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ABSTRACT 

LOG ANOMALY DETECTION USING  

DEEP LEARNING TECHNIQUES 

SAĞINDA, Baransel 

M.Sc., Computer Engineering Department 

Supervisor: Assistant Prof. Dr. Roya CHOUPANI 

Co-Supervisor: Prof. Dr. Erdoğan DOĞDU 

2020, 51 pages 

With the ever-growing digital transformation in our lives and the new computing 

systems with the adaption of microservices, systems generated log records are increasing 

tremendously. Monitoring and evaluation of these “big” log records are real challenges 

due to the size and growing pace of system log generation. Most of the time, these 

records are not utilized efficiently for the benefit of increased system availability and 

reliability due to the lack of resources to process these records timely and efficiently. In 

this work, we propose a method for parsing and evaluating system logs based on the 

length of time between the occurrence events in logs and the utilization of these time 

periods in learning-based anomaly detection. We specifically use Seq2seq networks for 

anomaly detection. Results show that our method is successful at distinguishing between 

normal and anomaly events, even without any information about log keys. 

Keywords: Log records analysis, anomaly detection, deep learning 
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ÖZ 

ZAMAN FARKLARI İLE DERİN ÖĞRENME  

TABANLI LOG ANORMALLİĞİ ALGILAMA 

SAĞINDA, Baransel 

M.Sc., Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

 Tez Danışman: Dr. Öğr. Üyesi Roya CHOUPANI 

Ortak Danışman: Prof. Dr. Erdoğan DOĞDU 

2020, 51 pages 

Sürekli büyüyen dijital hizmetler ve yeni mikro hizmetlerin adaptasyonu ile birlikte yeni 

bilgi işlem sistemleri ile oluşturulan kayıtlarin miktarı muazzam bir şekilde artmaktadır. 

Bu büyük kayıtların izlenmesi ve değerlendirilmesi, sistem günlüğü oluşturmanın 

boyutu ve artan hızı nedeniyle giderek zorlakmaştadır. Çoğu zaman, bu kayıtları 

zamanında ve verimli bir şekilde işlemek için kaynaklar yetmemektedir. Bu çalışmada, 

sistem günlüklerinin ayrıştırılması ve değerlendirilmesi için, günlüklerdeki meydana 

gelen olaylar arasındaki sürenin uzunluğuna dayalı anormallik tespitinde kullanımına bir 

yöntem öneriyoruz. Anormallik tespiti için özellikle Seq2seq nörön ağlarını 

kullanıyoruz. Sonuçlar, yöntemimizin olay kayıtlarının içeriği hakkında herhangi bir 

bilgi sahibi olmaksızın normal ve anormal olayları ayırt etmede başarılı olduğunu 

göstermektedir. 

Anahtar Kelimeler: Log analizi, hata tespiti, derin öğrenme 
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CHAPTER 1 

INTRODUCTION 

 

Current information systems are more complex than ever. Modern large-scale 

information processing systems like Hadoop1 and Spark2 run over sometimes thousands 

of commodity servers. With the adoption of microservice architectures, even small 

systems consist of less coupled applications than traditional system designs. These 

advances make modern systems more resilient to hardware failures. Such systems carry 

a load of online services (e-commerce systems, social networks, archives, and online 

tools) on a 24/7 basis. Depending on the system type, downtime in any of these services 

can result in loss of capital or even worse consequences. For example, Heathrow airport 

baggage system had a computer failure in March of 2008. This event affected 140,000 

people and cost $32 million to the airport3. Proper anomaly detection systems are 

necessary for building stable and secure computer systems.  

System logs contain information about significant events that happened in the system to 

help debug problems, solve performance issues, find out security breaches, and system 

failures. There are mainly three types of logs. “Error logs” include information about 

severe problems that happen in the systems. “Warning logs” include information about 

the possibility of abnormal situations and warnings for future failures. “Notice logs” 

                                                 
1 https://hadoop.apache.org/ 
2 https://spark.apache.org/ 
3 https://www.cnbc.com/id/23892979 
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include information about healthy and normal operations during the execution of 

systems. 

