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ABSTRACT

LOSSLESS IMAGE COMPRESSION ON ASTRONOMICAL IMAGES WITH
POLYNOMIAL CURVE FITTING AND LINEAR MACHINE LEARNING
MODELS

Karadeniz, Mehmet Fatih
Master of Science, Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Hadi Hakan Maras

September 2020, 37 pages

In this thesis, we propose a lossless image compression algorithm, which is an
improvement of Zlib algorithm, for astronomical images. Our method is based on
polynomial curve fitting that provides approximate function which fits best to the
given data with the possible smallest error. The algorithm divides image into sub-
blocks, then compresses the coefficients of polynomials and the error, which is
obtained by using approximate polynomial values and real pixel values, applying Zlib.
Then, the method reconstructs image data without any loss for each block with the
help of Zlib. The reason why the errors (difference between pixel values and
polynomial values) are compressed is that most of the astronomical images have
repeated difference values when polynomial curve fitting is applied to them. When we
compared our proposed method with Zlib on an astronomical image data set, we

observed that our method’s compression ratio is better than Zlib’s compression ratio.
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Furthermore, we improved our method and thus acquired better lossless compression
ratio than both our previously developed method and Zlib with the help of linear

models.

Keywords: Lossless Image Compression, Curve Fitting, Astronomical
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POLINOMIK EGRi UYDURMA VE LINEER MAKINE OGRENME
MODELLERI ILE ASTRONOMiK GORUNTULERDE KAYIPSIZ
GORUNTU SIKISTIRMA

Karadeniz, Mehmet Fatih
Yiiksek Lisans, Bilgisayar Miihendisligi Ana Bilim Dali
Tez Yoneticisi: Dog¢. Dr. Hadi Hakan Maras

Eyliil 2020, 37 sayfa

Bu tezde, astronomik goriintiiler i¢in Zlib algoritmasinin iyilestirilmesi ile elde edilen
kayipsiz bir goriintii sikistirma algoritmasi 6neriyoruz. Metodumuz, verilen verilere
en kiiciik hata ile en iyi uyan yaklasik fonksiyon saglayan polinom egri uydurmaya
dayanmaktadir. Algoritma goriintiiyti alt bloklara ayirir, daha sonra polinom
katsayilarini ve yaklasik polinom degerleri ile gergek piksel degerlerini kullanarak
elde edilen hatayr Zlib metodunu kullanarak sikistirir. Daha sonra yontem, Zlib
yardimiyla her blok icin herhangi bir kayip olmadan gorintii verilerini yeniden
yapilandirir. Hatalarin (piksel degerleri ve polinom degerleri arasindaki fark)
sikistirllmasinin nedeni, astronomik gortintiilerin ¢gogunun polinom egrisi uydurma
uygulandiginda tekrarlanan fark degerlerine sahip olmasidir. Onerilen yontemimizi
astronomik bir goriintii veri setinde Zlib ile karsilastirdigimizda, yontemimizin

sikigtirma oraninin Zl1ib’in sikistirma oranindan daha iyi oldugunu gozlemledik.
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Ayrica, lineer modellerinin yardimiyla yontemimizi gelistirdik ve boylece hem daha

once gelistirdigimiz yontemden hem de Zlib'den daha iyi kayipsiz sikigtirma orani elde
ettik.

Anahtar Kelimeler: Kayipsiz Goriintti Sikistirma, Egri Uydurma, Astronomik
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CHAPTER 1

INTRODUCTION

Image compression techniques are mainly used to decrease the size of the image and
network bandwidth, so that the compressed image is represented by smaller number of
bits when it is compared to the original image [21]. Therefore, capacity of storage and
bandwidth of transmission of image data can be reduced with the help of image
compression. Image compression can be classified as two types: lossless compression
techniques, in which there is no information loss when the image is decompressed, and
lossy compression techniques, where some of the data is discarded while compressing
the image [13, 15].

1.1  MOTIVATION

This study focuses on the improvement of the Zlib (lossless data-compression library)
[6] using polynomial curve fitting and linear machine learning models on astronomical
images. Zlib uses DEFLATE algorithm, which is a combination of Huffman coding
and LZ77 compression, to compress the data [7]. One of the major properties of the
library is that it does not depend on OS (operating system), file system, CPU type and
character set [6]. In addition, Zstandard, lossless compression algorithm, which targets
real-time compression scenarios at zlib-level and has higher compression ratio than

ZLib, was developed by Facebook in 2015 [4].

