } O_{i} \text { assigned to position } k \\ 0 \text { otherwise }\end{array}\right.$
$Y_{h i j l k}=\left\{\begin{array}{l}1 \text { if both } L_{h i k} \text { and } F_{j l, k+1} \text { are equal to } 1 \text { (i. e., last job of a customer order } \\ \text { and the first job of the immediately following custmer order are not same.) } \\ 0 \text { otherwise }\end{array}\right.$
$R T_{i k} \quad$ Realized total (sum of setup and processing) time of customer orders $O_{i}$ assigned to position $k$.

TC Total completion time of customer orders.
MILP model
Minimize $\quad T C=\sum_{i=1}^{K}(K-k+1) \sum_{i=1}^{K}\left(R T_{i k}\right)$
Subject to $\sum_{i=1}^{K} X_{i k}=1 \quad$ for $k=1,2, \ldots, K$

$$
\begin{array}{ll}
\sum_{k=1}^{K} X_{i k}=1 & \text { for } i=1,2, \ldots, K \\
\sum_{j \in N_{i}} \sum_{i=1}^{K} F_{j i k}=1 & \text { for } k=1,2, \ldots, K  \tag{A.4}\\
\sum_{j \in N_{i}} \sum_{i=1}^{K} L_{j i k}=1 & \text { for } k=1,2, \ldots, K
\end{array}
$$

$F_{j i k} \leq D_{l j} X_{l k} \quad$ for $j \in N_{i} ; i=1,2, \ldots, K ; k=1,2, \ldots, K$
$L_{j i k} \leq D_{l j} X_{l k} \quad$ for $j \in N_{i} ; i=1,2, \ldots, K ; k=1,2, \ldots, K$
$L_{h i k}+F_{j l k+1}-1 \leq Y_{h i j l k}$ for $j \in N_{i} ; h \in N_{i} ; j \neq h ; i=1,2, \ldots, K$

$$
\begin{equation*}
l=1,2, \ldots, K ; l \neq i ; k=1,2, \ldots, K \tag{A.8}
\end{equation*}
$$

$$
\begin{equation*}
F_{j i k}+L_{j i k} \leq 1 \quad \text { for } j \in N_{i} ; i \in A ; k=1,2, \ldots, K \tag{A.9}
\end{equation*}
$$

$$
\begin{equation*}
R T_{i 1} \geq T T_{i} X_{i 1} \quad \text { for } i=1,2, \ldots, K \tag{A.10}
\end{equation*}
$$

$$
R T_{i k} \geq T T_{i} X_{i k}-\sum_{j \in N_{i}} S_{j} F_{j i k} \sum_{h \in N_{i}} \sum_{j \in N_{i}} \sum_{l=1}^{K} S T_{h j} Y_{h i j l k-1}
$$

$$
\begin{equation*}
\text { for } i=1,2, \ldots, K ; k \geq 2 \tag{A.11}
\end{equation*}
$$

"In the above MILP model, the objective in (A.1) is to minimize the total completion time. Constraint sets (A.2) and (A.3) ensure that each position in the sequence of customer orders is occupied by one customer only and each customer order is assigned to one position only, respectively. Constraint sets (A.4) and (A.5) guarantee only one job in each customer order can be processed as the first or last job in its customer order, respectively. Constraint sets (A.6) and (A.7) ensure that a job cannot be the first or last job of a customer order assigned to a position if this customer order does not include the job. Constraint set (A.8) satisfies the condition that no setup time is necessary before the processing of the first job of a customer order if this first job is same as the last job of the immediately preceding customer order. Constraint set (A.9) guarantees that each job in a customer order can be the first, immediate or last job of this customer order. Constraint sets (A.10) and (A.11) define the realized total (sum of setup and processing) time of the customer orders assigned to the first and other positions, respectively. Constraint sets (A.12) and (A.13) impose non-negativity and binary restrictions on the decision variables, respectively." (Akkocaoğlu, 2014, p.22-25)

APPENDIX B - TOTAL COMPLETION TIME VALUES OBTAINED BY THE HEURISTIC AND THE MILP-2 FOR THE SETUP CASE
Table B. 1 Total Completion Time Values when $K=5$

| $K=5, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instanc | Total Completion Time | $\%$ |  |
|  | HEURISTIC | MILP |  |
| 1 | 653 | 653 | 0,00 |
| 2 | 1780 | 1759 | 1,19 |
| 3 | 1760 | 1577 | 11,60 |
| 4 | 1907 | 1907 | 0,00 |
| 5 | 2812 | 2812 | 0,00 |
| 6 | 1434 | 1434 | 0,00 |
| 7 | 2892 | 2779 | 4,07 |
| 8 | 1338 | 1338 | 0,00 |
| 9 | 3946 | 3854 | 2,39 |
| 10 | 1573 | 1573 | 0,00 |
| 11 | 3198 | 3198 | 0,00 |
| 12 | 1809 | 1809 | 0,00 |
| 13 | 1596 | 1596 | 0,00 |
| 14 | 2579 | 2579 | 0,00 |
| 15 | 4497 | 4177 | 7,66 |
| 16 | 2833 | 2699 | 4,96 |
| 17 | 1174 | 1174 | 0,00 |
| 18 | 2842 | 2570 | 10,58 |
| 19 | 3531 | 3460 | 2,05 |
| 20 | 986 | 986 | 0,00 |
| 21 | 3354 | 3326 | 0,84 |
| 22 | 2005 | 1994 | 0,55 |
| 23 | 3163 | 3163 | 0,00 |
| 24 | 3700 | 3700 | 0,00 |
| 25 | 1958 | 1958 | 0,00 |
| AVG | 2372,8 | 2323 | 1,84 |
| MAX | 4497 | 4177 | 11,60 |
| MIN | 653 | 653 | 0,00 |
|  |  |  |  |


| $K=5, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instanc | Total Completion Time |  | $\%$ |
|  | HEURISTIC | MILP |  |
| 26 | 4683 | 4555 | 2,81 |
| 27 | 5507 | 5491 | 0,29 |
| 28 | 3554 | 3554 | 0,00 |
| 29 | 4615 | 4615 | 0,00 |
| 30 | 4179 | 4119 | 1,46 |
| 31 | 5712 | 5511 | 3,65 |
| 32 | 5031 | 4885 | 2,99 |
| 33 | 2988 | 2888 | 3,46 |
| 34 | 6701 | 6528 | 2,65 |
| 35 | 6179 | 6104 | 1,23 |
| 36 | 5300 | 5300 | 0,00 |
| 37 | 3631 | 3631 | 0,00 |
| 38 | 6690 | 6346 | 5,42 |
| 39 | 4008 | 4008 | 0,00 |
| 40 | 3300 | 3196 | 3,25 |
| 41 | 3526 | 3391 | 3,98 |
| 42 | 4919 | 4751 | 3,54 |
| 43 | 5881 | 5825 | 0,96 |
| 44 | 3684 | 3340 | 10,30 |
| 45 | 4287 | 4109 | 4,33 |
| 46 | 2653 | 2599 | 2,08 |
| 47 | 6097 | 6072 | 0,41 |
| 48 | 5049 | 4929 | 2,43 |
| 49 | 6853 | 6536 | 4,85 |
| 50 | 5414 | 5414 | 0,00 |
| AVG | 4817,64 | 4707,88 | 2,40 |
| MAX | 6853 | 6536 | 10,30 |
| MIN | 2653 | 2599 | 0,00 |


| $K=5, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Time |  |  |
| Instance | HEURISTIC | MILP |  |
| 51 | 5645 | 5178 | 9,02 |
| 52 | 7474 | 7243 | 3,19 |
| 53 | 4642 | 4489 | 3,41 |
| 54 | 8906 | 8232 | 8,19 |
| 55 | 6987 | 6987 | 0,00 |
| 56 | 8495 | 8486 | 0,11 |
| 57 | 6794 | 6687 | 1,60 |
| 58 | 8587 | 8099 | 6,03 |
| 59 | 7706 | 7253 | 6,25 |
| 60 | 13501 | 13487 | 0,10 |
| 61 | 9661 | 9474 | 1,97 |
| 62 | 8354 | 8169 | 2,26 |
| 63 | 6239 | 6031 | 3,45 |
| 64 | 9028 | 8746 | 3,22 |
| 65 | 6871 | 6814 | 0,84 |
| 66 | 14240 | 13874 | 2,64 |
| 67 | 6226 | 5876 | 5,96 |
| 68 | 8099 | 7725 | 4,84 |
| 69 | 8337 | 8003 | 4,17 |
| 70 | 11536 | 11106 | 3,87 |
| 71 | 4758 | 4604 | 3,34 |
| 72 | 6241 | 6025 | 3,59 |
| 73 | 9858 | 9305 | 5,94 |
| 74 | 12660 | 12173 | 4,00 |
| 75 | 5454 | 5383 | 1,32 |
| AVG | 8251,96 | 7977,96 | 3,57 |
| MAX | 14240 | 13874 | 9,02 |
| MIN | 4642 | 4489 | 0,00 |


| $K=5, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Time | $\%$ |  |
| Instance | HEURISTIC | MILP |  |
| 76 | 7449 | 7351 | 1,33 |
| 77 | 10941 | 10553 | 3,68 |
| 78 | 14177 | 14027 | 1,07 |
| 79 | 13068 | 12535 | 4,25 |
| 80 | 15257 | 14220 | 7,29 |
| 81 | 10878 | 10636 | 2,28 |
| 82 | 13998 | 13972 | 0,19 |
| 83 | 7514 | 7365 | 2,02 |
| 84 | 11456 | 11415 | 0,36 |
| 85 | 10128 | 9428 | 7,42 |
| 86 | 11765 | 11765 | 0,00 |
| 87 | 8366 | 8366 | 0,00 |
| 88 | 7651 | 7564 | 1,15 |
| 89 | 8805 | 8786 | 0,22 |
| 90 | 10850 | 10579 | 2,56 |
| 91 | 7997 | 7997 | 0,00 |
| 92 | 10016 | 10015 | 0,01 |
| 93 | 8146 | 7849 | 3,78 |
| 94 | 9607 | 9607 | 0,00 |
| 95 | 10822 | 10632 | 1,79 |
| 96 | 7794 | 7501 | 3,91 |
| 97 | 13550 | 13231 | 2,41 |
| 98 | 18115 | 18124 | $-0,05$ |
| 99 | 10855 | 10112 | 7,35 |
| 100 | 10484 | 10368 | 1,12 |
| AVG | 10787,56 | 10559,92 | 2,17 |
| MAX | 18115 | 18124 | 7,42 |
| MIN | 7449 | 7351 | $-0,05$ |

Table B. 2 Total Completion Time Values when $K=10$

| $K=10, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Time | $\%$ |  |
| Instance | HEURISTIC | MILP |  |
| 101 | 5002 | 5002 | 0,00 |
| 102 | 3201 | 3176 | 0,79 |
| 103 | 3069 | 3039 | 0,99 |
| 104 | 2929 | 2925 | 0,14 |
| 105 | 3157 | 3125 | 1,02 |
| 106 | 7031 | 6859 | 2,51 |
| 107 | 5350 | 5350 | 0,00 |
| 108 | 11701 | 11686 | 0,13 |
| 109 | 2163 | 2097 | 3,15 |
| 110 | 3063 | 3063 | 0,00 |
| 111 | 4060 | 4036 | 0,59 |
| 112 | 2476 | 2466 | 0,41 |
| 113 | 5756 | 5329 | 8,01 |
| 114 | 6728 | 6728 | 0,00 |
| 115 | 4666 | 4666 | 0,00 |
| 116 | 2194 | 2158 | 1,67 |
| 117 | 5063 | 5004 | 1,18 |
| 118 | 8405 | 8405 | 0,00 |
| 119 | 5050 | 5026 | 0,48 |
| 120 | 9494 | 9426 | 0,72 |
| 121 | 3563 | 3399 | 4,82 |
| 122 | 4419 | 4401 | 0,41 |
| 123 | 4728 | 4728 | 0,00 |
| 124 | 8269 | 8126 | 1,76 |
| 125 | 8543 | 8543 | 0,00 |
| AVG | 5203,2 | 5150,52 | 1,15 |
| MAX | 11701 | 11686 | 8,01 |
| MIN | 2163 | 2097 | 0,00 |
|  |  |  |  |


| $K=10, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Time | $\%$ |  |
| Instance | HEURISTIC | MILP |  |
| 126 | 5857 | 5857 | 0,00 |
| 127 | 15574 | 15444 | 0,84 |
| 128 | 13850 | 13651 | 1,46 |
| 129 | 13749 | 13436 | 2,33 |
| 130 | 13353 | 12309 | 8,48 |
| 131 | 7317 | 7126 | 2,68 |
| 132 | 19765 | 19182 | 3,04 |
| 133 | 12468 | 12468 | 0,00 |
| 134 | 13643 | 11455 | 19,10 |
| 135 | 17220 | 16541 | 4,10 |
| 136 | 11310 | 10295 | 9,86 |
| 137 | 17797 | 17602 | 1,11 |
| 138 | 21184 | 20700 | 2,34 |
| 139 | 22871 | 22802 | 0,30 |
| 140 | 12380 | 11870 | 4,30 |
| 141 | 13571 | 13571 | 0,00 |
| 142 | 8840 | 8840 | 0,00 |
| 143 | 25375 | 23647 | 7,31 |
| 144 | 16480 | 16480 | 0,00 |
| 145 | 17372 | 16304 | 6,55 |
| 146 | 12590 | 12001 | 4,91 |
| 147 | 18381 | 18381 | 0,00 |
| 148 | 20725 | 20173 | 2,74 |
| 149 | 10669 | 10669 | 0,00 |
| 150 | 15182 | 15182 | 0,00 |
| AVG | 15100,92 | 14639,44 | 3,26 |
| MAX | 25375 | 23647 | 19,10 |
| MIN | 5857 | 5857 | 0,00 |
|  |  |  |  |


| $K=10, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Time | $\%$ |  |
| Instance | HEURISTIC | MILP |  |
| 151 | 21102 | 21081 | 0,10 |
| 152 | 24131 | 24067 | 0,27 |
| 153 | 19291 | 19291 | 0,00 |
| 154 | 21935 | 21839 | 0,44 |
| 155 | 18206 | 18206 | 0,00 |
| 156 | 22111 | 21756 | 1,63 |
| 157 | 29343 | 29201 | 0,49 |
| 158 | 36339 | 34607 | 5,00 |
| 159 | 19355 | 19174 | 0,94 |
| 160 | 29330 | 29098 | 0,80 |
| 161 | 30704 | 28638 | 7,21 |
| 162 | 24555 | 23911 | 2,69 |
| 163 | 28514 | 28318 | 0,69 |
| 164 | 22045 | 21210 | 3,94 |
| 165 | 40240 | 38032 | 5,81 |
| 166 | 35315 | 34513 | 2,32 |
| 167 | 28213 | 28100 | 0,40 |
| 168 | 17524 | 17288 | 1,37 |
| 169 | 20241 | 20159 | 0,41 |
| 170 | 26240 | 25313 | 3,66 |
| 171 | 21904 | 17108 | 28,03 |
| 172 | 20817 | 20710 | 0,52 |
| 173 | 32861 | 31013 | 5,96 |
| 174 | 18913 | 18873 | 0,21 |
| 175 | 37731 | 34566 | 9,16 |
| AVG | 25878,4 | 25042,88 | 3,28 |
| MAX | 40240 | 38032 | 28,03 |
| MIN | 17524 | 17108 | 0,00 |
|  |  |  |  |


| $K=10, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Time | $\%$ |  |
| Instance | HEURISTIC | MILP |  |
| 176 | 32683 | 29494 | 10,81 |
| 177 | 45725 | 40949 | 11,66 |
| 178 | 38426 | 37258 | 3,13 |
| 179 | 32709 | 32333 | 1,16 |
| 180 | 38009 | 36916 | 2,96 |
| 181 | 32848 | 32052 | 2,48 |
| 182 | 34268 | 34184 | 0,25 |
| 183 | 36233 | 35713 | 1,46 |
| 184 | 37863 | 37863 | 0,00 |
| 185 | 22141 | 21744 | 1,83 |
| 186 | 40072 | 37441 | 7,03 |
| 187 | 35726 | 35302 | 1,20 |
| 188 | 40543 | 39582 | 2,43 |
| 189 | 40329 | 40278 | 0,13 |
| 190 | 49245 | 48114 | 2,35 |
| 191 | 30112 | 30355 | $-0,80$ |
| 192 | 32399 | 32320 | 0,24 |
| 193 | 30748 | 30547 | 0,66 |
| 194 | 51566 | 52266 | $-1,34$ |
| 195 | 26032 | 26032 | 0,00 |
| 196 | 40118 | 37449 | 7,13 |
| 197 | 23791 | 23641 | 0,63 |
| 198 | 44191 | 44431 | $-0,54$ |
| 199 | 21019 | 18736 | 12,19 |
| 200 | 33682 | 31476 | 7,01 |
| AVG | 35619,12 | 34659,04 | 2,96 |
| MAX | 51566 | 52266 | 12,19 |
| MIN | 21019 | 18736 | $-1,34$ |
|  |  |  |  |