A study performed on two close-sourced and two open-source systems has shown that 

there is one line of logging code against every 58 lines of programming code in software 

[1]. Modern software systems produce a significant amount of log records, and 

inspecting these log records manually by human observance is very time-consuming and 

nearly impossible. Debugging large systems with human labor is challenging and time-

consuming [2]. In a real-world banking system, 200 full-time operators are dedicated to 

log monitoring with 67 screens for 190 subsystems [3]. Even with such a workforce, 

there is always the possibility of human mistakes, in terms of missing the warnings or 

errors. When the system produces an error or a warning message, it is easy to detect the 

failure by reading the logs. This only happens after the problem occurs. Depending on 

the high availability configuration of the system, a failure on a single subsystem might 

stop the whole system. This is referred to as a single point of failure. It is often much 

more rewarding to detect the problems before they happen. Also, some issues and 

problems do not produce proper logs. Using human labor for analyzing logs poses many 

other challenges. 

Modern systems such as Docker4 and Kubernetes5 utilize multiple different subsystems. 

Different containers take care of different tasks like pod scheduling, network switching, 

and disk operations, and a fault in any given subsystem can affect the whole system. All 

of these subsystems produce their own logs. To detect anomalies in these systems’ logs, 

                                                 
4 https://www.docker.com/ 
5 https://kubernetes.io/ 
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experts from multiple disciplines need to work together to investigate logs. This makes 

anomaly detection with human labor hard for such cases. 

These problems show that there is a demand for intelligent systems that can analyze 

system logs automatically. Such systems can detect the problems before they happen and 

create a time window for responsible technical teams to take action before downtime 

happens. Human labor can often detect only the presence of error in logs. However, an 

intelligent system can detect the absence of a specific log message that can forewarn a 

problem in the system.  

Modern systems produce vast amounts of logs. Some large systems produce 120-200 

million lines of records per hour [4]. Therefore, log processing is a big data problem.  

Dealing with big data brings its challenges. Traditional data processing techniques fail to 

deal with the well-known characteristics of big data, namely “volume”, “variety”, and 

“velocity”. These are called 3Vs of big data [5]. For console log problems, the volume 

comes from the size of the system, variety comes from the subsystems of a system 

(DNS, container engine, storage, databases). Velocity in such problems usually arises 

from the high-speed occurrence of many events including significant events, such as 

failures. For example, if the DNS subsystem fails, depending on the type of failure, it 

might not produce any logs, yet, all the other systems will start producing errors logs 

rapidly.  

Components of the information technology production systems are regularly updated to 

newer versions for extra stability and performance. With these updates, old log lines can 

be removed from the source code, and new lines of logs can be added to the system. The 
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structure of the existing logs can change with updates. These changes have adverse 

effects on rule-based anomaly detection systems; artificial intelligence-based systems on 

the other hand just need to be retrained to adapt to the new format. 

Machine learning is a subset of Artificial Intelligence. The design of such learning 

systems revolves around the idea that machines can learn from the proper amount of 

data under the right conditions. Essential elements and design principles of such systems 

are derived from the neuron structure of the human brain. Such applications had been 

very successful for problems like Natural Language Processing (NLP). There have been 

many new and exciting applications and designs for machine learning problems [6]. 

Such designs these days are mostly based on deep learning algorithms.  

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN). 

LSTM uses a special memory cell structure to converse its error ratio. Such models 

show great promise for learning from sequential data and for working on the NLP 

problem [7]. The Seq2seq model uses LSTM networks with attention optimizations. The 

primary components of Seq2seq models are encoder and decoder networks. The encoder 

turns the given sequence into a corresponding hidden vector and the decoder reverses 

this process.  

1.1 Problem Definition 

As the number of computer systems, which affect our daily lives, keeps growing, their 

availability is getting more important for us. Nowadays, problems in a single server can 

quickly affect millions of people around the planet. Detecting such problems without 

human intervention is very important for keeping such systems available all the time. 
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Automatically processing these big data logs and detecting anomalies in them using the 

deep learning method are required to achieve this task. 

 

1.2 Aim of the Study 

We aim to utilize big data processing and deep learning methods to create a model that 

can detect anomalies in system logs. A framework to detect system anomalies by only 

using the time differences between the log lines is proposed. The approach uses LSTM 

based Seq2seq networks to detect anomalies.  