In this thesis, we propose a new algorithm which provides better compression ratio
than Zlib library. Our method is based on applying polynomial curve fitting and linear

machine learning models to the same sized blocks of an image. When a polynomial is



fitted to the image data, approximate polynomial values of pixels in addition to real
pixel values are obtained. The difference between these two values is known as error.
Thus, we considered that if there are many differences whose values are same in
astronomical image data when polynomial curve fitting and linear machine learning

models [42] are implemented, we can compress those repeated differences using Zlib.

1.2 ROUTE OF THE THESIS

The route of this work includes five chapters after the introduction chapter in which
the main motivation of the work is given. Since our aim with this study 1s to improve
Zlib library with lossless compression on the astronomical images, theoretical
background of the method of Zlib is given in Chapter 2. In addition, since we used
linear machine learning models in some of parts of our methods, the background study

of these models is discussed briefly in the Chapter 2.

Chapter 3 gives information regarding researches, in which polynomial curve fitting,
linear machine learning models are used to obtain lossless or lossy image compression,

up to date.

After learning the background study from the Chapter 2 and examining what other
researchers have done so far on the topic of this study from the Chapter 3, detailed

information of the methods and algorithms are given in Chapter 4.

The results, which were obtained by comparing our methods with Zlib library
regarding lossless compression ratio on the astronomical image dataset, of this thesis
are described and discussed in Chapter 5. Finally, in Chapter 6 conclusions and outlook

of the work are given.



CHAPTER 2

BACKGROUND

Before explaining our method, which is improvement of Zlib on astronomical images
with curve fitting and linear machine learning models, it is important to understand the
algorithm behind Zlib. Therefore, DEFLATE algorithm, which is the algorithm behind
Z1ib library, 1s defined in detail in this chapter. In addition, theoretical information
regarding polynomial curve fitting and linear machine learning models, which are used

in this work, are explained in this chapter.

2.1 DEFLATE ALGORITHM

Deflate specification is based on combination of Huffman coding and LZ77

compression which are both lossless compression techniques.

In Huffman coding, each code shows a component in a special alphabet and these
codes are shown as binary (0 or 1) [7]. One of the most important properties of
Huffman coding is that it is based on prefix code (also known as prefix-free code),
which means that a code which shows a symbol cannot be a prefix of another code
[18]. For example, if there is a symbol which is encoded as “1”, there cannot be a
symbol which starts with 1 and is encoded, i.e., “101”. The aim of Huffman coding is
to encode a data, which has high frequency in the data, with less number of bits than
encoded data which have less frequency [ 18]. Suppose that we have elements and their
weights (relative frequency of elements within data) are a, b, ¢, d, e, f and 6, 10, 13,
14, 17, 46 respectively as shown in Table 2.1 [38].



Table 2.1 Elements and their corresponding weights.

Element Weight
a 6
b 10
c 13
d 14
17
f 46

We then obtain the Huffman tree as represented in Figure 2.1.

Figure 2.1 Huffman Tree.

One can reach any element in the above Huffman tree by starting at the root node and

choosing 0 or 1 at each step, then Huffman code of any element in the Huffman tree



can be obtained easily. Elements and their Huffman codes becomes (a, b, ¢, d, e, 1),

and (0000, 0001, 010, 011, 001, 1) respectively and they are described in Table 2.2.

Table 2.2 Elements and their corresponding Huffman codes.

Element Huffman Code
a 0000

b 0001

c 010

d 011

e 001

f 1

If we apply classic Huffman algorithm to a set of elements and weights (as in Table
2.1), multiple trees can be obtained. Therefore, Deflate algorithm adds two rules to
classic Huffman algorithm for the purpose of getting at most one tree [7]. One of the
rules says that shorter coded elements are put to the left of longer coded elements [7].
If code lengths of elements are same, elements which come first in the element set are
put to the left [7]. For example, if the order of the set is EFGH, and corresponding
weights of E and F are same, then E is placed to the left of F according to Deflate
algorithm. When additional constraints of Deflate are applied to the elements and
Huffman codes in Table 2.2, we obtain Table 2.3 which indicates new Huffman codes

(1110, 1111, 100, 101, 110, 0) in order of element (a, b, ¢, d, e, f).