Table B. 3 Total Completion Time Values when $K=15$

| $K=15, N=5$ |  |  |  | $K=15, N=10$ |  |  |  | $K=15, N=15$ |  |  |  | $K=15, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% | Problem Total Completion Time |  |  | \% | Problem Total Completion Time |  |  | \% | Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  | Instance | HEURISTIC | MILP |  | Instance | HEURISTIC | MILP |  | Instance | HEURISTIC | MILP |  |
| 201 | 9032 | 9032 | 0,00 | 226 | 20312 | 19880 | 2,17 | 251 | 36063 | 35775 | 0,81 | 276 | 48353 | 47859 | 1,03 |
| 202 | 10092 | 9919 | 1,74 | 227 | 31861 | 31534 | 1,04 | 252 | 46021 | 44945 | 2,39 | 277 | 65876 | 58611 | 12,40 |
| 203 | 7897 | 7867 | 0,38 | 228 | 25249 | 24346 | 3,71 | 253 | 37403 | 35783 | 4,53 | 278 | 51720 | 48788 | 6,01 |
| 204 | 8100 | 8070 | 0,37 | 229 | 21442 | 20892 | 2,63 | 254 | 35149 | 34513 | 1,84 | 279 | 46698 | 45029 | 3,71 |
| 205 | 9016 | 8946 | 0,78 | 230 | 24298 | 24298 | 0,00 | 255 | 49996 | 49473 | 1,06 | 280 | 47972 | 46050 | 4,17 |
| 206 | 8631 | 8232 | 4,85 | 231 | 17517 | 17293 | 1,30 | 256 | 35872 | 35181 | 1,96 | 281 | 51716 | 50267 | 2,88 |
| 207 | 16792 | 16612 | 1,08 | 232 | 47009 | 44045 | 6,73 | 257 | 39895 | 39339 | 1,41 | 282 | 88109 | 87993 | 0,13 |
| 208 | 14728 | 14527 | 1,38 | 233 | 32246 | 32009 | 0,74 | 258 | 68526 | 65295 | 4,95 | 283 | 69086 | 67906 | 1,74 |
| 209 | 10795 | 10488 | 2,93 | 234 | 25015 | 24060 | 3,97 | 259 | 49618 | 48207 | 2,93 | 284 | 53477 | 49174 | 8,75 |
| 210 | 8319 | 8115 | 2,51 | 235 | 29301 | 28640 | 2,31 | 260 | 38687 | 36063 | 7,28 | 285 | 64112 | 61798 | 3,74 |
| 211 | 16513 | 16513 | 0,00 | 236 | 36780 | 36780 | 0,00 | 261 | 53844 | 50083 | 7,51 | 286 | 74841 | 72248 | 3,59 |
| 212 | 8188 | 8128 | 0,74 | 237 | 25703 | 25440 | 1,03 | 262 | 50265 | 50179 | 0,17 | 287 | 59174 | 54634 | 8,31 |
| 213 | 11507 | 11045 | 4,18 | 238 | 38854 | 38537 | 0,82 | 263 | 44343 | 43182 | 2,69 | 288 | 75966 | 75142 | 1,10 |
| 214 | 15094 | 14750 | 2,33 | 239 | 41008 | 40410 | 1,48 | 264 | 61127 | 58511 | 4,47 | 289 | 85177 | 82162 | 3,67 |
| 215 | 20760 | 19363 | 7,21 | 240 | 35465 | 34268 | 3,49 | 265 | 66086 | 63960 | 3,32 | 290 | 71141 | 69496 | 2,37 |
| 216 | 8992 | 8928 | 0,72 | 241 | 26463 | 26436 | 0,10 | 266 | 52527 | 48347 | 8,65 | 291 | 48890 | 48447 | 0,91 |
| 217 | 5385 | 5319 | 1,24 | 242 | 20226 | 18899 | 7,02 | 267 | 37220 | 34986 | 6,39 | 292 | 54544 | 53548 | 1,86 |
| 218 | 19169 | 19145 | 0,13 | 243 | 50105 | 50105 | 0,00 | 268 | 43991 | 43787 | 0,47 | 293 | 103059 | 97635 | 5,56 |
| 219 | 15193 | 15177 | 0,11 | 244 | 39918 | 38945 | 2,50 | 269 | 74889 | 73593 | 1,76 | 294 | 75601 | 73923 | 2,27 |
| 220 | 9168 | 9139 | 0,32 | 245 | 30734 | 30524 | 0,69 | 270 | 54415 | 54200 | 0,40 | 295 | 62208 | 60416 | 2,97 |
| 221 | 10425 | 10282 | 1,39 | 246 | 21591 | 21591 | 0,00 | 271 | 49413 | 44891 | 10,07 | 296 | 56002 | 49987 | 12,03 |
| 222 | 10011 | 9920 | 0,92 | 247 | 35315 | 34272 | 3,04 | 272 | 38276 | 36939 | 3,62 | 297 | 71476 | 70805 | 0,95 |
| 223 | 14301 | 14191 | 0,78 | 248 | 34529 | 33956 | 1,69 | 273 | 55332 | 53870 | 2,71 | 298 | 78655 | 79202 | -0,69 |
| 224 | 22268 | 20565 | 8,28 | 249 | 37871 | 36052 | 5,05 | 274 | 61458 | 60882 | 0,95 | 299 | 81601 | 80339 | 1,57 |
| 225 | 13637 | 13637 | 0,00 | 250 | 30672 | 30233 | 1,45 | 275 | 48045 | 47385 | 1,39 | 300 | 69810 | 68960 | 1,23 |
| AVG | 12160,52 | 11916,4 | 1,77 | AVG | 31179,36 | 30537,8 | 2,12 | AVG | 49138,44 | 47574,8 | 3,35 | AVG | 66210,56 | 64016,8 | 3,69 |
| MAX | 22268 | 20565 | 8,28 | MAX | 50105 | 50105 | 7,02 | MAX | 74889 | 73593 | 10,07 | MAX | 103059 | 97635 | 12,40 |
| MIN | 5385 | 5319 | 0,00 | MIN | 17517 | 17293 | 0,00 | MIN | 35149 | 34513 | 0,17 | MIN | 46698 | 45029 | -0,69 |

Table B. 4 Total Completion Time Values when $K=20$

| $K=20, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Timt | $\%$ |  |
| Instance | HEURISTIC | MILP |  |
| 301 | 14592 | 14465 | 0,88 |
| 302 | 18124 | 17898 | 1,26 |
| 303 | 15123 | 15093 | 0,20 |
| 304 | 13071 | 12934 | 1,06 |
| 305 | 14384 | 14251 | 0,93 |
| 306 | 14670 | 14342 | 2,29 |
| 307 | 31381 | 31094 | 0,92 |
| 308 | 21539 | 21150 | 1,84 |
| 309 | 21333 | 20751 | 2,80 |
| 310 | 15337 | 14973 | 2,43 |
| 311 | 31723 | 31723 | 0,00 |
| 312 | 15626 | 15476 | 0,97 |
| 313 | 18117 | 17838 | 1,56 |
| 314 | 26046 | 26046 | 0,00 |
| 315 | 34394 | 33740 | 1,94 |
| 316 | 17385 | 17241 | 0,84 |
| 317 | 9472 | 9382 | 0,96 |
| 318 | 28941 | 28941 | 0,00 |
| 319 | 29743 | 29727 | 0,05 |
| 320 | 13195 | 13137 | 0,44 |
| 321 | 19988 | 19521 | 2,39 |
| 322 | 17656 | 17548 | 0,62 |
| 323 | 25814 | 25711 | 0,40 |
| 324 | 36001 | 35104 | 2,56 |
| 325 | 24824 | 24510 | 1,28 |
| AVG | 21139,16 | 20903,8 | 1,14 |
| MAX | 36001 | 35104 | 2,80 |
| MIN | 9472 | 9382 | 0,00 |
|  |  |  |  |


| $K=20, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem | Total Completion Tim $\epsilon$ | $\%$ |  |
| Instance | HEURISTIC |  |  |
| 326 | 45505 | 44557 | 2,13 |
| 327 | 57103 | 57023 | 0,14 |
| 328 | 43362 | 42173 | 2,82 |
| 329 | 37616 | 37390 | 0,60 |
| 330 | 40356 | 40251 | 0,26 |
| 331 | 33645 | 32621 | 3,14 |
| 332 | 76916 | 74550 | 3,17 |
| 333 | 55961 | 54076 | 3,49 |
| 334 | 43813 | 43617 | 0,45 |
| 335 | 51366 | 51283 | 0,16 |
| 336 | 63910 | 63910 | 0,00 |
| 337 | 47004 | 46599 | 0,87 |
| 338 | 72653 | 71993 | 0,92 |
| 339 | 70104 | 69702 | 0,58 |
| 340 | 63192 | 61406 | 2,91 |
| 341 | 44541 | 41872 | 6,37 |
| 342 | 37742 | 34988 | 7,87 |
| 343 | 82326 | 82326 | 0,00 |
| 344 | 62040 | 60354 | 2,79 |
| 345 | 45041 | 45041 | 0,00 |
| 346 | 34337 | 34328 | 0,03 |
| 347 | 61241 | 59792 | 2,42 |
| 348 | 59050 | 57436 | 2,81 |
| 349 | 65534 | 63984 | 2,42 |
| 350 | 56334 | 55566 | 1,38 |
| AVG | 54027,68 | 53073,5 | 1,91 |
| MAX | 82326 | 82326 | 7,87 |
| MIN | 33645 | 32621 | 0,00 |
|  |  |  |  |


| $K=20, N=15$ |  |  |  | $K=20, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% | Problem Total Completion Time Instance HEURISTIC MILP |  |  | \% |
| 351 | 70292 | 68130 | 3,17 | 376 | 99349 | 95171 | 4,39 |
| 352 | 88190 | 83654 | 5,42 | 377 | 108955 | 103001 | 5,78 |
| 353 | 54369 | 57038 | -4,68 | 378 | 93625 | 93130 | 0,53 |
| 354 | 61200 | 59074 | 3,60 | 379 | 83128 | 80693 | 3,02 |
| 355 | 84809 | 84421 | 0,46 | 380 | 79499 | 79211 | 0,36 |
| 356 | 63364 | 62445 | 1,47 | 381 | 87626 | 85188 | 2,86 |
| 357 | 70573 | 69974 | 0,86 | 382 | 148070 | 148654 | -0,39 |
| 358 | 117458 | 117187 | 0,23 | 383 | 121428 | 121583 | -0,13 |
| 359 | 86818 | 85727 | 1,27 | 384 | 93766 | 89877 | 4,33 |
| 360 | 72483 | 71245 | 1,74 | 385 | 111563 | 106747 | 4,51 |
| 361 | 94092 | 94275 | -0,19 | 386 | 128868 | 124374 | 3,61 |
| 362 | 83853 | 83566 | 0,34 | 387 | 100658 | 98583 | 2,10 |
| 363 | 71893 | 69883 | 2,88 | 388 | 129241 | 128543 | 0,54 |
| 364 | 115843 | 113780 | 1,81 | 389 | 150364 | 146458 | 2,67 |
| 365 | 101816 | 101184 | 0,62 | 390 | 126898 | 119634 | 6,07 |
| 366 | 90747 | 90902 | -0,17 | 391 | 88219 | 88130 | 0,10 |
| 367 | 67434 | 67269 | 0,25 | 392 | 95808 | 95193 | 0,65 |
| 368 | 79050 | 78607 | 0,56 | 393 | 179506 | 174724 | 2,74 |
| 369 | 123868 | 123820 | 0,04 | 394 | 140425 | 133101 | 5,50 |
| 370 | 96003 | 94758 | 1,31 | 395 | 104990 | 103373 | 1,56 |
| 371 | 82706 | 76997 | 7,41 | 396 | 96531 | 93537 | 3,20 |
| 372 | 61539 | 61539 | 0,00 | 397 | 126770 | 125628 | 0,91 |
| 373 | 88416 | 86070 | 2,73 | 398 | 148261 | 147245 | 0,69 |
| 374 | 117279 | 113886 | 2,98 | 399 | 150070 | 143854 | 4,32 |
| 375 | 85356 | 83664 | 2,02 | 400 | 134845 | 132198 | 2,00 |
| AVG | 85178,04 | 83963,8 | 1,45 | AVG | 117138,52 | 114313 | 2,48 |
| MAX | 123868 | 123820 | 7,41 | MAX | 179506 | 174724 | 6,07 |
| MIN | 54369 | 57038 | -4,68 | MIN | 79499 | 79211 | -0,39 |

## APPENDIX C - TOTAL COMPLETION TIME VALUES OBTAINED BY THE HEURISTIC AND THE MILP-2 FOR THE NOSETUP CASE

Table C. 1 Total Completion Time Values when $K=5$

| $K=5, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 1_N | 159 | 137 | 16,06 |
| 2_N | 1142 | 1121 | 1,87 |
| 3_N | 1232 | 1232 | 0,00 |
| 4_N | 615 | 615 | 0,00 |
| 5_N | 603 | 603 | 0,00 |
| 6_N | 912 | 912 | 0,00 |
| 7_N | 2361 | 2323 | 1,64 |
| 8_N | 617 | 617 | 0,00 |
| 9 -N | 1835 | 1737 | 5,64 |
| 10_N | 1146 | 1146 | 0,00 |
| 11_N | 2683 | 2683 | 0,00 |
| 12_N | 1334 | 1334 | 0,00 |
| 13_N | 776 | 776 | 0,00 |
| 14_N | 1584 | 1568 | 1,02 |
| 15_N | 2595 | 2177 | 19,20 |
| 16_N | 1489 | 1455 | 2,34 |
| 17_N | 649 | 649 | 0,00 |
| 18_N | 1230 | 1230 | 0,00 |
| 19 _N | 2608 | 2608 | 0,00 |
| 20_N | 325 | 323 | 0,62 |
| 21_N | 1683 | 1653 | 1,81 |
| 22_N | 1107 | 1107 | 0,00 |
| 23_N | 1740 | 1740 | 0,00 |
| 24_N | 1947 | 1947 | 0,00 |
| 25 N | 1555 | 1535 | 1,30 |
| AVG | 1357,08 | 1329,12 | 2,06 |
| MAX | 2683 | 2683 | 19,20 |
| MIN | 159 | 137 | 0,00 |


| $K=5, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP | \% |
| 26_N | 3787 | 3438 | 10,15 |
| 27_N | 4315 | 4313 | 0,05 |
| 28_N | 2118 | 2118 | 0,00 |
| $29 . \mathrm{N}$ | 2546 | 2546 | 0,00 |
| 30_N | 1979 | 1979 | 0,00 |
| 31_N | 3483 | 3445 | 1,10 |
| 32-N | 2981 | 2888 | 3,22 |
| 33 _N | 1792 | 1723 | 4,00 |
| $34 \times \mathrm{N}$ | 3321 | 3278 | 1,31 |
| 35_N | 3690 | 3611 | 2,19 |
| 36 | 3470 | 3470 | 0,00 |
| 37_N | 2602 | 2602 | 0,00 |
| 38_N | 5525 | 5254 | 5,16 |
| 39 _N | 2068 | 2068 | 0,00 |
| 40_N | 2191 | 2119 | 3,40 |
| 41_N | 2573 | 2504 | 2,76 |
| 42_N | 3013 | 2932 | 2,76 |
| 43_N | 2645 | 2610 | 1,34 |
| 44_N | 1323 | 1309 | 1,07 |
| 45_N | 1622 | 1528 | 6,15 |
| 46_N | 1878 | 1873 | 0,27 |
| 47_N | 1846 | 1821 | 1,37 |
| 48_N | 2265 | 2226 | 1,75 |
| 49_N | 3236 | 3063 | 5,65 |
| 50 N | 4388 | 4388 | 0,00 |
| AVG | 2826,28 | 2764,24 | 2,15 |
| MAX | 5525 | 5254 | 10,15 |
| MIN | 1323 | 1309 | 0,00 |


| $K=5, N=15$ |  |  |  | $K=5, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% | Problem Total Completion Time <br> Instance HEURISTIC MILP |  |  | \% |
| Instance | HEURISTIC | MILP |  |  |  |  | \% |
| 51_N | 3971 | 3811 | 4,20 | 76_N | 5647 | 5641 | 0,11 |
| 52 _N | 6031 | 5596 | 7,77 | $77 \times \mathrm{N}$ | 6065 | 5977 | 1,47 |
| 53_N | 2276 | 2174 | 4,69 | 78_N | 8654 | 8650 | 0,05 |
| 54_N | 6255 | 5859 | 6,76 | 79 - N | 7190 | 6900 | 4,20 |
| 55_N | 2622 | 2557 | 2,54 | 80_N | 6123 | 6122 | 0,02 |
| 56_N | 6828 | 6828 | 0,00 | 81_N | 5652 | 5419 | 4,30 |
| 57_N | 4489 | 4311 | 4,13 | 82_N | 6174 | 5982 | 3,21 |
| 58_N | 5461 | 5405 | 1,04 | 83_N | 5708 | 5613 | 1,69 |
| $59 . \mathrm{N}$ | 4339 | 4134 | 4,96 | 84_N | 9169 | 9160 | 0,10 |
| 60_N | 7906 | 7892 | 0,18 | 85_N | 5300 | 5156 | 2,79 |
| 61 _N | 5622 | 5612 | 0,18 | 86_N | 6228 | 6228 | 0,00 |
| 62 N | 3776 | 3663 | 3,08 | 87_N | 4744 | 4591 | 3,33 |
| 63 _N | 2456 | 2328 | 5,50 | 88_N | 3955 | 3955 | 0,00 |
| 64_N | 7183 | 7183 | 0,00 | 89 _N | 6952 | 6737 | 3,19 |
| 65 _N | 2098 | 2083 | 0,72 | 90 _N | 8726 | 8516 | 2,47 |
| 66 - N | 6744 | 6744 | 0,00 | 91_N | 6113 | 5940 | 2,91 |
| 67 _N | 4968 | 4740 | 4,81 | 92 _N | 5974 | 5950 | 0,40 |
| 68_N | 5020 | 4867 | 3,14 | 93_N | 5862 | 5494 | 6,70 |
| 69 _N | 5400 | 5225 | 3,35 | $94 \times \mathrm{N}$ | 7304 | 7304 | 0,00 |
| 70_N | 6384 | 6130 | 4,14 | 95_N | 8425 | 8347 | 0,93 |
| 71_N | 3384 | 3351 | 0,98 | 96_N | 6154 | 5912 | 4,09 |
| 72_N | 5073 | 4903 | 3,47 | 97_N | 7501 | 7437 | 0,86 |
| 73_N | 4618 | 4242 | 8,86 | 98_N | 9265 | 9226 | 0,42 |
| 74 _N | 7254 | 7224 | 0,42 | 99 _N | 6253 | 6143 | 1,79 |
| 75 N | 3959 | 3931 | 0,71 | 100 N | 8513 | 8417 | 1,14 |
| AVG | 4964,68 | 4831,72 | 3,03 | AVG | 6706,04 | 6592,68 | 1,85 |
| MAX | 7906 | 7892 | 8,86 | MAX | 9265 | 9226 | 6,70 |
| MIN | 2098 | 2083 | 0,00 | MIN | 3955 | 3955 | 0,00 |