 

1.3 Layout of Thesis 

The chapters of this thesis are arranged as follows. Chapter 2 explains the related work 

in this research area. Chapter 3 presents the proposed method for intelligent anomaly 

detection in system logs in detail. Experimental evaluation is presented and discussed in 

Chapter 4, and a conclusion is provided in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

 

A framework for the intelligent detection of anomalies in system logs usually consists of 

four different parts (Figure 1). “Log Collection” systems collect the logs; “Log Parsing” 

systems transform the logs into a different structure, and a “Feature Extraction” system 

extracts the critical features for models to detect anomalies. And, an automatic 

“Anomaly Detection” system that is based on the previously learned models. Here we 

review these parts in the context of previous work. 

 

Figure 1 General Steps of Anomaly Detection [8] 

2.1 Log Collectors 

Computer systems generate logs on a regular basis to record runtime information. These 

logs contain valuable information for anomaly detection. Depending on the 

configuration, some systems write their logs into their storage. For analysis purposes, 

these logs need to be collected at a central location. Log collection systems take care of 

this task. Log collection is handled by specialized systems that store the logs for 
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permanent history or temporary inspection. These systems are planned for the 

workloads. Log collection presents more of a technical challenge than an academic 

challenge. Almost all of the production systems utilize some form of log collection 

solution. For example, BSD Syslog protocol [9] is very widely used in log collection and 

comes as a default in Linux. It can ship produced logs over a network.  

Elasticsearch6 is a search tool running on a distributed NoSQL database for storing full-

text information in a non-relational manner. It is commonly used for log processing. 

Elastic beats provides a modern alternative to the Syslog with its log collector modules 

[10]. Elastic log collectors ship data from applications to the Elasticsearch database for 

storage and analysis.  

These systems can operate in a pull-based or push-based manner. Pull based systems 

regularly pull the logs from application servers. Push based systems send the logs from 

application servers to log storage servers and usually transfers the logs faster than the 

other approach. 

2.2 Log Parsers 

The goal of parsing is to group raw logs into numeric tokens based on the static parts of 

the logs. Different researchers have given different names to these keys. They are called 

message types [11], log key [12], or event type [8], and they all refer to the same 

concept. 

                                                 
6 https://www.elastic.co/ 
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There are many different log parsing methods proposed in the literature. All have their 

advantages and disadvantages. The quality of parsing directly affects the performance of 

anomaly detection [13]. 

Spell (Streaming Parse for Event Logs) is an online streaming method to parse logs [14]. 

The design stands on the assumption that when we view the logline as a sequence, in 

most outputs, most of the line will consist of constants. This method works in a 

streaming manner (Figure 2).  

 

Figure 2 Spell Log Parsing Steps [14] 

He, Pinjia et al. [15] proposed the Drain method. It is a representation algorithm for log 

parsing, namely, a fixed depth tree-based online log parsing. It can work in streaming 

and timely manner. The method utilizes a fixed depth parse tree. This method works 

with regular expressions that are created by using domain expertise. These regular 

expressions are used to parse logs. This method extracts the block ids from the HDFS 

dataset and parses logs (Figure 3). 



9 

 

 

Figure 3 Log Parsing Example [15] 

The first layer of nodes is created by using the length of the logline. This helps drain to 

be useful for online parsing. Leaf nodes are created by using the first word in the log as a 

token. When a new log arrives at the same leaf, it compares the similarity between log 

messages to decide whether to put this node into the existing log group or create a new 

group for the log. (Figure 4). Otherwise, a new group will be created for the log. Regex 

parsing prevents branch explosion. 

 



10 

 

 

Figure 4 Drain Structure [15]. 

SLCT is another method for parsing logs, designed to cluster log files, so each cluster 

represents a particular line pattern. SLCT starts with making a pass over words in the 

logs and counting their occurrences and checking their positions. Words that appear 

more than a certain threshold are defined as frequent words; they are saved in the cluster 

candidates’ table. After the first stage, SLCT makes a second pass over the logs, 

focusing only on frequent words. This second pass selects the cluster candidates. The 

last mandatory step is to prepare the output templates. Logs that are not chosen by the 

method are considered as outliers. [16] 

Makanju et al. [17] proposed another parsing algorithm called IPLoM. This method 

takes advantage of the unique characteristics of log messages to extract message types. 
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This method starts with partitioning the data by event size, putting logs into a different 

cluster based on the log length. After clustering logs by lengths, in the second step, 

IPLoM clusters the data by token positions. This step is based on the assumption that it 

is likely for a column with the least number of unique words to be constants in that 

position. After this step, IPLoM starts to search for bijection. Two columns of the logs 

are selected for further partitioning by investigating the relationship between them. The 

last step of the algorithm is the log key extraction. For each column, the number of 

unique words is counted to choose wildcards and constants (Figure 5). 