Table 2.3 Updated Huffman codes of the elements.

Element Huffman Code
a 1110

b 1111

C 100

d 101

e 110

f 0

Then, updated and unique Huffman tree, which is demonstrated in Figure 2.2, is

obtained.

Figure 2.2 Huffman tree with Deflate rules.




As stated before, .Z77 compression forms the other part of Deflate algorithm. It is
used to get recurring data sequences [7]. If repetition of data is found, this repetition
1s defined as a pointer which points to previous occurrence of the repeated data [17].
One of the most essential properties of LZ77 compression is called sliding window,
which is about recording previous characters when dealing with a random point in the
data [7]. Sliding window works as follows: if the sequence of characters after at given
point is found exactly same as in the sliding window, the sequence is taken place of
two numbers which represent distance and length respectively [7]. Length 1s defined
as the length of the identical sequence of characters and distance is defined as the
distance between the start of the sequence and the end of the sequence [17]. We can

understand better these terms with the help of simple example than imagining them.

Suppose we have the following compressible data: “DDEFEEDEF” [14], then input

stream can be represented as in Table 2.4.

Table 2.4 Input stream of the data [14].

Position Byte
1 D
2 D
3 E
4 F
5 E
6 E
7 D
8 E
9 F

Using the input stream table (Table 2.4), the following compression process output,

which is shown in Table 2.5 is acquired [14].



Table 2.5 Result of LZ77 compression.

Step Position Match Byte Output
1. 1 - D (0,0)
2. 2 D - (1,1)
3. 3 - E (0,0)
4 4 - F (0,0)
5. 5 - (2,1)
6. 6 - (1,1)
7. 7 DEF - (5,3)

From the above table, we can infer that the longest match in the data 1s “DEF”, and

output: (5,3) implies that the distance 1s 5 and the length is 3.

Deflate algorithm combines Huffman coding and LL.Z77 compression. Therefore,
initially, the raw data is converted to a string of characters and length-distance
numbers, then we use Huffman coding to describe them [7]. The algorithm states that
an alphabet is formed by literals (all characters), lengths (lengths of length-distance
pairs), and privileged end-of-block indicator [7]. Hence, the basis of a Huffman tree is
obtained with this alphabet [7]. Detailed explanation of Deflate algorithm can be seen
n [5].

2.2 POLYNOMIAL CURVE FITTING

If we have data points like (xi, y,), k = 1, ...,m ,usually we want to define a relation
between x;, and y; points as a function f(x) = y [22]. Curve fitting is a method which

provides a function which fits to the data with possible smallest error [3,22].

Polynomial curve fitting works as follows: Given the general form of a polynomial,
we try to find its coefficients which fits curve to the data best by minimizing error with

the help of least squares method [8]:



m

g+ a;x + ax?+ azx®+ -+ a,x® = ap + Z a,xk, 2.1
k=1

we then can convert the data as the following system of equations [22]:
ApXt + Ao X1+ 4 agx, + ay = yy,
ApXY + A X371+ + ayx, + ay = y,, (2.2)
ApXl + QX4+ A, + g = Y

which can also be written as a matrix form:

AX =y, (2.3)
where
Xy x 1 an
T B R S B (24)
X Xm 1 Qo

When Equation (2.3) is solved using the least squares method (for minimizing error),
coefficients of Equation (2.1) is obtained. Therefore, the function which fits best to the

data, 1s formed.

2.3 LINEAR MACHINE LEARNING MODELS

23.1 Linear Regression

In the previous section, polynomial curve fitting method, in which Equation (2.3) is
solved with the help of the least squares method to obtain coefficients of Equation
(2.1). In linear regression model, Equation (2.2) (the data) is transformed into the

following system of equations:



aixo + aO == yz, (24)

whose matrix form is

AX =y, (2.5)
where
x; 1 an
_lx 1 _ :
A= : | X = a |- (2.6)
Xm 1 Ao

Therefore, the linear regression model can be written as the following form [23]:

y=AX + €, (2.7)
where € represents the errors. The model fits a function which fits best to the given
data by minimizing these errors. If we say X is the predicted (candidate) coefficients
of the Equation 2.7, X is called the ordinary least squares estimator, and minimizes the

following sum of squared residuals [23]:

Z(yi — A;X)*. (2.8)
i=1

Thus, linear regression minimizes sum of squared error, and this can be shown as

min |ly —A- x|z, 2.9)

10



where [y —A- x|, = X/ (y;i — A - x;)?, defined as £,- norm.
l

2.3.2 Ridge Regression

Ridge regression (also called Tikhonov regularization) is an extended version of linear
regression by adding regularization parameter when minimizing sum of squared errors
for solving ill-conditioned problems, that is, problems do not have a unique solution,
or they have more than one solution [24-25-26]. Therefore, if we say that linear

regression minimizes the following sum of squared residuals:

ly —A-xll3, (2.10)
for solving Equation (2.5), ridge regression minimizes sum of squared errors by adding

regularization parameter [25]:

min |ly —A4- x|l + allxllz, (2.11)

where « is called regularization parameter [27]. Hence, when solving Equation (2.5)
with linear regression for ill-posed problems, obtained function can be over-fitted to
the given data. Thus, if we increase regularization parameter, over-fitting problem can

be decreased, and reduced x values are obtained [24].

233 Orthogonal Matching Pursuit

In Orthogonal Matching Pursuit method, if we try to solve Equation (2.5), the
algorithm’s purpose is to get the x values approximately by minimizing sum of squares
of the residuals with constraints which provide fixed number of non-zero coefficients
[28] as follows:

argmin ||y — A - x||3 subjectto ||x||, <C, (2.12)
X

11



where C is an integer constant, and ||x||, denotes the number of non-zero coefficients.
Equation (2.12) implies that we are looking for the x which minimizes the sum of the

squared errors with a fixed number of non-zero coefticients.

Orthogonal Matching Pursuit 1s a greedy algorithm in which at every step highest
correlation to the present error (residual) atom is chosen. Then, the residual is
computed again with the help of the orthogonal projection of the signal (direction) on
the previously selected set of elements [28]. The feature that differentiate Orthogonal
Matching Pursuit with Matching Pursuit method is the residual computation using

orthogonal projection at each step.

234 Lasso Regression

Suppose we have linear model of the form as in the Equation (2.7), ordinary least
squares with £; - norm regularization forms the minimization of the objective function
for lasso regression as follows [25-29]:

. 1
min o————|ly —A-xll7 + allxll,, (2.13)

X 2nsamples

where «a is a regularization parameter and |[x||; = XI'|x;|. Lasso regression is useful

for sparse coefficients estimation [30].

235 Elastic Net Regression

Elastic net regression combines #; - norm and £,- norm regularizations to obtain the x
values, which are coefficients, approximately. Therefore, suppose we have linear
model of the form as in the Equation (2.7), ordinary least squares with £;- norm ¢,-
norm regularizations form the minimization of the objective function for elastic net

regression. Thus, elastic net regression solves the following problem [31-32]

12



. 1 a(l-—
min [y —4-xl3 + aplixll, + L3, @19)

X 2nsamples

where apl|x||; + @ lx||5 is known as elastic net penalty (contains regularization

term of ridge and regularization term of lasso) [33], and a is a constant multiplier of
penalty terms, p 1s a mixing parameter of elastic net regression. If the constant p 1s set
to 1, penalty term of elastic net regression equals to the lasso regression penalty term
[32].

13



CHAPTER 3

LITERATURE REVIEW

Image compression with polynomial curve fitting and regression techniques was used
in some researches up to present. To our knowledge, [12] 1s one of the earliest works
regarding data compression applying polynomial fitting. The work was about orbit
determination. Therefore, their results showed an estimation of the orbital parameters

using polynomial curve fitting.

Astronomical image compression with both lossless and lossy compression has been
studied in many researches [12,15, 39, 40, 41]. Zhu et al. [39] reviewed astronomical
image compression studies. Moreover, Schindler [40] introduced a method which aims
to detect exact models of real objects from the image and define the image using those
models. In [41], a novel method, Astronomical Context Coder, is explained and
compared with other compression methods (JPEG200, HCOMPRESS, Karhunen-
Loeve Transform) on astronomical image data set. According to results they obtained
from their experiments, compression ratio of their method, which uses adaptive

median regression, was better than the other methods.