Table C. 2 Total Completion Time Values when $K=10$

| $K=10, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP | \% |
| 101_N | 4428 | 4428 | 0,00 |
| 102_N | 1583 | 1502 | 5,39 |
| 103_N | 2315 | 2285 | 1,31 |
| 104_N | 1779 | 1775 | 0,23 |
| 105_N | 2168 | 2149 | 0,88 |
| 106_N | 4317 | 4054 | 6,49 |
| 107_N | 3898 | 3898 | 0,00 |
| 108_N | 5808 | 5808 | 0,00 |
| 109_N | 1452 | 1452 | 0,00 |
| 110_N | 1968 | 1961 | 0,36 |
| 111_N | 1873 | 1849 | 1,30 |
| 112_N | 1516 | 1516 | 0,00 |
| 113_N | 4699 | 4313 | 8,95 |
| 114_N | 5975 | 5975 | 0,00 |
| 115_N | 1751 | 1751 | 0,00 |
| 116_N | 1392 | 1347 | 3,34 |
| 117_N | 2189 | 2074 | 5,54 |
| 118_N | 5760 | 5616 | 2,56 |
| 119 N | 3358 | 3086 | 8,81 |
| 120 -N | 8111 | 7466 | 8,64 |
| 121_N | 2808 | 2599 | 8,04 |
| 122_N | 3633 | 3615 | 0,50 |
| 123_N | 3442 | 3436 | 0,17 |
| 124_N | 6754 | 6644 | 1,66 |
| 125 N | 5448 | 5432 | 0,29 |
| AVG | 3537 | 3441,24 | 2,58 |
| MAX | 8111 | 7466 | 8,95 |
| MIN | 1392 | 1347 | 0,00 |


| $K=10, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 126_N | 4446 | 4446 | 0,00 |
| 127_N | 9813 | 9813 | 0,00 |
| 128_N | 10183 | 10009 | 1,74 |
| 129_N | 10572 | 10572 | 0,00 |
| 130_N | 11670 | 10615 | 9,94 |
| 131_N | 5365 | 5275 | 1,71 |
| 132_N | 17921 | 17394 | 3,03 |
| 133_N | 10162 | 10162 | 0,00 |
| 134_N | 9864 | 8753 | 12,69 |
| 135_N | 10185 | 10185 | 0,00 |
| 136_N | 9944 | 9196 | 8,13 |
| 137_N | 15945 | 15750 | 1,24 |
| 138_N | 18086 | 17761 | 1,83 |
| 139_N | 17314 | 17128 | 1,09 |
| 140_N | 5564 | 5564 | 0,00 |
| 141_N | 10798 | 10798 | 0,00 |
| 142_N | 6741 | 6715 | 0,39 |
| 143_N | 15289 | 14832 | 3,08 |
| 144_N | 13314 | 13314 | 0,00 |
| 145_N | 10988 | 10988 | 0,00 |
| 146_N | 8777 | 8188 | 7,19 |
| 147_N | 9891 | 9839 | 0,53 |
| 148_N | 12929 | 12894 | 0,27 |
| 149_N | 7071 | 7071 | 0,00 |
| 150 N | 13223 | 13223 | 0,00 |
| AVG | 11042,2 | 10819,4 | 2,11 |
| MAX | 18086 | 17761 | 12,69 |
| MIN | 4446 | 4446 | 0,00 |


| $K=10, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 151_N | 17271 | 17250 | 0,12 |
| 152_N | 16574 | 16315 | 1,59 |
| 153_N | 17232 | 17078 | 0,90 |
| 154_N | 15232 | 15171 | 0,40 |
| 155_N | 15173 | 15173 | 0,00 |
| 156_N | 14309 | 14034 | 1,96 |
| 157_N | 20751 | 20751 | 0,00 |
| 158_N | 24756 | 23540 | 5,17 |
| 159_N | 17062 | 16712 | 2,09 |
| 160_N | 24694 | 24694 | 0,00 |
| 161_N | 23465 | 21986 | 6,73 |
| 162_N | 18967 | 18323 | 3,51 |
| 163_N | 17847 | 17816 | 0,17 |
| 164_N | 19370 | 17517 | 10,58 |
| 165_N | 31001 | 30040 | 3,20 |
| 166_N | 26723 | 25780 | 3,66 |
| 167 _N | 25181 | 25176 | 0,02 |
| 168_N | 14260 | 13944 | 2,27 |
| 169_N | 16474 | 15028 | 9,62 |
| 170_N | 20231 | 19838 | 1,98 |
| 171_N | 11128 | 11050 | 0,71 |
| 172_N | 17432 | 17399 | 0,19 |
| 173_N | 26015 | 25531 | 1,90 |
| 174_N | 16404 | 16396 | 0,05 |
| 175 N | 22176 | 21954 | 1,01 |
| AVG | 19589,12 | 19139,8 | 2,31 |
| MAX | 31001 | 30040 | 10,58 |
| MIN | 11128 | 11050 | 0,00 |


| $K=10, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 176_N | 24874 | 21850 | 13,84 |
| 177_N | 28228 | 28082 | 0,52 |
| 178_N | 26079 | 26011 | 0,26 |
| 179_N | 28185 | 28018 | 0,60 |
| 180_N | 21484 | 21339 | 0,68 |
| 181_N | 20497 | 19643 | 4,35 |
| 182_N | 26288 | 25300 | 3,91 |
| 183_N | 23447 | 21792 | 7,59 |
| 184_N | 24713 | 24713 | 0,00 |
| 185_N | 15738 | 15588 | 0,96 |
| 186_N | 29515 | 29290 | 0,77 |
| 187_N | 26634 | 26322 | 1,19 |
| 188_N | 27430 | 26501 | 3,51 |
| 189_N | 31786 | 31638 | 0,47 |
| 190_N | 32221 | 31142 | 3,46 |
| 191_N | 26461 | 26325 | 0,52 |
| 192_N | 24627 | 24580 | 0,19 |
| 193-N | 19355 | 19230 | 0,65 |
| 194_N | 34263 | 34082 | 0,53 |
| 195_N | 21934 | 21934 | 0,00 |
| 196_N | 20329 | 19943 | 1,94 |
| 197_N | 19307 | 19307 | 0,00 |
| 198_N | 33152 | 33152 | 0,00 |
| 199_N | 12763 | 12169 | 4,88 |
| 200 N | 29152 | 27527 | 5,90 |
| AVG | 25138,48 | 24619,1 | 2,27 |
| MAX | 34263 | 34082 | 13,84 |
| MIN | 12763 | 12169 | 0,00 |

Table C. 3 Total Completion Time Values when $K=15$

| $K=15, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 201_N | 8272 | 8272 | 0,00 |
| 202_N | 8371 | 8145 | 2,77 |
| 203_N | 6437 | 6407 | 0,47 |
| 204_N | 3984 | 3982 | 0,05 |
| 205_N | 2680 | 2560 | 4,69 |
| 206_N | 7178 | 6560 | 9,42 |
| 207_N | 15472 | 15292 | 1,18 |
| 208_N | 9606 | 9391 | 2,29 |
| 209_N | 6084 | 5832 | 4,32 |
| 210_N | 7074 | 6870 | 2,97 |
| 211_N | 15116 | 15116 | 0,00 |
| 212_N | 6928 | 6868 | 0,87 |
| 213_N | 8758 | 8380 | 4,51 |
| 214_N | 12071 | 12071 | 0,00 |
| 215_N | 14264 | 13594 | 4,93 |
| 216_N | 5753 | 5609 | 2,57 |
| 217_N | 3924 | 3852 | 1,87 |
| 218_N | 13543 | 13519 | 0,18 |
| 219_N | 12466 | 12450 | 0,13 |
| 220_N | 5717 | 5571 | 2,62 |
| 221_N | 6188 | 6057 | 2,16 |
| 222_N | 7270 | 7225 | 0,62 |
| 223_N | 8927 | 8817 | 1,25 |
| 224_N | 15006 | 14804 | 1,36 |
| 225 N | 12622 | 12459 | 1,31 |
| AVG | 8948,44 | 8788,12 | 2,10 |
| MAX | 15472 | 15292 | 9,42 |
| MIN | 2680 | 2560 | 0,00 |


| $K=15, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 226_N | 18415 | 17943 | 2,63 |
| 227_N | 22692 | 22692 | 0,00 |
| 228_N | 19975 | 19601 | 1,91 |
| 229 _N | 15247 | 14832 | 2,80 |
| 230_N | 15528 | 15501 | 0,17 |
| 231_N | 14217 | 14217 | 0,00 |
| 232_N | 43254 | 40576 | 6,60 |
| 233_N | 25101 | 24593 | 2,07 |
| 234_N | 16010 | 15296 | 4,67 |
| 235_N | 23889 | 23304 | 2,51 |
| 236_N | 34362 | 34362 | 0,00 |
| 237_N | 22950 | 22578 | 1,65 |
| 238_N | 32411 | 32185 | 0,70 |
| 239_N | 33516 | 32760 | 2,31 |
| 240_N | 25601 | 24263 | 5,51 |
| 241_N | 21743 | 21743 | 0,00 |
| 242_N | 16477 | 15511 | 6,23 |
| 243_N | 36314 | 36314 | 0,00 |
| 244_N | 34459 | 33150 | 3,95 |
| 245_N | 22077 | 22077 | 0,00 |
| 246_N | 13445 | 13445 | 0,00 |
| 247_N | 24537 | 23438 | 4,69 |
| 248_N | 24449 | 23165 | 5,54 |
| 249_N | 27006 | 26854 | 0,57 |
| 250 N | 28030 | 27234 | 2,92 |
| AVG | 24468,2 | 23905,4 | 2,30 |
| MAX | 43254 | 40576 | 6,60 |
| MIN | 13445 | 13445 | 0,00 |


| $K=15, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 251_N | 30665 | 30345 | 1,05 |
| 252_N | 35404 | 35404 | 0,00 |
| 253-N | 27851 | 26724 | 4,22 |
| 254_N | 21902 | 20706 | 5,78 |
| 255-N | 33750 | 32763 | 3,01 |
| 256_N | 22325 | 20322 | 9,86 |
| 257_N | 34991 | 34495 | 1,44 |
| 258_N | 57780 | 55282 | 4,52 |
| 259_N | 35396 | 35288 | 0,31 |
| 260_N | 28221 | 26167 | 7,85 |
| 261_N | 44098 | 43216 | 2,04 |
| 262_N | 46315 | 46130 | 0,40 |
| 263_N | 38370 | 37402 | 2,59 |
| 264_N | 51416 | 49309 | 4,27 |
| 265_N | 52953 | 50935 | 3,96 |
| 266_N | 36627 | 35326 | 3,68 |
| 267_N | 30248 | 28716 | 5,34 |
| 268_N | 34399 | 34222 | 0,52 |
| 269_N | 57309 | 55927 | 2,47 |
| 270_N | 43146 | 43165 | -0,04 |
| 271_N | 34887 | 32031 | 8,92 |
| 272_N | 27501 | 25734 | 6,87 |
| 273_N | 38789 | 37713 | 2,85 |
| 274_N | 42966 | 42641 | 0,76 |
| 275 N | 43571 | 43232 | 0,78 |
| AVG | 38035,2 | 36927,8 | 3,34 |
| MAX | 57780 | 55927 | 9,86 |
| MIN | 21902 | 20322 | -0,04 |


| $K=15, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 276_N | 42081 | 41727 | 0,85 |
| 277_N | 51364 | 47792 | 7,47 |
| 278_N | 40366 | 38133 | 5,86 |
| 279-N | 28832 | 26819 | 7,51 |
| 280_N | 28723 | 24669 | 16,43 |
| 281_N | 44955 | 43843 | 2,54 |
| 282_N | 78489 | 75951 | 3,34 |
| 283_N | 50173 | 49926 | 0,49 |
| 284_N | 37452 | 34324 | 9,11 |
| 285_N | 57411 | 53697 | 6,92 |
| 286_N | 69110 | 66060 | 4,62 |
| 287_N | 47850 | 46783 | 2,28 |
| 288_N | 63796 | 62933 | 1,37 |
| 289_N | 68784 | 66497 | 3,44 |
| 290_N | 52354 | 51456 | 1,75 |
| 291_N | 38687 | 38013 | 1,77 |
| 292_N | 42816 | 41493 | 3,19 |
| 293_N | 78023 | 74482 | 4,75 |
| 294_N | 61341 | 60875 | 0,77 |
| 295_N | 43799 | 43136 | 1,54 |
| 296_N | 39386 | 34690 | 13,54 |
| 297_N | 52001 | 50798 | 2,37 |
| 298_N | 54663 | 54674 | -0,02 |
| 299_N | 64391 | 64117 | 0,43 |
| 300 N | 57469 | 57602 | -0,23 |
| AVG | 51772,64 | 50019,6 | 4,08 |
| MAX | 78489 | 75951 | 16,43 |
| MIN | 28723 | 24669 | -0,23 |

Table C. 4 Total Completion Time Values when $K=20$

| $K=20, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 301_N | 13544 | 13478 | 0,49 |
| 302_N | 15367 | 15163 | 1,35 |
| 303_N | 13087 | 13057 | 0,23 |
| 304_N | 7644 | 7434 | 2,82 |
| 305_N | 5771 | 5470 | 5,50 |
| 306_N | 12476 | 12148 | 2,70 |
| 307 - N | 29446 | 29257 | 0,65 |
| 308_N | 14809 | 14728 | 0,55 |
| 309_N | 14190 | 13838 | 2,54 |
| 310_N | 13674 | 13379 | 2,20 |
| 311_N | 29811 | 29811 | 0,00 |
| 312_N | 13891 | 13741 | 1,09 |
| 313_N | 14394 | 14115 | 1,98 |
| 314_N | 22426 | 22426 | 0,00 |
| 315_N | 26502 | 25971 | 2,04 |
| 316_N | 12691 | 12547 | 1,15 |
| 317_N | 7483 | 7393 | 1,22 |
| 318_N | 21975 | 21975 | 0,00 |
| 319_N | 25980 | 25964 | 0,06 |
| 320 - N | 8148 | 7972 | 2,21 |
| 321_N | 13752 | 13508 | 1,81 |
| 322_N | 14007 | 13945 | 0,44 |
| 323_N | 18072 | 17959 | 0,63 |
| 324_N | 28033 | 27949 | 0,30 |
| 325 N | 22812 | 22636 | 0,78 |
| AVG | 16799,4 | 16634,6 | 1,31 |
| MAX | 29811 | 29811 | 5,50 |
| MIN | 5771 | 5470 | 0,00 |


| $K=20, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP | \% |
| 326_N | 42487 | 41786 | 1,68 |
| 327 -N | 45076 | 45026 | 0,11 |
| 328_N | 36298 | 35751 | 1,53 |
| 329 -N | 28599 | 28599 | 0,00 |
| 330 _N | 27435 | 27040 | 1,46 |
| 331_N | 28571 | 28168 | 1,43 |
| 332_N | 72188 | 69908 | 3,26 |
| 333_N | 45877 | 44520 | 3,05 |
| 334_N | 31656 | 30846 | 2,63 |
| 335 _N | 43915 | 43835 | 0,18 |
| 336_N | 60222 | 60222 | 0,00 |
| 337_N | 42981 | 42589 | 0,92 |
| 338_N | 63805 | 63056 | 1,19 |
| 339 _N | 59827 | 59425 | 0,68 |
| 340_N | 48224 | 46815 | 3,01 |
| 341_N | 37640 | 35627 | 5,65 |
| 342_N | 32567 | 30019 | 8,49 |
| 343_N | 64844 | 63950 | 1,40 |
| 344_N | 53082 | 52252 | 1,59 |
| 345_N | 33241 | 33211 | 0,09 |
| 346_N | 23408 | 23399 | 0,04 |
| 347_N | 45756 | 44297 | 3,29 |
| 348_N | 42178 | 42131 | 0,11 |
| 349_N | 52476 | 51902 | 1,11 |
| 350 N | 52684 | 51874 | 1,56 |
| AVG | 44601,48 | 43849,9 | 1,78 |
| MAX | 72188 | 69908 | 8,49 |
| MIN | 23408 | 23399 | 0,00 |


| $K=20, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 351_N | 64746 | 61931 | 4,55 |
| 352_N | 74235 | 70485 | 5,32 |
| 353_N | 43401 | 44541 | -2,56 |
| 354_N | 41625 | 39522 | 5,32 |
| 355_N | 61208 | 60474 | 1,21 |
| 356_N | 43160 | 40301 | 7,09 |
| 357 -N | 64461 | 63316 | 1,81 |
| 358_N | 104424 | 103005 | 1,38 |
| 359_N | 69456 | 67063 | 3,57 |
| 360 _N | 58618 | 57475 | 1,99 |
| 361_N | 85501 | 85022 | 0,56 |
| 362_N | 78603 | 77446 | 1,49 |
| 363_N | 63588 | 62002 | 2,56 |
| 364_N | 102492 | 100291 | 2,19 |
| 365_N | 83894 | 83165 | 0,88 |
| 366_N | 72874 | 71758 | 1,56 |
| 367_N | 58560 | 58031 | 0,91 |
| 368_N | 65779 | 65472 | 0,47 |
| 369_N | 98759 | 100911 | -2,13 |
| 370 _N | 80834 | 81328 | -0,61 |
| 371 - N | 62455 | 58858 | 6,11 |
| 372_N | 46968 | 46514 | 0,98 |
| 373_N | 68821 | 64611 | 6,52 |
| 374_N | 90677 | 91022 | -0,38 |
| 375 N | 79250 | 76835 | 3,14 |
| AVG | 70575,56 | 69255,2 | 2,16 |
| MAX | 104424 | 103005 | 7,09 |
| MIN | 41625 | 39522 | -2,56 |


| $K=20, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Total Completion Time |  |  | \% |
| Instance | HEURISTIC | MILP |  |
| 376_N | 90545 | 87682 | 3,27 |
| 377-N | 89970 | 88434 | 1,74 |
| 378_N | 78132 | 76783 | 1,76 |
| 379_N | 56947 | 54371 | 4,74 |
| 380_N | 46829 | 46829 | 0,00 |
| 381_N | 78624 | 76508 | 2,77 |
| 382_N | 133260 | 142754 | -6,65 |
| 383_N | 94911 | 94627 | 0,30 |
| 384_N | 74568 | 69202 | 7,75 |
| 385_N | 99605 | 96766 | 2,93 |
| 386_N | 121154 | 116478 | 4,01 |
| 387_N | 90636 | 88717 | 2,16 |
| 388_N | 112493 | 110111 | 2,16 |
| 389_N | 128151 | 124171 | 3,21 |
| 390_N | 99286 | 93190 | 6,54 |
| 391_N | 74726 | 73743 | 1,33 |
| 392_N | 79584 | 78308 | 1,63 |
| 393-N | 145659 | 140830 | 3,43 |
| 394_N | 120718 | 114896 | 5,07 |
| 395_N | 79469 | 78573 | 1,14 |
| 396_N | 74196 | 71561 | 3,68 |
| 397_N | 99961 | 98358 | 1,63 |
| 398_N | 110921 | 111429 | -0,46 |
| 399_N | 129229 | 118152 | 9,38 |
| 400 N | 115074 | 115632 | -0,48 |
| AVG | 96985,92 | 94724,2 | 2,52 |
| MAX | 145659 | 142754 | 9,38 |
| MIN | 46829 | 46829 | -6,65 |