 

Figure 5 Partitioning of Logs [17] 

 

Another method proposed for this problem is the LKE (Log Key Extraction) method. 

This method starts with erasing parameters by empirical rules. The second step of the 

algorithm is the raw log key clustering; it calculates the number of edit operations 

needed to transform a log into another log. After this operation, LKE splits the groups by 

checking the largest common sequence. By doing this, the method finds the constant 
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parts and the dynamic parts of the logs. The last step of the algorithm is to extract log 

keys from already split groups [18]. The steps of the algorithms are shown in Figure 6. 

 

Figure 6 LKE Steps [18] 

Tang, Liang et al [19] Proposed another method for parsing logs, namely LogSig. This 

method generates word pairs from log each line of the log. Users need to determine the 
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number of clusters using domain knowledge. LogSig uses this information to parse the 

logs and move them to clusters if needed. Finally, the method extracts log keys from 

these clusters.  

2.3 Log Feature Extraction 

After parsing the logs, related features need to be extracted from the logs. Windowing 

methods can be used for this task. Different windowing methods are applied to separate 

log data into groups [20]. 

Time series data can be windowed by fixed time length; all events that happened in a 

fixed time window are considered a sequence. Sliding windows can be used instead of a 

fixed window; this method will produce more sequences, and events in these sequences 

can be repeated depending on the step size. Another approach to windowing is session 

windows. For this method, a unique identifier is needed to generate the sequences. This 

method groups the logs according to the objects or tasks and sequences consist of events 

related to the same object or task [8]. 

Windowing with fixed time frames is applied to extract features is based on creating 

fixed time frame windows and merging all the events that happened in that time frame in 

those windows. Each time window has a fixed size, and logs that occurred in the same 

window are regarded as log sequences [8]. 

2.4 Log Anomaly Detection 

General methods for detecting anomalies can be grouped as shown in Figure 7. Log 

anomaly detection methods can be divided into two “Programmed” and “Self-Learning” 
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groups. Programmed methods include “Rule-Based”, “Limit Based” and “Statistical” 

methods. Self-Learning methods are usually based on machine learning methods.  

 

Figure 7 Anomaly Detection Methods 

Chandola et al. [21]. compares different techniques for detection anomalies, discussing 

their strengths and weaknesses. They conclude that unsupervised methods are not 

suitable for anomaly detection at a large scale as they assume that anomalies in the data 

are rare and not the case for all log types. 

Another work provides an overview of studies done in the area of anomaly detection 

[22]. They categorize existing detection methods and systems based on underlying 

computational techniques and show that classification is the most popular approach 

among these studies.  
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2.4.1 Programmed Methods 

Earlier works about the log anomaly detection were heavily dependent on rules and 

domain expertise. These approaches can be more accurate than the neural network-based 

approaches, but they require domain expertise and labor as well as manual rule updates 

to stay functional [23]. Yen et al. [24] proposes the Beehive method, which identifies 

potential anomalies by unsupervised clustering of features and manually labels these 

clusters. Another downside of rules-based designs is that they usually focus on detecting 

a particular type of anomalies. This system, called PerfAugur, is designed for identifying 

performance issues [25]. Bao et al. [26] mention that such methods are also limited to 

specific applications and require domain expertise. 

2.4.2 Self-Learning Methods 

Over the years, there have been many studies about log-based anomaly detection, which 

utilizes log count vectors. These log count vectors hold events in a log sequence. Lou, 

Jian-Guang et al. [27] proposed the Invariant Mining Method to mine linear 

relationships between log events from count vectors. New logs are compared with 

invariants to detect if they include anomalies. Xu et al. [28] utilize the Principal 

Component Analysis to construct anomaly and normal spaces for log count vectors. The 

distance of the log count vector to the normal space determines if there is an anomaly.  