Several studies [1,2,16,34,35] have been done with a focus on obtaining lossy image
compression by using curve fitting method. Ameer [1] applied polynomial fitting
methods aiming to obtain block-based image compression. According to results which
were acquired in [1], although their proposed method was better than JPEG2000 in
terms of computation and qualitative features, they stated that much more experiments

were needed to compare two methods precisely.

Butt and Sattar [2] applied polynomial curve fitting with the order of first and second

to three grayscale images with the help of Huffman coding to get lossy compression.

14



They divided image into 4x4 and 8x8 blocks and used quantization for the compression
process. The results of their work showed that when they divide an image into 4x4
block size, and 8x8 block size, better quality-less compression and better compression-
lower quality results were acquired respectively. In addition, when they compared their
work with JPEG, they observed that JPEG was better than their proposed work for

both compression and quality.

Sadanandan and Govindan [16] proposed a method for lossy image compression by
combining skip line encoding and curve fitting methods. Their method firstly uses skip
line encoding to get rid of unnecessary scan lines of the processed image, then applies
curve fitting for further elimination of the dispensable parts of the image. The results
of the work demonstrate that they improved lossy skip line encoding method in terms

of Peak Signal to Noise Ratio (PSNR) and compression ratio.

Khalaf et al. [34] enhanced curve fitting for lossy image compression with the help of
hyperbolic function. In the proposed method, they preferred using symmetric
hyperbolic function rather than first and second order curve fitting functions to
overcome asymmetry problem of them. As a result of their experiments, their findings
showed that better PSNR and Structural Similarity Index (SSIM) were achieved when

their method was compared to JPEG on grayscale images.

Pence et al. [15] compared lossless image compression methods, which are Rice,
Hcompress, PLIO, and GZIP, on a huge astronomical images data set. According to
the results of their experiments, they concluded that Rice method was the best method
regarding the balance of compression ratio and CPU time when all the methods were

compared for lossless image compression on the data set.

Thomas and Sadanandan [19] improved Rice algorithm, one of the lossless image
compression algorithms, by adding curve fitting to the original Rice method. The idea
behind their work is to modify preprocessor stage of the Rice algorithm. Therefore,
rather than using current data value for prediction to the next data value, next data
value is obtained with the help of curve fitting. Thus, they obtained that more data can

be compressed by using improved Rice method than the original Rice method.

15



Al-Khafaji and George [36] presented a method for lossless image compression on
medical images. The method is based on dividing images into non-overlapping blocks,
and applying first order polynomial (linear) approximation to get rid of redundant
neighboring pixels of the image. Run Length Encoding (RLE) was used to encode the
error between approximate linear polynomial values and real image values in the
proposed method. Then, they used Huffman coding to eliminate other redundant data
to the code obtained from RLE. After they applied their method on some medical
grayscale test images, they achieved fast CPU time and high compression ratio for the

lossless compression process.

Kong and We [37] developed a lossless compression method for aurora spectral
images by using online linear regression Recursive Least Squares (RLS) technique.
Their work aimed increasing compression ratio and low time complexity, which are
problems when linear regression is used as a compression method. Experiments of the
study demonstrated that their method was better than linear regression with the
following results: average 7%~11% enhancement in compression ratio, and 2.8 times

greater in CPU time.

16



CHAPTER 4

METHODS

The purpose of this thesis was to improve lossless data compression library (Zlib) on
astronomical images. To do this, firstly, we developed an algorithm, in which we used
curve fitting, intending to obtain better results than Zlib regarding lossless
astronomical image compression. We thought that since most of the astronomical
images have repeated pixels (black pixels) they are appropriate for the compression
process. Consequently, we considered how to take advantage of repeated difference
values between the values of the function and real values of the pixels if we use
polynomial curve fitting. Secondly, we applied linear machine learning models instead
of polynomial curve fitting on astronomical images to further improve our results that

we obtained by using curve fitting.

Our method is simply as follows: firstly, the image was divided into n X m blocks

width of the image
30

where n = 30, and m = 30, width of each sub-block = , height of

height of the image
30

each sub-block = . Afterwards, fourth degree polynomial functions

to each block (image data) was fitted. We know that there is an error when the function
1s fitted to the data. For this reason, the coefficients of the function were stored with
the aim of reconstructing the polynomial. In addition, the error values for each point
in the data are also stored. Coefficients of the function and error values (differences)
are then compressed using Zlib since there may be many repeated difference values in
the data. When we need to decompress the data, we first find the function by using the
coefficients and we then add error values, which we stored before, to the function

values to obtain original pixel values.