## APPENDIX D - COMPARATIVE ANALYSIS OF THE PROPOSED HEURISTIC ALGORITHM FOR THE SETUP CASE

Table D. 1 The number of job sequences generated by the heuristic when $N=5$

| $K=5$ |  |  | $K=10$ |  |  | $K=15$ |  |  | $K=20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem <br> Instance | Number of Job Sequences | \% | Problem <br> Instance | Number of Job Sequences | \% | Problen <br> Instance | Number of Job Sequences | \% | Problem <br> Instance | Number of Job Sequences | \% |
| 1 | 4 | 0,03 | 101 | 4 | 0,03 | 201 | 4 | 0,03 | 301 | 4 | 0,03 |
| 2 | 4 | 0,03 | 102 | 4 | 0,03 | 202 | 8 | 0,07 | 302 | 8 | 0,07 |
| 3 | 8 | 0,07 | 103 | 4 | 0,03 | 203 | 4 | 0,03 | 303 | 8 | 0,07 |
| 4 | 4 | 0,03 | 104 | 4 | 0,03 | 204 | 4 | 0,03 | 304 | 8 | 0,07 |
| 5 | 4 | 0,03 | 105 | 8 | 0,07 | 205 | 8 | 0,07 | 305 | 8 | 0,07 |
| 6 | 8 | 0,07 | 106 | 8 | 0,07 | 206 | 8 | 0,07 | 306 | 8 | 0,07 |
| 7 | 4 | 0,03 | 107 | 4 | 0,03 | 207 | 8 | 0,07 | 307 | 8 | 0,07 |
| 8 | 8 | 0,07 | 108 | 8 | 0,07 | 208 | 8 | 0,07 | 308 | 8 | 0,07 |
| 9 | 4 | 0,03 | 109 | 8 | 0,07 | 209 | 4 | 0,03 | 309 | 8 | 0,07 |
| 10 | 4 | 0,03 | 110 | 8 | 0,07 | 210 | 8 | 0,07 | 310 | 8 | 0,07 |
| 11 | 8 | 0,07 | 111 | 8 | 0,07 | 211 | 4 | 0,03 | 311 | 4 | 0,03 |
| 12 | 4 | 0,03 | 112 | 4 | 0,03 | 212 | 8 | 0,07 | 312 | 8 | 0,07 |
| 13 | 8 | 0,07 | 113 | 4 | 0,03 | 213 | 4 | 0,03 | 313 | 8 | 0,07 |
| 14 | 4 | 0,03 | 114 | 8 | 0,07 | 214 | 4 | 0,03 | 314 | 8 | 0,07 |
| 15 | 8 | 0,07 | 115 | 8 | 0,07 | 215 | 4 | 0,03 | 315 | 8 | 0,07 |
| 16 | 8 | 0,07 | 116 | 8 | 0,07 | 216 | 8 | 0,07 | 316 | 8 | 0,07 |
| 17 | 4 | 0,03 | 117 | 8 | 0,07 | 217 | 4 | 0,03 | 317 | 8 | 0,07 |
| 18 | 8 | 0,07 | 118 | 8 | 0,07 | 218 | 4 | 0,03 | 318 | 8 | 0,07 |
| 19 | 8 | 0,07 | 119 | 8 | 0,07 | 219 | 8 | 0,07 | 319 | 4 | 0,03 |
| 20 | 8 | 0,07 | 120 | 8 | 0,07 | 220 | 8 | 0,07 | 320 | 8 | 0,07 |
| 21 | 8 | 0,07 | 121 | 8 | 0,07 | 221 | 8 | 0,07 | 321 | 8 | 0,07 |
| 22 | 8 | 0,07 | 122 | 8 | 0,07 | 222 | 8 | 0,07 | 322 | 8 | 0,07 |
| 23 | 4 | 0,03 | 123 | 4 | 0,03 | 223 | 4 | 0,03 | 323 | 4 | 0,03 |
| 24 | 8 | 0,07 | 124 | 8 | 0,07 | 224 | 4 | 0,03 | 324 | 4 | 0,03 |
| 25 | 8 | 0,07 | 125 | 8 | 0,07 | 225 | 4 | 0,03 | 325 | 8 | 0,07 |
| AVG | 6,24 | 0,05 | AVG | 6,72 | 0,06 | AVG | 5,92 | 0,05 | AVG | 7,2 | 0,06 |

Table D. 2 The number of job sequences generated by the heuristic when $N=10$

| $K=5$ |  |  | $K=10$ |  |  | $K=15$ |  |  | $K=20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% |
| 26 | 18 | 4,96E-06 | 126 | 18 | 4,96E-06 | 226 | 18 | 4,96E-06 | 326 | 18 | 4,96E-06 |
| 27 | 18 | 4,96E-06 | 127 | 9 | 2,48E-06 | 227 | 9 | 2,48E-06 | 327 | 18 | 4,96E-06 |
| 28 | 9 | 2,48E-06 | 128 | 9 | 2,48E-06 | 228 | 18 | 4,96E-06 | 328 | 9 | 2,48E-06 |
| 29 | 18 | 4,96E-06 | 129 | 18 | 4,96E-06 | 229 | 18 | 4,96E-06 | 329 | 9 | 2,48E-06 |
| 30 | 9 | 2,48E-06 | 130 | 9 | 2,48E-06 | 230 | 18 | 4,96E-06 | 330 | 18 | 4,96E-06 |
| 31 | 18 | 4,96E-06 | 131 | 18 | 4,96E-06 | 231 | 18 | 4,96E-06 | 331 | 18 | 4,96E-06 |
| 32 | 9 | 2,48E-06 | 132 | 9 | 2,48E-06 | 232 | 9 | 2,48E-06 | 332 | 18 | 4,96E-06 |
| 33 | 18 | 4,96E-06 | 133 | 9 | 2,48E-06 | 233 | 18 | 4,96E-06 | 333 | 9 | 2,48E-06 |
| 34 | 9 | 2,48E-06 | 134 | 9 | 2,48E-06 | 234 | 9 | 2,48E-06 | 334 | 18 | 4,96E-06 |
| 35 | 9 | 2,48E-06 | 135 | 9 | 2,48E-06 | 235 | 18 | 4,96E-06 | 335 | 9 | 2,48E-06 |
| 36 | 18 | 4,96E-06 | 136 | 18 | 4,96E-06 | 236 | 9 | 2,48E-06 | 336 | 9 | 2,48E-06 |
| 37 | 9 | 2,48E-06 | 137 | 18 | 4,96E-06 | 237 | 18 | 4,96E-06 | 337 | 18 | 4,96E-06 |
| 38 | 18 | 4,96E-06 | 138 | 9 | 2,48E-06 | 238 | 18 | 4,96E-06 | 338 | 9 | 2,48E-06 |
| 39 | 9 | 2,48E-06 | 139 | 9 | 2,48E-06 | 239 | 9 | 2,48E-06 | 339 | 18 | 4,96E-06 |
| 40 | 9 | 2,48E-06 | 140 | 9 | 2,48E-06 | 240 | 9 | 2,48E-06 | 340 | 18 | 4,96E-06 |
| 41 | 18 | 4,96E-06 | 141 | 9 | 2,48E-06 | 241 | 18 | 4,96E-06 | 341 | 18 | 4,96E-06 |
| 42 | 9 | 2,48E-06 | 142 | 9 | 2,48E-06 | 242 | 18 | 4,96E-06 | 342 | 18 | 4,96E-06 |
| 43 | 18 | 4,96E-06 | 143 | 9 | 2,48E-06 | 243 | 9 | 2,48E-06 | 343 | 9 | 2,48E-06 |
| 44 | 18 | 4,96E-06 | 144 | 18 | 4,96E-06 | 244 | 18 | 4,96E-06 | 344 | 9 | 2,48E-06 |
| 45 | 9 | 2,48E-06 | 145 | 9 | 2,48E-06 | 245 | 18 | 4,96E-06 | 345 | 9 | 2,48E-06 |
| 46 | 9 | 2,48E-06 | 146 | 9 | 2,48E-06 | 246 | 18 | 4,96E-06 | 346 | 18 | 4,96E-06 |
| 47 | 18 | 4,96E-06 | 147 | 18 | 4,96E-06 | 247 | 9 | 2,48E-06 | 347 | 9 | 2,48E-06 |
| 48 | 18 | 4,96E-06 | 148 | 18 | 4,96E-06 | 248 | 18 | 4,96E-06 | 348 | 9 | 2,48E-06 |
| 49 | 18 | 4,96E-06 | 149 | 9 | 2,48E-06 | 249 | 9 | 2,48E-06 | 349 | 18 | 4,96E-06 |
| 50 | 18 | 4,96E-06 | 150 | 9 | 2,48E-06 | 250 | 18 | 4,96E-06 | 350 | 9 | 2,48E-06 |
| AVG | 14,04 | 3,87E-06 | AVG | 11,88 | 3,27E-06 | AVG | 14,76 | 4,07E-06 | AVG | 13,68 | 3,77E-06 |

Table D. 3 The number of job sequences generated by the heuristic when $N=15$

| $K=5$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job <br> Sequences | $\%$ |
| 51 | 28 | $2,14 \mathrm{E}-11$ |
| 52 | 14 | $1,07 \mathrm{E}-11$ |
| 53 | 28 | $2,14 \mathrm{E}-11$ |
| 54 | 28 | $2,14 \mathrm{E}-11$ |
| 55 | 14 | $1,07 \mathrm{E}-11$ |
| 56 | 14 | $1,07 \mathrm{E}-11$ |
| 57 | 28 | $2,14 \mathrm{E}-11$ |
| 58 | 28 | $2,14 \mathrm{E}-11$ |
| 59 | 28 | $2,14 \mathrm{E}-11$ |
| 60 | 28 | $2,14 \mathrm{E}-11$ |
| 61 | 28 | $2,14 \mathrm{E}-11$ |
| 62 | 14 | $1,07 \mathrm{E}-11$ |
| 63 | 14 | $1,07 \mathrm{E}-11$ |
| 64 | 28 | $2,14 \mathrm{E}-11$ |
| 65 | 14 | $1,07 \mathrm{E}-11$ |
| 66 | 14 | $1,07 \mathrm{E}-11$ |
| 67 | 14 | $1,07 \mathrm{E}-11$ |
| 68 | 14 | $1,07 \mathrm{E}-11$ |
| 69 | 28 | $2,14 \mathrm{E}-11$ |
| 70 | 14 | $1,07 \mathrm{E}-11$ |
| 71 | 28 | $2,14 \mathrm{E}-11$ |
| 72 | 14 | $1,07 \mathrm{E}-11$ |
| 73 | 28 | $2,14 \mathrm{E}-11$ |
| 74 | 14 | $1,07 \mathrm{E}-11$ |
| 75 | 14 | $1,07 \mathrm{E}-11$ |
| AVG | 20,72 | $1,58 \mathrm{E}-11$ |
|  |  |  |
|  | 28 |  |


| $K=10$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job <br> Sequences | $\%$ |
| 151 | 14 | $1,07 \mathrm{E}-11$ |
| 152 | 28 | $2,14 \mathrm{E}-11$ |
| 153 | 28 | $2,14 \mathrm{E}-11$ |
| 154 | 28 | $2,14 \mathrm{E}-11$ |
| 155 | 28 | $2,14 \mathrm{E}-11$ |
| 156 | 14 | $1,07 \mathrm{E}-11$ |
| 157 | 14 | $1,07 \mathrm{E}-11$ |
| 158 | 28 | $2,14 \mathrm{E}-11$ |
| 159 | 14 | $1,07 \mathrm{E}-11$ |
| 160 | 28 | $2,14 \mathrm{E}-11$ |
| 161 | 28 | $2,14 \mathrm{E}-11$ |
| 162 | 14 | $1,07 \mathrm{E}-11$ |
| 163 | 28 | $2,14 \mathrm{E}-11$ |
| 164 | 28 | $2,14 \mathrm{E}-11$ |
| 165 | 14 | $1,07 \mathrm{E}-11$ |
| 166 | 14 | $1,07 \mathrm{E}-11$ |
| 167 | 14 | $1,07 \mathrm{E}-11$ |
| 168 | 14 | $1,07 \mathrm{E}-11$ |
| 169 | 14 | $1,07 \mathrm{E}-11$ |
| 170 | 14 | $1,07 \mathrm{E}-11$ |
| 171 | 14 | $1,07 \mathrm{E}-11$ |
| 172 | 14 | $1,07 \mathrm{E}-11$ |
| 173 | 14 | $1,07 \mathrm{E}-11$ |
| 174 | 28 | $2,14 \mathrm{E}-11$ |
| 175 | 14 | $1,07 \mathrm{E}-11$ |
| AVG | 19,6 | $1,50 \mathrm{E}-11$ |


| $K=15$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job <br> Sequences | $\%$ |
| 251 | 14 | $1,07 \mathrm{E}-11$ |
| 252 | 14 | $1,07 \mathrm{E}-11$ |
| 253 | 42 | $3,21 \mathrm{E}-11$ |
| 254 | 28 | $2,14 \mathrm{E}-11$ |
| 255 | 28 | $2,14 \mathrm{E}-11$ |
| 256 | 14 | $1,07 \mathrm{E}-11$ |
| 257 | 28 | $2,14 \mathrm{E}-11$ |
| 258 | 28 | $2,14 \mathrm{E}-11$ |
| 259 | 14 | $1,07 \mathrm{E}-11$ |
| 260 | 28 | $2,14 \mathrm{E}-11$ |
| 261 | 14 | $1,07 \mathrm{E}-11$ |
| 262 | 28 | $2,14 \mathrm{E}-11$ |
| 263 | 14 | $1,07 \mathrm{E}-11$ |
| 264 | 14 | $1,07 \mathrm{E}-11$ |
| 265 | 28 | $2,14 \mathrm{E}-11$ |
| 266 | 14 | $1,07 \mathrm{E}-11$ |
| 267 | 14 | $1,07 \mathrm{E}-11$ |
| 268 | 28 | $2,14 \mathrm{E}-11$ |
| 269 | 14 | $1,07 \mathrm{E}-11$ |
| 270 | 28 | $2,14 \mathrm{E}-11$ |
| 271 | 14 | $1,07 \mathrm{E}-11$ |
| 272 | 28 | $2,14 \mathrm{E}-11$ |
| 273 | 14 | $1,07 \mathrm{E}-11$ |
| 274 | 14 | $1,07 \mathrm{E}-11$ |
| 275 | 14 | $1,07 \mathrm{E}-11$ |
| AVG | 20,72 | $1,58 \mathrm{E}-11$ |
|  |  |  |


| $K=20$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job <br> Sequences | $\%$ |
| 351 | 28 | $2,14 \mathrm{E}-11$ |
| 352 | 14 | $1,07 \mathrm{E}-11$ |
| 353 | 28 | $2,14 \mathrm{E}-11$ |
| 354 | 28 | $2,14 \mathrm{E}-11$ |
| 355 | 28 | $2,14 \mathrm{E}-11$ |
| 356 | 28 | $2,14 \mathrm{E}-11$ |
| 357 | 28 | $2,14 \mathrm{E}-11$ |
| 358 | 14 | $1,07 \mathrm{E}-11$ |
| 359 | 28 | $2,14 \mathrm{E}-11$ |
| 360 | 14 | $1,07 \mathrm{E}-11$ |
| 361 | 28 | $2,14 \mathrm{E}-11$ |
| 362 | 28 | $2,14 \mathrm{E}-11$ |
| 363 | 28 | $2,14 \mathrm{E}-11$ |
| 364 | 14 | $1,07 \mathrm{E}-11$ |
| 365 | 14 | $1,07 \mathrm{E}-11$ |
| 366 | 14 | $1,07 \mathrm{E}-11$ |
| 367 | 28 | $2,14 \mathrm{E}-11$ |
| 368 | 28 | $2,14 \mathrm{E}-11$ |
| 369 | 28 | $2,14 \mathrm{E}-11$ |
| 370 | 28 | $2,14 \mathrm{E}-11$ |
| 371 | 14 | $1,07 \mathrm{E}-11$ |
| 372 | 14 | $1,07 \mathrm{E}-11$ |
| 373 | 28 | $2,14 \mathrm{E}-11$ |
| 374 | 28 | $2,14 \mathrm{E}-11$ |
| 375 | 14 | $1,07 \mathrm{E}-11$ |
| AVG | 22,96 | $1,76 \mathrm{E}-11$ |
|  |  |  |