Classical neural networks are designed to mimic the neural structure of the human brain. 

A standard neural network is made of many connected units, which are called neurons. 

These neurons act as processors. At the one end of any network, there are input neurons, 

which are fed with information about the problems. These neurons process the input and 

feed the other neurons in the system over weighted connections between them. 
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Depending on the data, some neurons will be triggered by other neurons. A neural 

network will learn to exhibit desired behavior by changing the weights of its 

connections. Basic neural networks are also called shallow neural networks and have 

been around for the last few decades [29]. Deep learning networks are neural networks 

with multiple hidden layers. They usually consist of hierarchical architecture with 

multiple layers. Such networks can represent higher complexities [30]. 

LeCun et al. [31] first proposed the basis for Convolutional Neural Networks. Such 

networks can efficiently extract special features in a parallel fashion [32]. 

Long Short-Term Memory networks are often used for detection. They were first 

proposed in 1997. One of the design's main features was being less prone to the 

vanishing gradient problem because of the constant error flow in the design. The model 

uses gate units to avoid input weight conflicts (Figure 8). These networks have memory 

cells [7].  

 

Figure 8 LSTM Network Node [7] 
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GRU networks control the flow of information with gate units, similar to LSTM 

networks. But they do not use a memory unit. This makes such networks more 

computationally efficient [33]. 

Vaswani et al. proposed an attention mechanism to improve the LSTMs. Attention 

works by mapping a query and a set of key-value pairs to output, all of which are 

vectors. The output is computed by a weighted sum of values [34]. 

The Seq2seq model is based on Encoder and Decoder networks [35]. This method uses 

LSTM with attention mechanism. Attention improves the performance of the classical 

LSTM. This model is often used for Neural Machine Translation (NMT) tasks [35] [36] 

[37] [38] [39] [40] [41]. Seq2seq models can also be used for anomaly detection by 

teaching networks to reconstruct the normal sequences. Such models fail to reconstruct 

the sequences when anomaly sequences are received [42] [43]. This approach has also 

been applied to system logs. [44] 

CausalConvLSTM [32] method utilizes CNN networks with the LSTM network at the 

same time to take advantage of both networks for anomaly detection in system logs. 

LSTM captures sequential relationships and CNN extracts the special features. 

Du, M. et al. [12] created a popular console log dataset by renting 200 EC2 instances 

from Amazon Web Services to host a HDFS cluster. This dataset has 11, 197, 954 log 

entries, and 2.9% of them are anomaly events. A domain expert labeled all the data by 

hand. They also generated an OpenStack dataset for testing. They considered logs of 

natural language and used NLP methods for parsing the logs before training. They used 

LSTM networks to detect probability distributions of log sequences. This network 



18 

 

detects sequential patterns. Based on earlier logs, the network predicts the next event and 

compares the predicted event with a real event. Based on the comparison, the system 

decides if the event is normal or anomaly. This method supports both online and offline 

processing. 

You, Chenyu et al. [45] developed a Stacked Bidirectional LSTM Network for anomaly 

detection in system logs. Their models encode the entire log messages such as 

timestamps, TCP statistics, and packet values. They compared LSTM, stacked LSTM 

and bidirectional stacked LSTM with a different attention mechanism. They did not 

cover multi-domain computer systems. In their test, Stacked Bidirectional LSTM with 

multiplicative attention created the best accuracy. 

Nedelkoski et al [46] Presented an approach using AEVB (Auto-Encoding Variational 

Bayes) and GRU networks. They used HTTP URL, IP address, service name, request 

type for their log sources. They tested with data from a microservice-based global cloud 

service provider. They focused on keeping prediction time short for industrial 

applications. Their method reached 90% accuracy with a prediction time lower than 

10ms. 

Zhang et al. [47] propose a general log analysis approach for learning regular 

expressions from heterogeneous logs, which reduces feature space and sparsity. They 

formalized the problem as a sequential classification problem, and they use an LSTM 

neural network to predict failures.  

Hao et al. [48] This work focuses on Web Application Firewall applications of Bi-

LSTM. They used word2vec to encode their logs. They analyzed the logs with Bi-LSTM 
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network to overcome the vanishing gradient problem. They used CSIC 2010 dataset. 