17



For the further improvement part of the method, we fit linear models instead of fourth
degree polynomial functions to each block of the image. In addition, we stored linear
model rather than coefficients in the improved method. Apart from these two
differences, all other steps of the improved method were the same as the previous

method.

Figure 4.1 Astronomical test image taken from "NASA, ESA and the Hubble SM4 ERO
Team" [20].

For example, one of the astronomical test images that was used in our tests can be seen
in Figure 4.1. When polynomial curve fitting, and linear regression model (ordinary
least squares) were applied to one of the blocks of the image, we obtained Figure 4.2
and Figure 4.3, which represent pixels (blue dots), and approximate polynomial, and

line that fits to those pixels (orange curve and line) respectively.

18



Figure 4.2 Polynomial curve fitting to one of the blocks in Figure 4.1. x represents the pixel
positions whereas f(x) represents pixel values on the image. Blue dots represent pixels,

whereas orange curve represent approximate polynomial that fits to those pixels.
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Figure 4.3 Applying linear regression model to one of the blocks in Figure 4.1. x represents
the pixel positions whereas f(x) represents pixel values on the image. Blue dots represent

pixels, whereas orange line represent approximate line that fits to those pixels.
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Figure 4.4 and Figure 4.5 are another example of polynomial curve fitting, and ridge
regression model to another block in image which is shown in Figure 4.1. In this figure,

x represents the pixel positions, whereas f (x) represents pixel values.
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Figure 4.4 Polynomial curve fitting to another block in Figure 4.1. x represents the pixel
positions whereas f(x) represents pixel values on the image. Blue dots represent pixels,

whereas orange curve represent approximate polynomial that fits to those pixels.
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Figure 4.5 Applying ridge regression model to one of the blocks in Figure 4.1. x represents

the pixel positions whereas f(x) represents pixel values on the image.
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One of the most important issues regarding our proposed method was to observe
repeated difference values between pixel values and polynomial values. According to
results that we obtained, astronomical images have sufficient number of same

difference values in order to compress them. For instance, a histogram of same
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difference values between pixel and polynomial values in a sub-block (see Figure 4.4)
of the image (see Figure 4.1) 1s represented in Figure 4.6. This figure shows the same
difference values (between polynomial values and pixel values) and their number of

occurrences.

Figure 4.6 Histogram of the differences between pixel values and approximate polynomial
values in a sub-block (see Figure 4.4) of the image (see Figure 4.1). Count represents the

number of occurrences of the same difference values.
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41  COMPRESSION

Algorithm 4.1 was used to obtain lossless compression on astronomical images using

polynomial curve fitting.
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Algorithm 4.1  Lossless image compression algorithm based on polynomial curve fitting.

1: procedure COMPRESS(image) o Take an astronomical image as input
2 fse[] o Initialize coefficients list
3: diffs <[] o Initialize differences list
4:  bls « block(image,n,m) o Divide image into nXm blocks
5: for bl in bls do
f < bl
f « curve_fit(f, 4) & Obtain coefficients f
bl « eval(f, bl) & Obtain polynomial values bl using coefficient
dif f « bl — bl o Differences between pixel values and polynomial values

append(fs, f)
append(diffs,diff)

6: endfor

7: x « zlib_compress(fs)

8: y « zlib_compress(diffs)

9: endprocedure

In the compression algorithm of our method (Algorithm 4.1), we firstly divide an

image into n X m sub-blocks, where n = 30, and m = 30, width of each sub-block

height of the image
30

— Widthof themage  hoioht of each sub-block =

30

. Then, for each

block of the image, fourth degree polynomial is fitted to the blocks of the image. When
we fit fourth degree polynomial to the blocks of the image, we obtain polynomial
coefficients, which are then used to get polynomial functions. Therefore, we calculate
the differences between pixel values and polynomial values at the same x values.
Hence, we compress differences and polynomial coefficients that we obtained for each

blocks of the image with the help of the compression function of the Zlib library.