Table D. 4 The number of job sequences generated by the heuristic when $N=20$

| $K=5$ |  |  | $K=10$ |  |  | $K=15$ |  |  | $K=20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% |
| 76 | 38 | 1,56E-17 | 176 | 19 | 7,81E-18 | 276 | 19 | 7,81E-18 | 376 | 38 | 1,56E-17 |
| 77 | 38 | 1,56E-17 | 177 | 19 | 7,81E-18 | 277 | 19 | 7,81E-18 | 377 | 38 | 1,56E-17 |
| 78 | 38 | 1,56E-17 | 178 | 38 | 1,56E-17 | 278 | 19 | 7,81E-18 | 378 | 19 | 7,81E-18 |
| 79 | 38 | 1,56E-17 | 179 | 38 | 1,56E-17 | 279 | 38 | 1,56E-17 | 379 | 19 | 7,81E-18 |
| 80 | 38 | 1,56E-17 | 180 | 19 | 7,81E-18 | 280 | 19 | 7,81E-18 | 380 | 19 | 7,81E-18 |
| 81 | 38 | 1,56E-17 | 181 | 38 | 1,56E-17 | 281 | 19 | 7,81E-18 | 381 | 38 | 1,56E-17 |
| 82 | 38 | 1,56E-17 | 182 | 38 | 1,56E-17 | 282 | 38 | 1,56E-17 | 382 | 19 | 7,81E-18 |
| 83 | 19 | 7,81E-18 | 183 | 38 | 1,56E-17 | 283 | 38 | 1,56E-17 | 383 | 38 | 1,56E-17 |
| 84 | 38 | 1,56E-17 | 184 | 19 | 7,81E-18 | 284 | 38 | 1,56E-17 | 384 | 38 | 1,56E-17 |
| 85 | 38 | 1,56E-17 | 185 | 38 | 1,56E-17 | 285 | 38 | 1,56E-17 | 385 | 38 | 1,56E-17 |
| 86 | 38 | 1,56E-17 | 186 | 38 | 1,56E-17 | 286 | 19 | 7,81E-18 | 386 | 19 | 7,81E-18 |
| 87 | 19 | 7,81E-18 | 187 | 38 | 1,56E-17 | 287 | 38 | 1,56E-17 | 387 | 38 | 1,56E-17 |
| 88 | 38 | 1,56E-17 | 188 | 19 | 7,81E-18 | 288 | 38 | 1,56E-17 | 388 | 19 | 7,81E-18 |
| 89 | 19 | 7,81E-18 | 189 | 19 | 7,81E-18 | 289 | 19 | 7,81E-18 | 389 | 38 | 1,56E-17 |
| 90 | 38 | 1,56E-17 | 190 | 38 | 1,56E-17 | 290 | 19 | 7,81E-18 | 390 | 38 | 1,56E-17 |
| 91 | 19 | 7,81E-18 | 191 | 38 | 1,56E-17 | 291 | 19 | 7,81E-18 | 391 | 19 | 7,81E-18 |
| 92 | 38 | 1,56E-17 | 192 | 38 | 1,56E-17 | 292 | 19 | 7,81E-18 | 392 | 38 | 1,56E-17 |
| 93 | 19 | 7,81E-18 | 193 | 19 | 7,81E-18 | 293 | 19 | 7,81E-18 | 393 | 19 | 7,81E-18 |
| 94 | 19 | 7,81E-18 | 194 | 19 | 7,81E-18 | 294 | 38 | 1,56E-17 | 394 | 38 | 1,56E-17 |
| 95 | 38 | 1,56E-17 | 195 | 38 | 1,56E-17 | 295 | 19 | 7,81E-18 | 395 | 19 | 7,81E-18 |
| 96 | 19 | 7,81E-18 | 196 | 38 | 1,56E-17 | 296 | 19 | 7,81E-18 | 396 | 38 | 1,56E-17 |
| 97 | 19 | 7,81E-18 | 197 | 19 | 7,81E-18 | 297 | 19 | 7,81E-18 | 397 | 38 | 1,56E-17 |
| 98 | 38 | 1,56E-17 | 198 | 38 | 1,56E-17 | 298 | 19 | 7,81E-18 | 398 | 19 | 7,81E-18 |
| 99 | 19 | 7,81E-18 | 199 | 38 | 1,56E-17 | 299 | 38 | 1,56E-17 | 399 | 19 | 7,81E-18 |
| 100 | 38 | 1,56E-17 | 200 | 19 | 7,81E-18 | 300 | 38 | 1,56E-17 | 400 | 19 | 7,81E-18 |
| AVG | 31,16 | 1,28E-17 | AVG | 30,4 | 1,25E-17 | AVG | 26,6 | 1,09E-17 | AVG | 28,88 | 1,19E-17 |

## APPENDIX E - COMPARATIVE ANALYSIS OF THE PROPOSED HEURISTIC ALGORITHM FOR THE NO-SETUP CASE

Table E. 1 The number of job sequences generated by the heuristic when $N=5$

| $K=5$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job Sequences | \% |
| 1_N | 8 | 0,07 |
| 2_N | 4 | 0,03 |
| 3_N | 8 | 0,07 |
| 4_N | 4 | 0,03 |
| 5_N | 4 | 0,03 |
| 6_N | 8 | 0,07 |
| 7_N | 4 | 0,03 |
| 8_N | 8 | 0,07 |
| 9_N | 4 | 0,03 |
| 10_N | 4 | 0,03 |
| 11_N | 8 | 0,07 |
| 12 _N | 4 | 0,03 |
| 13_N | 8 | 0,07 |
| 14_N | 4 | 0,03 |
| 15_N | 8 | 0,07 |
| 16_N | 8 | 0,07 |
| 17_N | 4 | 0,03 |
| 18_N | 8 | 0,07 |
| 19_N | 8 | 0,07 |
| 20_N | 4 | 0,03 |
| 21_N | 8 | 0,07 |
| 22_N | 4 | 0,03 |
| 23_N | 8 | 0,07 |
| 24_N | 4 | 0,03 |
| 25 N | 8 | 0,07 |
| AVG | 6,08 | 0,05 |


| $K=10$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | $\begin{gathered} \text { Number of } \\ \text { Job } \end{gathered}$ | \% |
| 101_N | 4 | 0,03 |
| 102_N | 8 | 0,07 |
| 103_N | 4 | 0,03 |
| 104_N | 4 | 0,03 |
| 105_N | 8 | 0,07 |
| 106_N | 8 | 0,07 |
| 107_N | 4 | 0,03 |
| 108_N | 4 | 0,03 |
| 109_N | 8 | 0,07 |
| 110_N | 8 | 0,07 |
| 111_N | 8 | 0,07 |
| 112_N | 4 | 0,03 |
| 113_N | 4 | 0,03 |
| 114_N | 8 | 0,07 |
| 115_N | 8 | 0,07 |
| 116_N | 8 | 0,07 |
| 117_N | 4 | 0,03 |
| 118_N | 8 | 0,07 |
| 119_N | 4 | 0,03 |
| 120_N | 4 | 0,03 |
| 121_N | 12 | 0,10 |
| 122_N | 8 | 0,07 |
| 123_N | 4 | 0,03 |
| 124_N | 8 | 0,07 |
| 125 N | 8 | 0,07 |
| AVG | 6,4 | 0,05 |


| $K=15$ |  |  |
| :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% |
| 201_N | 4 | 0,03 |
| 202_N | 8 | 0,07 |
| 203_N | 4 | 0,03 |
| 204_N | 4 | 0,03 |
| 205_N | 8 | 0,07 |
| 206_N | 8 | 0,07 |
| 207_N | 8 | 0,07 |
| 208_N | 4 | 0,03 |
| 209_N | 8 | 0,07 |
| 210_N | 8 | 0,07 |
| 211_N | 4 | 0,03 |
| 212_N | 8 | 0,07 |
| 213_N | 8 | 0,07 |
| 214_N | 4 | 0,03 |
| 215_N | 8 | 0,07 |
| 216_N | 4 | 0,03 |
| 217_N | 8 | 0,07 |
| 218_N | 4 | 0,03 |
| 219_N | 8 | 0,07 |
| 220_N | 8 | 0,07 |
| 221_N | 8 | 0,07 |
| 222_N | 8 | 0,07 |
| 223_N | 4 | 0,03 |
| 224_N | 4 | 0,03 |
| 225 -N | 4 | 0,03 |
| AVG | 6,24 | 0,05 |


| $K=20$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job Sequences | \% |
| 301_N | 4 | 0,03 |
| 302_N | 8 | 0,07 |
| 303_N | 8 | 0,07 |
| 304_N | 8 | 0,07 |
| 305_N | 8 | 0,07 |
| 306_N | 8 | 0,07 |
| 307_N | 8 | 0,07 |
| 308_N | 8 | 0,07 |
| 309_N | 4 | 0,03 |
| 310_N | 8 | 0,07 |
| 311_N | 4 | 0,03 |
| 312_N | 8 | 0,07 |
| 313_N | 8 | 0,07 |
| 314_N | 8 | 0,07 |
| 315_N | 8 | 0,07 |
| 316_N | 4 | 0,03 |
| 317_N | 8 | 0,07 |
| 318_N | 8 | 0,07 |
| 319_N | 4 | 0,03 |
| 320_N | 8 | 0,07 |
| 321_N | 8 | 0,07 |
| 322_N | 8 | 0,07 |
| 323_N | 4 | 0,03 |
| 324_N | 4 | 0,03 |
| 325 N | 8 | 0,07 |
| AVG | 6,88 | 0,06 |

Table E. 2 The number of job sequences generated by the heuristic when $N=10$

| $K=5$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job Sequences | \% |
| 26_N | 18 | 4,96E-06 |
| 27 _N | 9 | 2,48E-06 |
| 28_N | 9 | 2,48E-06 |
| 29_N | 18 | 4,96E-06 |
| 30_N | 9 | 2,48E-06 |
| 31_N | 9 | 2,48E-06 |
| 32_N | 18 | 4,96E-06 |
| 33_N | 18 | 4,96E-06 |
| 34_N | 18 | 4,96E-06 |
| 35_N | 9 | 2,48E-06 |
| 36_N | 18 | 4,96E-06 |
| 37-N | 9 | 2,48E-06 |
| 38_N | 18 | 4,96E-06 |
| 39_N | 9 | 2,48E-06 |
| 40_N | 9 | 2,48E-06 |
| 41_N | 9 | 2,48E-06 |
| 42_N | 9 | 2,48E-06 |
| 43_N | 9 | 2,48E-06 |
| 44_N | 18 | 4,96E-06 |
| 45_N | 9 | 2,48E-06 |
| 46_N | 9 | 2,48E-06 |
| 47_N | 18 | 4,96E-06 |
| 48_N | 9 | 2,48E-06 |
| 49_N | 18 | 4,96E-06 |
| 50 N | 18 | 4,96E-06 |
| AVG | 12,96 | $3,57 \mathrm{E}-06$ |


| $K=10$ |  |  |
| :---: | :---: | :---: |
| Problem | Number of Job | \% |
| Instance | Sequences | \% |
| 126_N | 18 | 4,96E-06 |
| 127_N | 9 | 2,48E-06 |
| 128_N | 9 | 2,48E-06 |
| 129_N | 18 | 4,96E-06 |
| 130_N | 9 | 2,48E-06 |
| 131_N | 18 | 4,96E-06 |
| 132_N | 9 | 2,48E-06 |
| 133_N | 9 | 2,48E-06 |
| 134_N | 9 | 2,48E-06 |
| 135_N | 18 | 4,96E-06 |
| 136_N | 18 | 4,96E-06 |
| 137_N | 9 | 2,48E-06 |
| 138_N | 9 | 2,48E-06 |
| 139_N | 9 | 2,48E-06 |
| 140_N | 9 | 2,48E-06 |
| 141_N | 9 | 2,48E-06 |
| 142_N | 9 | 2,48E-06 |
| 143_N | 18 | 4,96E-06 |
| 144_N | 18 | 4,96E-06 |
| 145_N | 9 | 2,48E-06 |
| 146_N | 9 | 2,48E-06 |
| 147_N | 18 | 4,96E-06 |
| 148_N | 9 | 2,48E-06 |
| 149_N | 9 | 2,48E-06 |
| 150 N | 9 | 2,48E-06 |
| AVG | 11,88 | 3,27E-06 |


| $K=15$ |  |  |
| :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% |
| 226_N | 18 | 4,96E-06 |
| 227_N | 9 | 2,48E-06 |
| 228_N | 18 | 4,96E-06 |
| 229_N | 9 | 2,48E-06 |
| 230_N | 18 | 4,96E-06 |
| 231_N | 18 | 4,96E-06 |
| 232_N | 9 | 2,48E-06 |
| 233_N | 9 | 2,48E-06 |
| 234_N | 9 | 2,48E-06 |
| 235_N | 18 | 4,96E-06 |
| 236_N | 9 | 2,48E-06 |
| 237_N | 9 | 2,48E-06 |
| 238_N | 9 | 2,48E-06 |
| 239_N | 9 | 2,48E-06 |
| 240_N | 9 | 2,48E-06 |
| 241_N | 9 | 2,48E-06 |
| 242_N | 18 | 4,96E-06 |
| 243_N | 18 | 4,96E-06 |
| 244_N | 18 | 4,96E-06 |
| 245_N | 9 | 2,48E-06 |
| 246_N | 18 | 4,96E-06 |
| 247_N | 9 | 2,48E-06 |
| 248_N | 9 | 2,48E-06 |
| 249_N | 18 | 4,96E-06 |
| 250 N | 18 | 4,96E-06 |
| AVG | 12,96 | 3,57E-06 |


| $K=20$ |  |  |
| :---: | :---: | :---: |
| Problem <br> Instance | Number of Job Sequences | \% |
| 326_N | 9 | 2,48E-06 |
| 327_N | 18 | 4,96E-06 |
| 328_N | 9 | 2,48E-06 |
| 329_N | 9 | 2,48E-06 |
| 330_N | 18 | 4,96E-06 |
| 331_N | 18 | 4,96E-06 |
| 332_N | 18 | 4,96E-06 |
| 333_N | 9 | 2,48E-06 |
| 334_N | 18 | 4,96E-06 |
| 335_N | 9 | 2,48E-06 |
| 336_N | 9 | 2,48E-06 |
| 337_N | 18 | 4,96E-06 |
| 338_N | 9 | 2,48E-06 |
| 339_N | 18 | 4,96E-06 |
| 340_N | 18 | 4,96E-06 |
| 341_N | 18 | 4,96E-06 |
| 342_N | 18 | 4,96E-06 |
| 343_N | 9 | 2,48E-06 |
| 344_N | 9 | 2,48E-06 |
| 345_N | 9 | 2,48E-06 |
| 346_N | 18 | 4,96E-06 |
| 347_N | 9 | 2,48E-06 |
| 348_N | 9 | 2,48E-06 |
| 349_N | 18 | 4,96E-06 |
| 350 N | 9 | 2,48E-06 |
| AVG | 13,32 | $3,67 \mathrm{E}-06$ |

Table E. 3 The number of job sequences generated by the heuristic when $N=15$

| $K=5$ |  |  | $K=10$ |  |  | $K=15$ |  |  | $K=20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem <br> Instance | Number of Job Sequences | \% | Problem <br> Instance | Number of Job Sequences | \% | Problem <br> Instance | Number of Job Sequences | \% | Problem Instance | Number of Job Sequences | \% |
| 51_N | 14 | 1,07E-11 | 151_N | 14 | 1,07E-11 | 251_N | 14 | 1,07E-11 | 351_N | 28 | 2,14E-11 |
| 52_N | 28 | 2,14E-11 | 152_N | 28 | 2,14E-11 | 252_N | 14 | 1,07E-11 | 352_N | 14 | 1,07E-11 |
| 53_N | 28 | 2,14E-11 | 153_N | 28 | 2,14E-11 | 253_N | 14 | 1,07E-11 | 353_N | 28 | 2,14E-11 |
| 54_N | 14 | 1,07E-11 | 154_N | 28 | 2,14E-11 | 254_N | 14 | 1,07E-11 | 354_N | 14 | 1,07E-11 |
| 55_N | 28 | 2,14E-11 | 155_N | 28 | 2,14E-11 | 255_N | 28 | 2,14E-11 | 355_N | 28 | 2,14E-11 |
| 56_N | 14 | 1,07E-11 | 156_N | 28 | 2,14E-11 | 256_N | 14 | 1,07E-11 | 356_N | 14 | $1,07 \mathrm{E}-11$ |
| 57 N | 28 | 2,14E-11 | 157_N | 14 | 1,07E-11 | 257_N | 28 | 2,14E-11 | 357_N | 14 | $1,07 \mathrm{E}-11$ |
| 58_N | 28 | 2,14E-11 | 158_N | 28 | 2,14E-11 | 258_N | 14 | 1,07E-11 | 358_N | 14 | $1,07 \mathrm{E}-11$ |
| 59_N | 28 | 2,14E-11 | 159_N | 14 | 1,07E-11 | 259_N | 28 | 2,14E-11 | 359_N | 28 | 2,14E-11 |
| 60 N | 14 | 1,07E-11 | 160_N | 14 | $1,07 \mathrm{E}-11$ | 260_N | 28 | 2,14E-11 | 360_N | 14 | 1,07E-11 |
| 61 -N | 28 | 2,14E-11 | 161 _N | 28 | 2,14E-11 | 261_N | 28 | 2,14E-11 | 361_N | 28 | 2,14E-11 |
| 62 N | 14 | 1,07E-11 | 162_N | 14 | 1,07E-11 | 262_N | 28 | 2,14E-11 | 362_N | 28 | 2,14E-11 |
| 63_N | 14 | 1,07E-11 | 163_N | 28 | 2,14E-11 | 263_N | 14 | 1,07E-11 | 363_N | 28 | 2,14E-11 |
| 64_N | 14 | 1,07E-11 | 164_N | 28 | 2,14E-11 | 264_N | 14 | 1,07E-11 | 364_N | 14 | 1,07E-11 |
| 65 _N | 28 | 2,14E-11 | 165_N | 14 | 1,07E-11 | 265_N | 14 | 1,07E-11 | 365_N | 14 | 1,07E-11 |
| 66 _N | 14 | 1,07E-11 | 166_N | 14 | 1,07E-11 | 266_N | 14 | 1,07E-11 | 366_N | 14 | 1,07E-11 |
| $67 \times \mathrm{N}$ | 14 | 1,07E-11 | 167_N | 14 | 1,07E-11 | 267_N | 14 | 1,07E-11 | 367_N | 28 | 2,14E-11 |
| 68_N | 14 | 1,07E-11 | 168_N | 14 | 1,07E-11 | 268_N | 28 | 2,14E-11 | 368_N | 28 | 2,14E-11 |
| 69 -N | 28 | 2,14E-11 | 169_N | 28 | 2,14E-11 | 269_N | 14 | 1,07E-11 | 369_N | 14 | 1,07E-11 |
| 70 N | 14 | 1,07E-11 | 170_N | 14 | 1,07E-11 | 270_N | 28 | 2,14E-11 | 370_N | 28 | 2,14E-11 |
| 71 -N | 14 | 1,07E-11 | 171_N | 14 | 1,07E-11 | 271_N | 14 | 1,07E-11 | 371_N | 14 | $1,07 \mathrm{E}-11$ |
| 72 N | 28 | 2,14E-11 | 172_N | 14 | 1,07E-11 | 272_N | 28 | 2,14E-11 | 372_N | 28 | 2,14E-11 |
| 73_N | 28 | 2,14E-11 | 173_N | 14 | 1,07E-11 | 273_N | 14 | 1,07E-11 | 373_N | 14 | 1,07E-11 |
| 74 -N | 28 | 2,14E-11 | 174_N | 28 | 2,14E-11 | 274_N | 14 | 1,07E-11 | 374_N | 14 | 1,07E-11 |
| 75 N | 14 | 1,07E-11 | 175 N | 14 | 1,07E-11 | 275 N | 14 | 1,07E-11 | 375 N | 14 | 1,07E-11 |
| AVG | 20,72 | 1,58E-11 | AVG | 20,16 | 1,54E-11 | AVG | 19,04 | 1,46E-11 | AVG | 20,16 | $1,54 \mathrm{E}-11$ |