They achieved a 98.17% detection rate with a test accuracy of 98.35% by training for ten 

epochs. 

Another framework called loganomaly, leverages template2vector [49] method to 

extract semantic information from logs. This helps this framework to parse log which it 

has not seen before in an online manner. They found this method produces much less 

false alarms than the compared systems [50]. 

Logrobust framework is designed to deal with log instability [51]. According to the 

authors, such stability can come from many sources. Firstly, as the newer versions of the 

software get released, the logging statements get changed. Collection, preprocessing, 

and retrieval operations can create noise in the log distribution. It deals with this 

problem by transforming every log into a semantic vector. These vectors are later 

sequenced before entering the attention-based bidirectional LSTM model (Figure 9).  
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Figure 9 Log Roboust Framework [53] 

In another study, the authors compared the results with different implementations [52]. 

Later same authors study this method for parallel processing with DILAF. DILAF stands 

for DIstributed Log Analysis Framework for anomaly detection in large-scale software 

systems [53]. This system works without inspecting the source code of the application, 

which most of the existing parsers are also capable of [14] [16] [17]. The main focus of 

the framework is scalability and parallel processing.  

Lu, et al. [54] proposed CNN based method for detecting anomalies. This work utilizes 

logkey2vec embedding layers tree 1D convolutional layers. They used the HDFS dataset 

for testing. Max-overtime pooling is used for picking up the maximum values. 
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CHAPTER 3 

 

This section presents information about the methods we developed to detect anomalies 

in system logs. We discuss the difference between log key-based parsing and time 

difference-based parsing approaches. We parse the logs with both methods and 

preprocess the data for time difference-based approach. We train a Seq2seq model to 

reconstruct the normal log sequences. Then, we detect anomalies by reconstructing 

sequences in the trained model. 

3.1 Detecting Anomalies in Logs Using RNN 

 Usually, system log anomaly detection systems consist of four different parts, log 

collection, log parsing, feature extraction, and anomaly detection. Log parsing steps use 

different methods to extract log keys from the data source and tag every line of the log 

with a proper log key. Later during the feature extraction, these events are transformed 

into event sequences. This step allows the neural network to understand the data more 

accurately. During this stage, the exact timestamp information of the logs is often 

removed from the data. During this stage, the exact timestamp information of the logs is 

often removed from the data. The only time-related information that remains in the 

sequences is the order of events. This approach is useful for failure detection as most of 

the failure produces unique logs (stack traces, exceptions, warnings). Such log lines are 
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not present in logs from healthy operations. Yet creating these log keys from the given 

log files requires an extra step, which requires extra computation and effort. 

We propose a different approach for the log parsing and feature extraction steps. Instead 

of tokenizing logs and removing the time information from the records, we extracted 

only the time session. 

 Since our approach uses only the time differences between any two events, it completes 

parsing and feature extraction in a single step. For the HDFS dataset normal data is split 

into test and training groups but all anomaly data is used for testing (Figure 10). 
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Figure 10 Steps of Data Processing 

We make references to the weak points of the state-of-the-art studies, and present our 

solutions to these weak points below. 

 Most of the similar studies mentioned above remove the time information from 

the data before detecting anomalies [27] [28] [3] [47] [54]. We only focus on the 

time difference information and completely ignore the log key information. Our 

results clearly show, there is valuable information in these time differences. 

 Existing methods [14] [15] [16] [17] [18] require a log parser method to extract 

log keys from the logs. Depending on the methods, this step might require 

domain expertise. Not all parsers can function in an online manner. However, our 

method happens to functions online without using log keys. It can be plugged 

into any production system without any domain information. 

 Unlike the methods which discard the time information [27] [28] [3] [47] [54], 

our method can detect performance problems that do not produce any logs 

related to the issue.  

3.1.1 Log Parsing  

For the first step of our method, we need to group raw data based on a unique ID. For 

the HDFS dataset, anomaly labels are given for HDFS block IDs, which is also used as 

unique ID for grouping logs into sequences. Depending on the system logs, any unique 

ID can be used to group the events. Request ID, job names, or even IP addresses can be 

used for grouping.  
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These groups include all the events for the given block. These events later transformed 

into sequences of time differences between any two events belonging to the same block 

ID. The time difference for the first event of the given group is set to 0. Events logged in 

the same second also get the time difference of 0. 