For the further improvement of our proposed method, we applied linear models, which
are linear regression (ordinary least squares), ridge regression, orthogonal matching
pursuit, lasso regression, elastic net regression, to the blocks of the image. When we
use these models instead of polynomial curve fitting, we stored the models in the

compression process in order to use them for the decompression process.
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42  DECOMPRESSION

Since we stored coefticients of the polynomials and differences between pixel values

and polynomial values, we can use them in order to reconstruct the image data. For the

decompression process of our proposed method, we firstly decompress polynomial

coefficients, and the differences between polynomial values and pixel values, which

we stored in the compression process of our method, using decompress function of the

Zlib library. Secondly, for each block of the image, we add differences to the

polynomial values, which is calculated using polynomial coefficients (stored in the

compression process). When we add those two values, we obtain real pixel values.

Herewith, Algorithm 4.2 describes the decompression process of our method.

Algorithm 4.2 Lossless image decompression algorithm based on polynomial curve fitting.

1: procedure DECOMPRESS(x, )
2:  fs « zlib_decompress(x)

3:  diffs « zlib_decompress(y)
4: bls <[]

5. bls « block(fs,n,m)
6: count <0
7: for bl in bls do
dif f « dif fs[count]
bl « bl + diff
add(bls, bl)
count « count + 1
8:  endfor
9: image « block_to_im(bls,n,m)

10: endprocedure

© x, and y inputs from compress algorithm
o Decompress coefficients using zlib_decompress

o Decompress differences using zlib_decompress

> Reconstruct blocks

o Convert blocks to image

23



CHAPTER 5

RESULTS

In this thesis, full-sized original astronomical images with tiff extension were used in
order to compare our method(s) with Zlib. The primary data set employed in this work
was taken from the website of Hubble Space Telescope [20]. The images in the data
set are the ones which are categorized on the website as Top 100 under the images
section. Therefore, the data was chosen randomly. Some of the images can be seen in
Figure 5.1. One of the images was excluded because of its different image format.
Furthermore, we tested our method, and our method combined with linear models with
Z1ib on these 99 original sized images which are at least 248 kilobytes and at most 526
megabytes. The distribution of the number of the images according to their sizes is

represented in Table 5.1.

Table 5.1 The distribution of the number of the astronomical images according to their sizes.

Range of the Size of the 248 KB to 1 IMB to 100 100 MB to 526 MB
Images MB MB
Number of Images 9 73 17

Before applying Zlib and our methods, test images were converted to grayscale images
for the simplicity. We applied our method in Python (version 3.7.3) programming
language with the help of Numpy and OpenCV (version 4.2.0) on unix based operating
system, and compared it with Zlib library in Python.

The following compression ratio formula in terms of percentage was used in this

research [11]
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Size of the Compressed image

Compression Ratio Percentage = 100 X , (5.1

Size of the Original Image

where Size of the Compressed Image 1s the difference between the size of the original

image and the size of the compressed data of the image.

Figure 5.1 Example images in the data set from Hubble Space Telescope [20].

In this work, we developed our method iteratively. We first combined polynomial

curve fitting and Zlib library aiming to obtain lossless astronomical image
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compression. Our aim was to acquire better compression ratio than Zlib. When the two
methods were implemented using the data set and compared each other, we obtained
that average compression ratio percentage of our firstly developed method
(polynomial curve fitting + Zlib) was 40.864% while average compression ratio
percentage of Zlib was 33.767% (see Table 5.2). In the tests, we observed that our
method’s compression ratio was better than Zlib’s compression ratio in 86 of 99

astronomical images.

Table 5.2 Average compression ratio comparison between Zlib and our method (improved

Z1ib with polynomial curve fitting) on 99 astronomical images.

Method Compression Ratio
Zlib 33.767%
Ours w/ Polynomial Curve Fitting 40.864%

Although the aim of this thesis was to obtain better lossless compression ratio than
Z1ib on astronomical images, it was observed that our method, improved Zlib using
polynomial curve-fitting, had better compression ratio than Zlib in 27 of 28 non-
astronomical original sized images. Those 28 non-astronomical images were taken
from the website of the European Southern Observatory (ESO, https://www.eso.org)
[10]. The images were downloaded from the People and Events category of the images
section of the ESO website. When the two methods were applied to those 28 images,

the results in the Table 5.3 was acquired.