Table E. 4 The number of job sequences generated by the heuristic when $N=\mathbf{2 0}$

| $K=5$ |  |  |
| :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% |
| 76 _N | 19 | 7,81E-18 |
| 77 _N | 38 | 1,56E-17 |
| 78 -N | 19 | 7,81E-18 |
| $79 . \mathrm{N}$ | 38 | 1,56E-17 |
| 80 -N | 38 | 1,56E-17 |
| 81_N | 38 | 1,56E-17 |
| 82 N | 38 | 1,56E-17 |
| 83 _N | 19 | 7,81E-18 |
| 84_N | 38 | 1,56E-17 |
| 85_N | 19 | 7,81E-18 |
| 86_N | 38 | 1,56E-17 |
| 87 _N | 19 | 7,81E-18 |
| 88_N | 38 | 1,56E-17 |
| 89_N | 19 | 7,81E-18 |
| 90 - N | 19 | 7,81E-18 |
| 91_N | 19 | 7,81E-18 |
| 92 N | 38 | 1,56E-17 |
| 93_N | 19 | 7,81E-18 |
| $94 \times \mathrm{N}$ | 19 | 7,81E-18 |
| 95 _N | 38 | 1,56E-17 |
| 96 _N | 19 | 7,81E-18 |
| 97 N | 38 | 1,56E-17 |
| $98 . \mathrm{N}$ | 38 | 1,56E-17 |
| 99 _N | 19 | 7,81E-18 |
| 100 N | 38 | 1,56E-17 |
| AVG | 28,88 | 1,19E-17 |


| $K=10$ |  |  |
| :---: | :---: | :---: |
| Problem | Number of Job | \% |
| Instance | Sequences |  |
| 176_N | 38 | 1,56E-17 |
| 177_N | 38 | 1,56E-17 |
| 178_N | 38 | 1,56E-17 |
| 179_N | 38 | 1,56E-17 |
| 180_N | 19 | 7,81E-18 |
| 181_N | 38 | 1,56E-17 |
| 182_N | 38 | 1,56E-17 |
| 183_N | 38 | 1,56E-17 |
| 184_N | 19 | 7,81E-18 |
| 185_N | 19 | 7,81E-18 |
| 186_N | 38 | 1,56E-17 |
| 187_N | 19 | 7,81E-18 |
| 188_N | 19 | 7,81E-18 |
| 189_N | 19 | 7,81E-18 |
| 190_N | 19 | 7,81E-18 |
| 191_N | 38 | 1,56E-17 |
| 192_N | 38 | 1,56E-17 |
| 193_N | 19 | 7,81E-18 |
| 194_N | 19 | 7,81E-18 |
| 195_N | 38 | 1,56E-17 |
| 196_N | 38 | 1,56E-17 |
| 197_N | 19 | 7,81E-18 |
| 198_N | 38 | 1,56E-17 |
| 199_N | 38 | 1,56E-17 |
| 200 N | 19 | 7,81E-18 |
| AVG | 29,64 | 1,22E-17 |


| $K=15$ |  |  |
| :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% |
| 276_N | 19 | 7,81E-18 |
| 277_N | 19 | 7,81E-18 |
| 278_N | 19 | 7,81E-18 |
| 279_N | 19 | 7,81E-18 |
| 280_N | 19 | 7,81E-18 |
| 281_N | 19 | 7,81E-18 |
| 282_N | 19 | 7,81E-18 |
| 283_N | 38 | 1,56E-17 |
| 284_N | 38 | 1,56E-17 |
| 285_N | 38 | 1,56E-17 |
| 286_N | 19 | 7,81E-18 |
| 287_N | 19 | 7,81E-18 |
| 288_N | 19 | 7,81E-18 |
| 289_N | 19 | 7,81E-18 |
| 290_N | 19 | 7,81E-18 |
| 291_N | 19 | 7,81E-18 |
| 292_N | 19 | 7,81E-18 |
| 293_N | 19 | 7,81E-18 |
| 294_N | 38 | 1,56E-17 |
| 295_N | 19 | 7,81E-18 |
| 296_N | 19 | 7,81E-18 |
| 297_N | 19 | 7,81E-18 |
| 298_N | 19 | 7,81E-18 |
| 299_N | 38 | 1,56E-17 |
| 300 N | 38 | 1,56E-17 |
| AVG | 23,56 | 9,68E-18 |


| $K=20$ |  |  |
| :---: | :---: | :---: |
| Problem Instance | Number of Job Sequences | \% |
| 376_N | 38 | 1,56E-17 |
| 377_N | 38 | 1,56E-17 |
| 378_N | 19 | 7,81E-18 |
| 379_N | 19 | 7,81E-18 |
| 380 N | 19 | 7,81E-18 |
| 381_N | 38 | 1,56E-17 |
| 382_N | 19 | 7,81E-18 |
| 383_N | 38 | 1,56E-17 |
| 384_N | 19 | 7,81E-18 |
| 385_N | 38 | 1,56E-17 |
| 386_N | 19 | 7,81E-18 |
| 387_N | 38 | 1,56E-17 |
| 388_N | 19 | 7,81E-18 |
| 389_N | 38 | 1,56E-17 |
| 390_N | 19 | 7,81E-18 |
| 391_N | 19 | 7,81E-18 |
| 392_N | 38 | 1,56E-17 |
| 393_N | 38 | 1,56E-17 |
| 394_N | 38 | 1,56E-17 |
| 395_N | 19 | 7,81E-18 |
| 396_N | 19 | 7,81E-18 |
| 397_N | 38 | 1,56E-17 |
| 398_N | 19 | 7,81E-18 |
| 399_N | 38 | 1,56E-17 |
| 400 N | 19 | 7,81E-18 |
| AVG | 28,12 | 1,16E-17 |

## APPENDIX F - ANALYSES OF SOLUTION IMPROVEMENT IN PHASE-2 FOR THE SETUP CASE

Table F. 1 Objective Function Improvement in Phase-2 (Tabu Search) when $K=5$

| $K=5, N=5$ |  |  |  | $K=5, N=10$ |  |  |  | $K=5, N=15$ |  |  |  | $\mathrm{K}=5, \mathrm{~N}=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) |
| 1 | 653 | 653 | 0,00 | 26 | 4705 | 4683 | 0,47 | 51 | 5713 | 5645 | 1,19 | 76 | 7464 | 7449 | 0,20 |
| 2 | 1780 | 1780 | 0,00 | 27 | 5603 | 5507 | 1,71 | 52 | 7474 | 7474 | 0,00 | 77 | 11014 | 10941 | 0,66 |
| 3 | 1806 | 1760 | 2,55 | 28 | 3554 | 3554 | 0,00 | 53 | 4669 | 4642 | 0,58 | 78 | 14195 | 14177 | 0,13 |
| 4 | 1907 | 1907 | 0,00 | 29 | 4795 | 4615 | 3,75 | 54 | 9021 | 8906 | 1,27 | 79 | 13199 | 13068 | 0,99 |
| 5 | 2812 | 2812 | 0,00 | 30 | 4179 | 4179 | 0,00 | 55 | 6987 | 6987 | 0,00 | 80 | 15493 | 15257 | 1,52 |
| 6 | 1565 | 1434 | 8,37 | 31 | 5861 | 5712 | 2,54 | 56 | 8495 | 8495 | 0,00 | 81 | 11029 | 10878 | 1,37 |
| 7 | 2892 | 2892 | 0,00 | 32 | 5031 | 5031 | 0,00 | 57 | 6800 | 6794 | 0,09 | 82 | 14022 | 13998 | 0,17 |
| 8 | 1368 | 1338 | 2,19 | 33 | 3007 | 2988 | 0,63 | 58 | 8716 | 8587 | 1,48 | 83 | 7514 | 7514 | 0,00 |
| 9 | 3946 | 3946 | 0,00 | 34 | 6701 | 6701 | 0,00 | 59 | 7850 | 7706 | 1,83 | 84 | 11520 | 11456 | 0,56 |
| 10 | 1573 | 1573 | 0,00 | 35 | 6179 | 6179 | 0,00 | 60 | 13730 | 13501 | 1,67 | 85 | 10198 | 10128 | 0,69 |
| 11 | 3352 | 3198 | 4,59 | 36 | 5336 | 5300 | 0,67 | 61 | 9817 | 9661 | 1,59 | 86 | 11889 | 11765 | 1,04 |
| 12 | 1809 | 1809 | 0,00 | 37 | 3631 | 3631 | 0,00 | 62 | 8354 | 8354 | 0,00 | 87 | 8366 | 8366 | 0,00 |
| 13 | 1764 | 1596 | 9,52 | 38 | 6870 | 6690 | 2,62 | 63 | 6239 | 6239 | 0,00 | 88 | 7723 | 7651 | 0,93 |
| 14 | 2579 | 2579 | 0,00 | 39 | 4008 | 4008 | 0,00 | 64 | 9130 | 9028 | 1,12 | 89 | 8805 | 8805 | 0,00 |
| 15 | 4539 | 4497 | 0,93 | 40 | 3300 | 3300 | 0,00 | 65 | 6871 | 6871 | 0,00 | 90 | 10860 | 10850 | 0,09 |
| 16 | 2846 | 2833 | 0,46 | 41 | 3615 | 3526 | 2,46 | 66 | 14240 | 14240 | 0,00 | 91 | 7997 | 7997 | 0,00 |
| 17 | 1174 | 1174 | 0,00 | 42 | 4919 | 4919 | 0,00 | 67 | 6226 | 6226 | 0,00 | 92 | 10079 | 10016 | 0,63 |
| 18 | 3055 | 2866 | 6,19 | 43 | 6008 | 5881 | 2,11 | 68 | 8099 | 8099 | 0,00 | 93 | 8146 | 8146 | 0,00 |
| 19 | 3619 | 3531 | 2,43 | 44 | 3728 | 3684 | 1,18 | 69 | 8391 | 8337 | 0,64 | 94 | 9607 | 9607 | 0,00 |
| 20 | 1031 | 986 | 4,36 | 45 | 4287 | 4287 | 0,00 | 70 | 11536 | 11536 | 0,00 | 95 | 10837 | 10822 | 0,14 |
| 21 | 3435 | 3354 | 2,36 | 46 | 2653 | 2653 | 0,00 | 71 | 4810 | 4758 | 1,08 | 96 | 7794 | 7794 | 0,00 |
| 22 | 2027 | 2005 | 1,09 | 47 | 6106 | 6097 | 0,15 | 72 | 6241 | 6241 | 0,00 | 97 | 13550 | 13550 | 0,00 |
| 23 | 3163 | 3163 | 0,00 | 48 | 5308 | 5049 | 4,88 | 73 | 10022 | 9858 | 1,64 | 98 | 18127 | 18115 | 0,07 |
| 24 | 3739 | 3700 | 1,04 | 49 | 6933 | 6853 | 1,15 | 74 | 12660 | 12660 | 0,00 | 99 | 10855 | 10855 | 0,00 |
| 25 | 2011 | 1958 | 2,64 | 50 | 5422 | 5414 | 0,15 | 75 | 5454 | 5454 | 0,00 | 100 | 10865 | 10484 | 3,51 |
|  | AVG |  | 1,95 |  | AVG |  | 0,98 |  | AVG |  | 0,57 |  | AVG |  | 0,51 |

Table F. 2 Objective Function Improvement in Phase-2 (Tabu Search) when $K=10$

| $K=10, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 101 | 5002 | 5002 | 0,00 |
| 102 | 3201 | 3201 | 0,00 |
| 103 | 3069 | 3069 | 0,00 |
| 104 | 2929 | 2929 | 0,00 |
| 105 | 4351 | 3157 | 27,44 |
| 106 | 7378 | 7031 | 4,70 |
| 107 | 5350 | 5350 | 0,00 |
| 108 | 11854 | 11701 | 1,29 |
| 109 | 2209 | 2163 | 2,08 |
| 110 | 3259 | 3063 | 6,01 |
| 111 | 4274 | 4060 | 5,01 |
| 112 | 2476 | 2476 | 0,00 |
| 113 | 5756 | 5756 | 0,00 |
| 114 | 7266 | 6728 | 7,40 |
| 115 | 4798 | 4666 | 2,75 |
| 116 | 2487 | 2194 | 11,78 |
| 117 | 5076 | 5063 | 0,26 |
| 118 | 8826 | 8405 | 4,77 |
| 119 | 5189 | 5050 | 2,68 |
| 120 | 10304 | 9494 | 7,86 |
| 121 | 3757 | 3563 | 5,16 |
| 122 | 4437 | 4419 | 0,41 |
| 123 | 4728 | 4728 | 0,00 |
| 124 | 9242 | 8269 | 10,53 |
| 125 | 8701 | 8543 | 1,82 |
|  | AVG |  | 4,08 |
|  |  |  |  |


| $K=10, N=10$ |  |  |  |  | $K=10, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$]$| Problem <br> Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |  | Problem <br> Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 126 | 5881 | 5857 | 0,41 |  | 151 | 21102 | 21102 | 0,00 |
| 127 | 15574 | 15574 | 0,00 |  | 152 | 25164 | 24131 | 4,11 |
| 128 | 13850 | 13850 | 0,00 |  | 153 | 19544 | 19291 | 1,29 |
| 129 | 14457 | 13749 | 4,90 |  | 154 | 22382 | 21935 | 2,00 |
| 130 | 13353 | 13353 | 0,00 |  | 155 | 18432 | 18206 | 1,23 |
| 131 | 7409 | 7317 | 1,24 |  | 156 | 22111 | 22111 | 0,00 |
| 132 | 19765 | 19765 | 0,00 |  | 157 | 29343 | 29343 | 0,00 |
| 133 | 12468 | 12468 | 0,00 |  | 158 | 36597 | 36339 | 0,70 |
| 134 | 13643 | 13643 | 0,00 |  | 159 | 19355 | 19355 | 0,00 |
| 135 | 17220 | 17220 | 0,00 |  | 160 | 29339 | 29330 | 0,03 |
| 136 | 11474 | 11310 | 1,43 |  | 161 | 30826 | 30704 | 0,40 |
| 137 | 17901 | 17797 | 0,58 |  | 162 | 24555 | 24555 | 0,00 |
| 138 | 21184 | 21184 | 0,00 |  | 163 | 29088 | 28514 | 1,97 |
| 139 | 22871 | 22871 | 0,00 |  | 164 | 22277 | 22045 | 1,04 |
| 140 | 12380 | 12380 | 0,00 |  | 165 | 40240 | 40240 | 0,00 |
| 141 | 13571 | 13571 | 0,00 |  | 166 | 35315 | 35315 | 0,00 |
| 142 | 8840 | 8840 | 0,00 |  | 167 | 28213 | 28213 | 0,00 |
| 143 | 25375 | 25375 | 0,00 |  | 168 | 17524 | 17524 | 0,00 |
| 144 | 17186 | 16480 | 4,11 |  | 169 | 20241 | 20241 | 0,00 |
| 145 | 17372 | 17372 | 0,00 |  | 170 | 26240 | 26240 | 0,00 |
| 146 | 12590 | 12590 | 0,00 |  | 171 | 21904 | 21904 | 0,00 |
| 147 | 19055 | 18381 | 3,54 |  | 172 | 20817 | 20817 | 0,00 |
| 148 | 20736 | 20725 | 0,05 |  | 173 | 32861 | 32861 | 0,00 |
| 149 | 10669 | 10669 | 0,00 |  | 174 | 18961 | 18913 | 0,25 |
| 150 | 15182 | 15182 | 0,00 |  | 175 | 37731 | 37731 | 0,00 |
|  | AVG |  | 0,65 |  |  | AVG |  | 0,52 |


| $K=10, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instance | Phase-1 | Tabu | Objective <br> Improvement |
| 176 | 32683 | 32683 | 0,00 |
| 177 | 45725 | 45725 | 0,00 |
| 178 | 38837 | 38426 | 1,06 |
| 179 | 33648 | 32709 | 2,79 |
| 180 | 38009 | 38009 | 0,00 |
| 181 | 32887 | 32848 | 0,12 |
| 182 | 34962 | 34268 | 1,99 |
| 183 | 37398 | 36233 | 3,12 |
| 184 | 37863 | 37863 | 0,00 |
| 185 | 22175 | 22141 | 0,15 |
| 186 | 40204 | 40072 | 0,33 |
| 187 | 35773 | 35726 | 0,13 |
| 188 | 40543 | 40543 | 0,00 |
| 189 | 40329 | 40329 | 0,00 |
| 190 | 49259 | 49245 | 0,03 |
| 191 | 30491 | 30112 | 1,24 |
| 192 | 32738 | 32399 | 1,04 |
| 193 | 30748 | 30748 | 0,00 |
| 194 | 51566 | 51566 | 0,00 |
| 195 | 26110 | 26032 | 0,30 |
| 196 | 40668 | 40118 | 1,35 |
| 197 | 23791 | 23791 | 0,00 |
| 198 | 44350 | 44191 | 0,36 |
| 199 | 21198 | 21019 | 0,84 |
| 200 | 33682 | 33682 | 0,00 |
|  | AVG |  | 0,59 |

Table F. 3 Objective Function Improvement in Phase-2 (Tabu Search) when $K=15$

| $K=15, N=5$ |  |  |  | $K=15, N=10$ |  |  |  | $K=15, N=15$ |  |  |  | $\mathrm{K}=15, \mathrm{~N}=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective Improvement | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 201 | 9032 | 9032 | 0,00 | 226 | 20702 | 20312 | 1,88 | 251 | 36063 | 36063 | 0,00 | 276 | 48353 | 48353 | 0,00 |
| 202 | 10642 | 10092 | 5,17 | 227 | 31861 | 31861 | 0,00 | 252 | 46021 | 46021 | 0,00 | 277 | 65876 | 65876 | 0,00 |
| 203 | 7897 | 7897 | 0,00 | 228 | 25557 | 25249 | 1,21 | 253 | 37562 | 37403 | 0,42 | 278 | 51720 | 51720 | 0,00 |
| 204 | 8100 | 8100 | 0,00 | 229 | 21665 | 21442 | 1,03 | 254 | 35402 | 35149 | 0,71 | 279 | 46854 | 46698 | 0,33 |
| 205 | 9727 | 9016 | 7,31 | 230 | 24723 | 24298 | 1,72 | 255 | 50491 | 49996 | 0,98 | 280 | 47972 | 47972 | 0,00 |
| 206 | 8871 | 8631 | 2,71 | 231 | 17702 | 17517 | 1,05 | 256 | 35872 | 35872 | 0,00 | 281 | 51716 | 51716 | 0,00 |
| 207 | 17128 | 16792 | 1,96 | 232 | 47009 | 47009 | 0,00 | 257 | 40290 | 39895 | 0,98 | 282 | 89606 | 88109 | 1,67 |
| 208 | 14935 | 14728 | 1,39 | 233 | 32958 | 32246 | 2,16 | 258 | 69107 | 68526 | 0,84 | 283 | 69634 | 69086 | 0,79 |
| 209 | 10795 | 10795 | 0,00 | 234 | 25015 | 25015 | 0,00 | 259 | 49618 | 49618 | 0,00 | 284 | 53555 | 53477 | 0,15 |
| 210 | 8951 | 8319 | 7,06 | 235 | 29587 | 29301 | 0,97 | 260 | 38765 | 38687 | 0,20 | 285 | 64336 | 64112 | 0,35 |
| 211 | 16513 | 16513 | 0,00 | 236 | 36780 | 36780 | 0,00 | 261 | 53844 | 53844 | 0,00 | 286 | 74841 | 74841 | 0,00 |
| 212 | 8949 | 8188 | 8,50 | 237 | 25834 | 25703 | 0,51 | 262 | 50894 | 50265 | 1,24 | 287 | 59375 | 59174 | 0,34 |
| 213 | 11507 | 11507 | 0,00 | 238 | 39279 | 38854 | 1,08 | 263 | 44343 | 44343 | 0,00 | 288 | 76014 | 75966 | 0,06 |
| 214 | 15094 | 15094 | 0,00 | 239 | 41008 | 41008 | 0,00 | 264 | 61127 | 61127 | 0,00 | 289 | 85177 | 85177 | 0,00 |
| 215 | 20760 | 20760 | 0,00 | 240 | 35465 | 35465 | 0,00 | 265 | 66587 | 66086 | 0,75 | 290 | 71141 | 71141 | 0,00 |
| 216 | 9101 | 8992 | 1,20 | 241 | 26794 | 26463 | 1,24 | 266 | 52527 | 52527 | 0,00 | 291 | 48890 | 48890 | 0,00 |
| 217 | 5385 | 5385 | 0,00 | 242 | 20665 | 20226 | 2,12 | 267 | 37220 | 37220 | 0,00 | 292 | 54544 | 54544 | 0,00 |
| 218 | 19169 | 19169 | 0,00 | 243 | 50105 | 50105 | 0,00 | 268 | 44668 | 43991 | 1,52 | 293 | 103059 | 103059 | 0,00 |
| 219 | 15992 | 15193 | 5,00 | 244 | 40666 | 39918 | 1,84 | 269 | 74889 | 74889 | 0,00 | 294 | 76264 | 75601 | 0,87 |
| 220 | 11136 | 9168 | 17,67 | 245 | 30876 | 30734 | 0,46 | 270 | 56309 | 54415 | 3,36 | 295 | 62208 | 62208 | 0,00 |
| 221 | 11480 | 10425 | 9,19 | 246 | 21961 | 21591 | 1,68 | 271 | 49413 | 49413 | 0,00 | 296 | 56002 | 56002 | 0,00 |
| 222 | 11541 | 10011 | 13,26 | 247 | 35315 | 35315 | 0,00 | 272 | 39009 | 38276 | 1,88 | 297 | 71476 | 71476 | 0,00 |
| 223 | 14301 | 14301 | 0,00 | 248 | 34641 | 34529 | 0,32 | 273 | 55332 | 55332 | 0,00 | 298 | 78655 | 78655 | 0,00 |
| 224 | 22268 | 22268 | 0,00 | 249 | 37871 | 37871 | 0,00 | 274 | 61458 | 61458 | 0,00 | 299 | 82163 | 81601 | 0,68 |
| 225 | 13637 | 13637 | 0,00 | 250 | 30819 | 30672 | 0,48 | 275 | 48045 | 48045 | 0,00 | 300 | 69927 | 69810 | 0,17 |
|  | AVG |  | 3,22 | AVG 0,79 |  |  |  | AVG |  |  | 0,52 | AVG |  |  | 0,22 |

Table F. 4 Objective Function Improvement in Phase-2 (Tabu Search) when $K=20$

| $K=20, N=5$ |  |  |  | $K=20, N=10$ |  |  |  | $K=20, N=15$ |  |  |  | $\mathrm{K}=20, \mathrm{~N}=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 301 | 14592 | 14592 | 0,00 | 326 | 45655 | 45505 | 0,33 | 351 | 70568 | 70292 | 0,39 | 376 | 100055 | 99349 | 0,71 |
| 302 | 18166 | 18124 | 0,23 | 327 | 59933 | 57103 | 4,72 | 352 | 88190 | 88190 | 0,00 | 377 | 110013 | 108955 | 0,96 |
| 303 | 16699 | 15123 | 9,44 | 328 | 43362 | 43362 | 0,00 | 353 | 54635 | 54369 | 0,49 | 378 | 93625 | 93625 | 0,00 |
| 304 | 13782 | 13071 | 5,16 | 329 | 37616 | 37616 | 0,00 | 354 | 61527 | 61200 | 0,53 | 379 | 83128 | 83128 | 0,00 |
| 305 | 15608 | 14384 | 7,84 | 330 | 40863 | 40356 | 1,24 | 355 | 85029 | 84809 | 0,26 | 380 | 79499 | 79499 | 0,00 |
| 306 | 15914 | 14670 | 7,82 | 331 | 33663 | 33645 | 0,05 | 356 | 68525 | 63364 | 7,53 | 381 | 89618 | 87626 | 2,22 |
| 307 | 32068 | 31381 | 2,14 | 332 | 79885 | 76916 | 3,72 | 357 | 71008 | 70573 | 0,61 | 382 | 148070 | 148070 | 0,00 |
| 308 | 21630 | 21539 | 0,42 | 333 | 55961 | 55961 | 0,00 | 358 | 117458 | 117458 | 0,00 | 383 | 122335 | 121428 | 0,74 |
| 309 | 21346 | 21333 | 0,06 | 334 | 43905 | 43813 | 0,21 | 359 | 88439 | 86818 | 1,83 | 384 | 96904 | 93766 | 3,24 |
| 310 | 16325 | 15337 | 6,05 | 335 | 51366 | 51366 | 0,00 | 360 | 72483 | 72483 | 0,00 | 385 | 111662 | 111563 | 0,09 |
| 311 | 31723 | 31723 | 0,00 | 336 | 63910 | 63910 | 0,00 | 361 | 96693 | 94092 | 2,69 | 386 | 128868 | 128868 | 0,00 |
| 312 | 17618 | 15626 | 11,31 | 337 | 47191 | 47004 | 0,40 | 362 | 84244 | 83853 | 0,46 | 387 | 100661 | 100658 | 0,00 |
| 313 | 18359 | 18117 | 1,32 | 338 | 72653 | 72653 | 0,00 | 363 | 72065 | 71893 | 0,24 | 388 | 129241 | 129241 | 0,00 |
| 314 | 26212 | 26046 | 0,63 | 339 | 70555 | 70104 | 0,64 | 364 | 115843 | 115843 | 0,00 | 389 | 150745 | 150364 | 0,25 |
| 315 | 36987 | 34394 | 7,01 | 340 | 63270 | 63192 | 0,12 | 365 | 101816 | 101816 | 0,00 | 390 | 128438 | 126898 | 1,20 |
| 316 | 17464 | 17385 | 0,45 | 341 | 44750 | 44541 | 0,47 | 366 | 90747 | 90747 | 0,00 | 391 | 88219 | 88219 | 0,00 |
| 317 | 9510 | 9472 | 0,40 | 342 | 39032 | 37742 | 3,30 | 367 | 67651 | 67434 | 0,32 | 392 | 95945 | 95808 | 0,14 |
| 318 | 32570 | 28941 | 11,14 | 343 | 82326 | 82326 | 0,00 | 368 | 79479 | 79050 | 0,54 | 393 | 179506 | 179506 | 0,00 |
| 319 | 29743 | 29743 | 0,00 | 344 | 62040 | 62040 | 0,00 | 369 | 125000 | 123868 | 0,91 | 394 | 140677 | 140425 | 0,18 |
| 320 | 15500 | 13195 | 14,87 | 345 | 45041 | 45041 | 0,00 | 370 | 97375 | 96003 | 1,41 | 395 | 104990 | 104990 | 0,00 |
| 321 | 21961 | 19988 | 8.98 | 346 | 34697 | 34337 | 1,04 | 371 | 82706 | 82706 | 0,00 | 396 | 96783 | 96531 | 0,26 |
| 322 | 20866 | 17656 | 15,38 | 347 | 61241 | 61241 | 0,00 | 372 | 61539 | 61539 | 0,00 | 397 | 127873 | 126770 | 0,86 |
| 323 | 25814 | 25814 | 0,00 | 348 | 59050 | 59050 | 0,00 | 373 | 92094 | 88416 | 3,99 | 398 | 148261 | 148261 | 0,00 |
| 324 | 36001 | 36001 | 0,00 | 349 | 65718 | 65534 | 0,28 | 374 | 118598 | 117279 | 1,11 | 399 | 150070 | 150070 | 0,00 |
| 325 | 25145 | 24824 | 1,28 | 350 | 56334 | 56334 | 0,00 | 375 | 85356 | 85356 | 0,00 | 400 | 134845 | 134845 | 0,00 |
|  | AVG |  | 4,48 |  | AVG |  | 0,66 |  | AVG |  | 0,93 |  | AVG |  | 0,43 |

## APPENDIX G - ANALYSES OF SOLUTION IMPROVEMENT IN PHASE-2 FOR THE NO-SETUP CASE

Table G. 1 Objective Function Improvement in Phase-2 (Tabu Search) when $K=5$

| $K=5, N=5$ |  |  |  | $K=5, N=10$ |  |  |  | $K=5, N=15$ |  |  |  | $\mathrm{K}=5, \mathrm{~N}=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 1_N | 165 | 159 | 3,64 | 26_N | 3823 | 3787 | 0,94 | 51_N | 3971 | 3971 | 0,00 | $76 \times \mathrm{N}$ | 5647 | 5647 | 0,00 |
| 2_N | 1142 | 1142 | 0,00 | 27 -N | 4315 | 4315 | 0,00 | 52_N | 6032 | 6031 | 0,02 | $77 . N$ | 6076 | 6065 | 0,18 |
| 3_N | 1250 | 1232 | 1,44 | 28_N | 2118 | 2118 | 0,00 | 53_N | 2357 | 2276 | 3,44 | 78_N | 8654 | 8654 | 0,00 |
| 4_N | 615 | 615 | 0,00 | 29_N | 2646 | 2546 | 3,78 | 54_N | 6255 | 6255 | 0,00 | 79 - | 7199 | 7190 | 0,13 |
| 5_N | 603 | 603 | 0,00 | 30_N | 1979 | 1979 | 0,00 | 55_N | 2711 | 2622 | 3,28 | 80_N | 6156 | 6123 | 0,54 |
| 6_N | 1038 | 912 | 12,14 | 31_N | 3483 | 3483 | 0,00 | 56_N | 6828 | 6828 | 0,00 | 81_N | 5801 | 5652 | 2,57 |
| 7_N | 2361 | 2361 | 0,00 | 32_N | 2994 | 2981 | 0,43 | 57_N | 4533 | 4489 | 0,97 | 82 N | 6202 | 6174 | 0,45 |
| 8_N | 647 | 617 | 4,64 | 33_N | 1826 | 1792 | 1,86 | 58_N | 5656 | 5461 | 3,45 | 83_N | 5708 | 5708 | 0,00 |
| 9_N | 1835 | 1835 | 0,00 | 34_N | 3362 | 3321 | 1,22 | 59_N | 4401 | 4339 | 1,41 | 84_N | 9233 | 9169 | 0,69 |
| 10_N | 1146 | 1146 | 0,00 | 35_N | 3690 | 3690 | 0,00 | 60_N | 7906 | 7906 | 0,00 | 85_N | 5300 | 5300 | 0,00 |
| 11_N | 2837 | 2683 | 5,43 | 36_N | 3523 | 3470 | 1,50 | 61 - N | 5778 | 5622 | 2,70 | 86_N | 6352 | 6228 | 1,95 |
| 12_N | 1334 | 1334 | 0,00 | 37_N | 2602 | 2602 | 0,00 | 62_N | 3776 | 3776 | 0,00 | 87_N | 4744 | 4744 | 0,00 |
| 13_N | 944 | 776 | 17,80 | 38_N | 5705 | 5525 | 3,16 | 63 -N | 2456 | 2456 | 0,00 | 88_N | 4032 | 3955 | 1,91 |
| 14_N | 1584 | 1584 | 0,00 | 39_N | 2068 | 2068 | 0,00 | 64_N | 7183 | 7183 | 0,00 | 89 -N | 6952 | 6952 | 0,00 |
| 15_N | 2637 | 2595 | 1,59 | 40_N | 2191 | 2191 | 0,00 | 65 N | 2118 | 2098 | 0,94 | 90 - N | 8726 | 8726 | 0,00 |
| 16_N | 1591 | 1489 | 6,41 | 41_N | 2573 | 2573 | 0,00 | 66 - | 6744 | 6744 | 0,00 | 91_N | 6113 | 6113 | 0,00 |
| $17 \ldots \mathrm{~N}$ | 649 | 649 | 0,00 | 42_N | 3013 | 3013 | 0,00 | 67 -N | 4968 | 4968 | 0,00 | 92_N | 6022 | 5974 | 0,80 |
| 18_N | 1442 | 1230 | 14,70 | 43_N | 2645 | 2645 | 0,00 | 68_N | 5020 | 5020 | 0,00 | 93_N | 5862 | 5862 | 0,00 |
| 19_N | 2629 | 2608 | 0,80 | 44_N | 1367 | 1323 | 3,22 | 69 _N | 5431 | 5400 | 0,57 | $94 \times \mathrm{N}$ | 7304 | 7304 | 0,00 |
| 20_N | 325 | 325 | 0,00 | 45_N | 1622 | 1622 | 0,00 | 70 - N | 6384 | 6384 | 0,00 | 95_N | 8440 | 8425 | 0,18 |
| 21_N | 1764 | 1683 | 4,59 | 46_N | 1878 | 1878 | 0,00 | 71_N | 3384 | 3384 | 0,00 | 96 - N | 6154 | 6154 | 0,00 |
| 22_N | 1107 | 1107 | 0,00 | 47_N | 1855 | 1846 | 0,49 | 72 N | 5139 | 5073 | 1,28 | 97 N | 7589 | 7501 | 1,16 |
| 23_N | 1777 | 1740 | 2,08 | 48_N | 2265 | 2265 | 0,00 | 73_N | 4782 | 4618 | 3,43 | 98_N | 9277 | 9265 | 0,13 |
| 24_N | 1947 | 1947 | 0,00 | 49_N | 3316 | 3236 | 2,41 | 74_N | 7263 | 7254 | 0,12 | 99 _N | 6253 | 6253 | 0,00 |
| $25-\mathrm{N}$ | 1673 | 1555 | 7,05 | $50-\mathrm{N}$ | 4396 | 4388 | 0,18 | 75 - N | 3959 | 3959 | 0,00 | $100-\mathrm{N}$ | 8835 | 8513 | 3,64 |
|  | AVG |  | 3,29 | AVG 0,77 |  |  |  | AVG |  |  | 0,86 | AVG |  |  | 0,57 |