Table 5.3 Average compression ratio comparison between Zlib and our method (improved

Z1ib with polynomial curve fitting) on 28 non-astronomical images.

Method Compression Ratio
Zlib 30.587%
Ours w/ Polynomial Curve Fitting 36.346%
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We improved our firstly developed method, which is applying fourth degree
polynomial curve fitting to the same sized of blocks of the astronomical images, by
using linear models instead of polynomial curve fitting for getting better lossless
compression ratio than both our previous method and Zlib. In this case, we stored the
models, which we used in the compression method instead of coefficients of the
polynomials, for achieving to decompress the image data without any loss
successfully. When we applied ordinary least squares (linear regression), elastic net,
lasso, ridge, and orthogonal matching pursuit regression models to the data set, the
following lossless compression ratios were obtained respectively: 41.056%, 41.220%,
41.241%, 41.301%, 41.308%. Thus, when we used these models, there was a minor
improvement in the lossless astronomical image compression ratio compared to the

firstly developed method and Zlib. The results are demonstrated in Table 5.4.

Table 5.4 Average compression ratio comparison between Zlib and our proposed methods on

99 astronomical images.

Method Compression Ratio
Zlib 33.767%
Ours w/ Polynomial Curve Fitting 40.864%
Ours w/ Linear Regression 41.056%
Ours w/ Elastic Net Regression 41.220%
Ours w/ Lasso Regression 41.241%
Ours w/ Ridge Regression 41.301%
Ours w/ Orthogonal Matching Pursuit 41.308%

When we applied our improved method to the non-astronomical images, we observed
that the compression ratios of the new methods on the non-astronomical images were

slightly better than our proposed method with polynomial curve fitting and Zlib. The
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results of the comparison of the methods” compression ratios on the non-astronomical

images can be seen in Table 5.5.

Table 5.5 Average compression ratio comparison between Zlib and our proposed methods on

28 non-astronomical images.

Method Compression Ratio
Zlib 30.587%
Ours w/ Polynomial Curve Fitting 36.346%
Ours w/ Linear Regression 36.365%
Ours w/ with Elastic Net Regression 36.452%
Ours w/ with Lasso Regression 36.461%
Ours w/ with Ridge Regression 36.502%
Ours w/ with Orthogonal Matching Pursuit 36.504%
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CHAPTER 6

Conclusion and Outlook

In the present thesis, improvement of Zlib library using polynomial curve fitting and
linear models (ordinary least squares, elastic net regression, lasso regression, ridge
regression, orthogonal matching pursuit) on astronomical images is presented. Image
compression is a widely-used method which provides less number of bits in order to
represent image than original image, so that data storage can be reduced. Our proposed
algorithm is a lossless image compression algorithm, which means that there is no data
loss after decompressing the image to the original one. The idea behind the algorithm
is to applying fourth degree polynomial curve fitting and linear models to subdivided
parts of the image. We considered that if there are many repeated pixels (same pixel
values) on astronomical images, compressing differences between polynomial values
and real pixel values, and coefficients of the polynomials with the help of Zlib
compress method can reduce the size of the image. Polynomial coefficients and the
differences (errors) are stored with the aim of utilizing them later to reconstruct the

original image data.

When we applied our methods and Zlib to the astronomical image data set [20], which
consists of 99 images, average compression ratio percentage of our methods on the
data set was better than Zlib’s average compression ratio percentage on the data set
(see Table 5.2, and Table 5.4). Moreover, better results were acquired using improved
Zl1ib with our methods than original Zlib on non-astronomical image data set which
has 28 images (see Table 5.3, and Table 5.5).

Our methods can be used on the emerging and important areas and fields of science

such as astronomy, and remote sensing because image obtained in these fields have
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high resolution nowadays. For instance, one of the advanced cameras of The Hubble
Space Telescope project is called Advanced Camera for Surveys (ACS), and its
wavelength range 1s from ultraviolet to near-infrared [9]. Immensely detailed images
are captured with the help of this camera. Therefore, the images have high resolution

and large size [9].

In this research, our main purpose was to obtain better compression ratio than Zlib. A
few other methods may be involved in the comparison of compression ratios of
methods in future work. In addition, we did not focus on how fast our methods while
compressing 1mages. Herewith, Zlib compresses an image in less time than our

methods. Hence, improvements of CPU time of our methods will be future work.
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