Table G. 2 Objective Function Improvement in Phase-2 (Tabu Search) when $K=10$

| $K=10, N=5$ |  |  |  | $K=10, N=10$ |  |  |  | $K=10, N=15$ |  |  |  | $K=10, N=20$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) | Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) |
| 101_N | 4428 | 4428 | 0,00 | 126_N | 4470 | 4446 | 0,54 | 151_N | 17271 | 17271 | 0,00 | 176_N | 24878 | 24874 | 0,02 |
| 102_N | 1592 | 1583 | 0,57 | 127 _N | 9813 | 9813 | 0,00 | 152_N | 17115 | 16574 | 3,16 | 177_N | 28387 | 28228 | 0,56 |
| 103_N | 2315 | 2315 | 0,00 | 128_N | 10183 | 10183 | 0,00 | 153_N | 17486 | 17232 | 1,45 | 178_N | 26474 | 26079 | 1,49 |
| 104_N | 1779 | 1779 | 0,00 | 129_N | 11099 | 10572 | 4,75 | 154_N | 15529 | 15232 | 1,91 | 179_N | 29015 | 28185 | 2,86 |
| 105_N | 3308 | 2168 | 34,46 | 130_N | 11670 | 11670 | 0,00 | 155_N | 15356 | 15173 | 1,19 | 180_N | 21484 | 21484 | 0,00 |
| 106_N | 4708 | 4317 | 8,31 | 131_N | 5428 | 5365 | 1,16 | 156_N | 14315 | 14309 | 0,04 | 181_N | 20610 | 20497 | 0,55 |
| 107_N | 3898 | 3898 | 0,00 | 132_N | 17921 | 17921 | 0,00 | 157_N | 20751 | 20751 | 0,00 | 182_N | 26829 | 26288 | 2,02 |
| 108_N | 5808 | 5808 | 0,00 | 133_N | 10162 | 10162 | 0,00 | 158_N | 24840 | 24756 | 0,34 | 183_N | 23483 | 23447 | 0,15 |
| 109_N | 1518 | 1452 | 4,35 | 134_N | 9864 | 9864 | 0,00 | 159_N | 17062 | 17062 | 0,00 | 184_N | 24713 | 24713 | 0,00 |
| 110_N | 2145 | 1968 | 8,25 | 135_N | 10319 | 10185 | 1,30 | 160_N | 24694 | 24694 | 0,00 | 185_N | 15738 | 15738 | 0,00 |
| 111_N | 1901 | 1873 | 1,47 | 136_N | 10108 | 9944 | 1,62 | 161_N | 23549 | 23465 | 0,36 | 186_N | 29573 | 29515 | 0,20 |
| 112_N | 1516 | 1516 | 0,00 | 137_N | 15945 | 15945 | 0,00 | 162_N | 18967 | 18967 | 0,00 | 187_N | 26634 | 26634 | 0,00 |
| 113_N | 4699 | 4699 | 0,00 | 138_N | 18086 | 18086 | 0,00 | 163_N | 18392 | 17847 | 2,96 | 188_N | 27430 | 27430 | 0,00 |
| 114_N | 6513 | 5975 | 8,26 | 139_N | 17314 | 17314 | 0,00 | 164_N | 19626 | 19370 | 1,30 | 189_N | 31786 | 31786 | 0,00 |
| 115_N | 1863 | 1751 | 6,01 | 140_N | 5564 | 5564 | 0,00 | 165_N | 31001 | 31001 | 0,00 | 190_N | 32221 | 32221 | 0,00 |
| 116_N | 1500 | 1392 | 7,20 | 141_N | 10798 | 10798 | 0,00 | 166_N | 26723 | 26723 | 0,00 | 191_N | 26798 | 26461 | 1,26 |
| 117_N | 2189 | 2189 | 0,00 | 142_N | 6741 | 6741 | 0,00 | 167_N | 25181 | 25181 | 0,00 | 192_N | 24871 | 24627 | 0,98 |
| 118_N | 5838 | 5760 | 1,34 | 143_N | 15692 | 15289 | 2,57 | 168_N | 14260 | 14260 | 0,00 | 193_N | 19355 | 19355 | 0,00 |
| 119_N | 3358 | 3358 | 0,00 | 144_N | 13936 | 13314 | 4,46 | 169_N | 16696 | 16474 | 1,33 | 194_N | 34263 | 34263 | 0,00 |
| 120_N | 8111 | 8111 | 0,00 | 145_N | 10988 | 10988 | 0,00 | 170_N | 20231 | 20231 | 0,00 | 195_N | 22012 | 21934 | 0,35 |
| 121_N | 3020 | 2808 | 7,02 | 146_N | 8777 | 8777 | 0,00 | 171_N | 11128 | 11128 | 0,00 | 196_N | 20943 | 20329 | 2,93 |
| 122_N | 3651 | 3633 | 0,49 | 147_N | 10462 | 9891 | 5,46 | 172_N | 17432 | 17432 | 0,00 | 197_N | 19307 | 19307 | 0,00 |
| 123_N | 3442 | 3442 | 0,00 | 148_N | 12929 | 12929 | 0,00 | 173_N | 26015 | 26015 | 0,00 | 198_N | 33311 | 33152 | 0,48 |
| 124_N | 7671 | 6754 | 11,95 | 149_N | 7071 | 7071 | 0,00 | 174_N | 16484 | 16404 | 0,49 | 199_N | 12837 | 12763 | 0,58 |
| 125 N | 5606 | 5448 | 2,82 | 150 N | 13223 | 13223 | 0,00 | 175 N | 22176 | 22176 | 0,00 | 200 N | 29152 | 29152 | 0,00 |
|  | AVG |  | 4,10 |  | AVG |  | 0,87 |  | AVG |  | 0,58 |  | AVG |  | 0,58 |

Table G. 3 Objective Function Improvement in Phase-2 (Tabu Search) when $K=15$

| $K=15, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 201_N | 8272 | 8272 | 0,00 |
| 202_N | 8739 | 8371 | 4,21 |
| 203_N | 6437 | 6437 | 0,00 |
| 204_N | 3984 | 3984 | 0,00 |
| 205_N | 3167 | 2680 | 15,38 |
| 206_N | 7250 | 7178 | 0,99 |
| 207_N | 15808 | 15472 | 2,13 |
| 208_N | 9606 | 9606 | 0,00 |
| 209_N | 6299 | 6084 | 3,41 |
| 210_N | 7752 | 7074 | 8,75 |
| 211_N | 15116 | 15116 | 0,00 |
| 212_N | 7685 | 6928 | 9,85 |
| 213_N | 8769 | 8758 | 0,13 |
| 214_N | 12071 | 12071 | 0,00 |
| 215 N | 15598 | 14264 | 8,55 |
| 216_N | 5753 | 5753 | 0,00 |
| 217_N | 3990 | 3924 | 1,65 |
| 218_N | 13543 | 13543 | 0,00 |
| 219_N | 13096 | 12466 | 4,81 |
| 220_N | 7855 | 5717 | 27,22 |
| 221 N | 6922 | 6188 | 10,60 |
| 222_N | 9276 | 7270 | 21,63 |
| 223_N | 8927 | 8927 | 0,00 |
| 224_N | 15006 | 15006 | 0,00 |
| 225 N | 12622 | 12622 | 0,00 |
|  | AVG |  | 4,77 |


| $K=15, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 226_N | 18769 | 18415 | 1,89 |
| 227 _N | 22692 | 22692 | 0,00 |
| 228_N | 20188 | 19975 | 1,06 |
| 229_N | 15247 | 15247 | 0,00 |
| 230_N | 15927 | 15528 | 2,51 |
| 231_N | 14327 | 14217 | 0,77 |
| 232_N | 43254 | 43254 | 0,00 |
| 233_N | 25101 | 25101 | 0,00 |
| 234_N | 16010 | 16010 | 0,00 |
| 235_N | 24138 | 23889 | 1,03 |
| 236_N | 34362 | 34362 | 0,00 |
| 237_N | 22950 | 22950 | 0,00 |
| 238_N | 32411 | 32411 | 0,00 |
| 239_N | 33516 | 33516 | 0,00 |
| 240_N | 25601 | 25601 | 0,00 |
| 241_N | 21743 | 21743 | 0,00 |
| 242_N | 16565 | 16477 | 0,53 |
| 243_N | 36834 | 36314 | 1,41 |
| 244_N | 34635 | 34459 | 0,51 |
| 245_N | 22077 | 22077 | 0,00 |
| 246_N | 13833 | 13445 | 2,80 |
| 247 _N | 24537 | 24537 | 0,00 |
| 248_N | 24449 | 24449 | 0,00 |
| 249_N | 27051 | 27006 | 0,17 |
| 250 N | 28177 | 28030 | 0,52 |
| AVG |  |  | 0,53 |


| $K=15, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 251_N | 30665 | 30665 | 0,00 |
| 252_N | 35404 | 35404 | 0,00 |
| 253_N | 27851 | 27851 | 0,00 |
| 254_N | 21902 | 21902 | 0,00 |
| 255_N | 33806 | 33750 | 0,17 |
| 256_N | 22325 | 22325 | 0,00 |
| 257_N | 35345 | 34991 | 1,00 |
| 258_N | 57780 | 57780 | 0,00 |
| 259_N | 35512 | 35396 | 0,33 |
| 260_N | 28251 | 28221 | 0,11 |
| 261_N | 45138 | 44098 | 2,30 |
| 262_N | 46819 | 46315 | 1,08 |
| 263_N | 38370 | 38370 | 0,00 |
| 264_N | 51416 | 51416 | 0,00 |
| 265_N | 52953 | 52953 | 0,00 |
| 266_N | 36627 | 36627 | 0,00 |
| 267_N | 30248 | 30248 | 0,00 |
| 268_N | 35001 | 34399 | 1,72 |
| 269_N | 57309 | 57309 | 0,00 |
| 270_N | 44820 | 43146 | 3,73 |
| 271_N | 34887 | 34887 | 0,00 |
| 272_N | 27830 | 27501 | 1,18 |
| 273_N | 38789 | 38789 | 0,00 |
| 274_N | 42966 | 42966 | 0,00 |
| 275 N | 43571 | 43571 | 0,00 |
|  | AVG |  | 0,46 |


| $\mathrm{K}=15, \mathrm{~N}=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) |
| 276_N | 42081 | 42081 | 0,00 |
| 277_N | 51364 | 51364 | 0,00 |
| 278_N | 40366 | 40366 | 0,00 |
| 279_N | 28832 | 28832 | 0,00 |
| 280_N | 28723 | 28723 | 0,00 |
| 281_N | 44955 | 44955 | 0,00 |
| 282_N | 78489 | 78489 | 0,00 |
| 283_N | 50827 | 50173 | 1,29 |
| 284_N | 37482 | 37452 | 0,08 |
| 285_N | 57465 | 57411 | 0,09 |
| 286_N | 69110 | 69110 | 0,00 |
| 287_N | 47850 | 47850 | 0,00 |
| 288_N | 63796 | 63796 | 0,00 |
| 289_N | 68784 | 68784 | 0,00 |
| 290_N | 52354 | 52354 | 0,00 |
| 291_N | 38687 | 38687 | 0,00 |
| 292_N | 42816 | 42816 | 0,00 |
| 293_N | 78023 | 78023 | 0,00 |
| 294_N | 62004 | 61341 | 1,07 |
| 295_N | 43799 | 43799 | 0,00 |
| 296_N | 39386 | 39386 | 0,00 |
| 297_N | 52001 | 52001 | 0,00 |
| 298_N | 54663 | 54663 | 0,00 |
| 299_N | 64478 | 64391 | 0,13 |
| 300 N | 57617 | 57469 | 0,26 |
|  | AVG |  | 0,12 |

Table G. 4 Objective Function Improvement in Phase-2 (Tabu Search) when $K=20$

| $K=20, N=5$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 301_N | 13544 | 13544 | 0,00 |
| 302_N | 15696 | 15367 | 2,10 |
| 303_N | 14517 | 13087 | 9,85 |
| 304_N | 8321 | 7644 | 8,14 |
| 305_N | 7086 | 5771 | 18,56 |
| 306_N | 12720 | 12476 | 1,92 |
| 307_N | 30133 | 29446 | 2,28 |
| 308_N | 15156 | 14809 | 2,29 |
| 309_N | 14190 | 14190 | 0,00 |
| 310_N | 14695 | 13674 | 6,95 |
| 311_N | 29811 | 29811 | 0,00 |
| 312_N | 15879 | 13891 | 12,52 |
| 313_N | 14562 | 14394 | 1,15 |
| 314_N | 22662 | 22426 | 1,04 |
| 315_N | 29772 | 26502 | 10,98 |
| 316_N | 12691 | 12691 | 0,00 |
| 317_N | 7521 | 7483 | 0,51 |
| 318_N | 25740 | 21975 | 14,63 |
| 319_N | 25980 | 25980 | 0,00 |
| 320_N | 10726 | 8148 | 24,04 |
| 321_N | 15701 | 13752 | 12,41 |
| 322_N | 17745 | 14007 | 21,07 |
| 323_N | 18072 | 18072 | 0,00 |
| 324_N | 28033 | 28033 | 0,00 |
| 325 N | 22971 | 22812 | 0,69 |
|  | AVG |  | 6,04 |


| $K=20, N=10$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective <br> Improvement (\%) |
| 326_N | 42487 | 42487 | 0,00 |
| 327 _N | 47746 | 45076 | 5,59 |
| 328_N | 36298 | 36298 | 0,00 |
| 329_N | 28599 | 28599 | 0,00 |
| 330_N | 27678 | 27435 | 0,88 |
| 331_N | 28619 | 28571 | 0,17 |
| 332_N | 75632 | 72188 | 4,55 |
| 333_N | 45877 | 45877 | 0,00 |
| 334_N | 31658 | 31656 | 0,01 |
| 335 _N | 43915 | 43915 | 0,00 |
| 336_N | 60222 | 60222 | 0,00 |
| 337_N | 43168 | 42981 | 0,43 |
| 338_N | 63805 | 63805 | 0,00 |
| 339_N | 60083 | 59827 | 0,43 |
| 340_N | 48285 | 48224 | 0,13 |
| 341_N | 37719 | 37640 | 0,21 |
| 342_N | 33958 | 32567 | 4,10 |
| 343_N | 64844 | 64844 | 0,00 |
| 344_N | 53082 | 53082 | 0,00 |
| 345_N | 33241 | 33241 | 0,00 |
| 346_N | 23702 | 23408 | 1,24 |
| 347_N | 45756 | 45756 | 0,00 |
| 348_N | 42178 | 42178 | 0,00 |
| 349_N | 52660 | 52476 | 0,35 |
| 350 N | 52684 | 52684 | 0,00 |
| AVG |  |  | 0,72 |


| $K=20, N=15$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem Instance | Phase-1 | Tabu | Objective Improvement (\%) |
| 351_N | 65001 | 64746 | 0,39 |
| 352_N | 74235 | 74235 | 0,00 |
| 353_N | 43661 | 43401 | 0,60 |
| 354_N | 41625 | 41625 | 0,00 |
| 355_N | 61277 | 61208 | 0,11 |
| 356_N | 43160 | 43160 | 0,00 |
| 357_N | 64461 | 64461 | 0,00 |
| 358_N | 104424 | 104424 | 0,00 |
| 359_N | 71144 | 69456 | 2,37 |
| 360_N | 58618 | 58618 | 0,00 |
| 361_N | 86824 | 85501 | 1,52 |
| 362_N | 78988 | 78603 | 0,49 |
| 363_N | 63662 | 63588 | 0,12 |
| 364_N | 102492 | 102492 | 0,00 |
| 365_N | 83894 | 83894 | 0,00 |
| 366_N | 72874 | 72874 | 0,00 |
| 367_N | 58777 | 58560 | 0,37 |
| 368_N | 66027 | 65779 | 0,38 |
| 369_N | 98759 | 98759 | 0,00 |
| 370_N | 82157 | 80834 | 1,61 |
| 371_N | 62455 | 62455 | 0,00 |
| 372_N | 47861 | 46968 | 1,87 |
| 373_N | 68821 | 68821 | 0,00 |
| 374_N | 90677 | 90677 | 0,00 |
| 375 N | 79250 | 79250 | 0,00 |
|  | AVG |  | 0,39 |


| $\mathrm{K}=20, \mathrm{~N}=20$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Problem <br> Instance | Phase-1 | Tabu | Objective Improvement (\%) |
| 376_N | 91251 | 90545 | 0,77 |
| 377_N | 91060 | 89970 | 1,20 |
| 378_N | 78132 | 78132 | 0,00 |
| 379_N | 56947 | 56947 | 0,00 |
| 380_N | 46829 | 46829 | 0,00 |
| 381_N | 79970 | 78624 | 1,68 |
| 382_N | 133260 | 133260 | 0,00 |
| 383_N | 95079 | 94911 | 0,18 |
| 384_N | 74568 | 74568 | 0,00 |
| 385_N | 99699 | 99605 | 0,09 |
| 386_N | 121154 | 121154 | 0,00 |
| 387_N | 90639 | 90636 | 0,00 |
| 388_N | 112493 | 112493 | 0,00 |
| 389_N | 128446 | 128151 | 0,23 |
| 390_N | 99286 | 99286 | 0,00 |
| 391_N | 74726 | 74726 | 0,00 |
| 392_N | 79629 | 79584 | 0,06 |
| 393_N | 146245 | 145659 | 0,40 |
| 394_N | 120970 | 120718 | 0,21 |
| 395_N | 79469 | 79469 | 0,00 |
| 396_N | 74196 | 74196 | 0,00 |
| 397_N | 100833 | 99961 | 0,86 |
| 398_N | 110921 | 110921 | 0,00 |
| 399_N | 130089 | 129229 | 0,66 |
| 400_N | 115074 | 115074 | 0,00 |
|  | AVG |  | 0,25 |