Most works use key-based classical encoding methods for this step. Classical encoding 

methods convert the log rows into log keys. These keys represent the log key of the 

given row. To show the difference between the proposed time difference-based parser 

and the classical key-based parser, the given lines are also converted to log keys by 

using the Drain method [15]. This is only for comparison reasons. Drain [15] method 

requires a small amount of domain information, but it assures near-perfect tokenization. 

The Drain method's results are not used in our approach and are given only to show the 

difference between log key-based parsing and time difference-based parsing. Table 1 

presents the results of the same log sequence under different parsing methods. 

Table 1 Time Difference Information Parsing 

Event Number 1 2 3 4 5 6 7 8 

Drain Encoding 1 1 2 14 3 15 19 20 

Time Difference Encoding 0 0 0 60 1 0 657 0 

 

Time differences are calculated as seconds since the dataset only included timestamps in 

seconds. The difference between some log records can be relatively large. Under this 

assumption events that occur more than 100 seconds apart are not very significant for 

our approach; values larger than 100 seconds are smoothed out with the following 

function. These values can get too high unless cleaning with such a function is done 

(Table 2).  
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Table 2 Time Difference Preprocessing Function 

Condition Result 

 

n 

 

100 + x 

 

This function only alters the 7th event in our example as it is the only event larger than 

100: 

if n=657 then n > 1001 and x = 1, therefore nnew = 100 + 1 = 101 

Results of preprocessing of a sequence is presented in Table 3. 

Table 3 Time Difference Processing 

Event Number 1 2 3 4 5 6 7 8 

Time Difference Encoding 0 0 0 60 1 0 657 0 

Preprocessed Time Difference Encoding 0 0 0 60 1 0 101 0 

 

3.1.2 Data Preparation 

The given dataset comes with anomaly labels. These labels provide ground-truth for the 

block ID’S which had anomalies. In earlier steps, we grouped our data by the block ids.  

Using anomaly labels, our data is split into two groups. Normal and anomaly data 

frames are created. Block ID information is discarded in this step since we no longer 

need this information. Within these two data frames, duplicate sequences are removed. 

After having cleaned the cleaning duplicates, we create two files (Table 4). 



26 

 

Table 4 Dataset Statistics 

 

Our method is based on the Seq2seq method, which is generally used as a supervised 

algorithm. Our approach uses the Seq2seq network in an unsupervised manner. The 

network is trained only using normal data and tested with abnormal and normal data. 

The normal file is split into test, training, and validation files. Training and validation 

files will be used during the training, and the test file is used for evaluating our results. 

Before we split the normal file, we shuffled it based on hash values to make the results 

reproducible. Linux sort command from Linux coreutils7 was used with a fixed seed. 

The bash8 script used for sorting and splitting is available in Appendix A. Table 5 

presents the resulting files. This file consists of ordered sequences, shuffling them by 

rows does not alter the order of events in sequences. 

Table 5 Training Files 

                                                 
7 https://www.gnu.org/software/coreutils/manual/coreutils.html 
8 https://www.gnu.org/software/bash/ 

File Name Number of Log Sequences Percentage 

Anomaly 16,838 3% 

Normal 558,223 97% 

Total 575,061  

File Name 
Number of Log 

Sequences  
Split Percentage 

Usage 

Anomaly_test 16,838 100% Evaluation 

Normal_test 111,644 20% Evaluation 
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The network is trained only using a partition of normal data. “Anomaly_test” and 

“Normal_test” are used to evaluate the results. 

3.1.3 Anomaly Detection 

Using these data files, the Seq2seq network is trained to reconstruct the sequences. We 

used the IBM Pytorch Seq2seq implementation9. Seq2seq network trains with normal 

sequences and learns to reconstruct normal sequences accurately. Table 6 presents the 

parameters of the implementation. Training is done with the following parameters. 

Table 6 Seq2seq Parameters 

Epochs 22 

Teacher Forcing Ratio 0.5 

Batch Size 32 

Hidden Size  128 

 

Finally, to sum up briefly the approach details, our approach: 

 Compatible with all types of logs. 

 Does not require domain knowledge. 

 More capable of detecting performance issues. 

 

                                                 
9 https://github.com/vincentzlt/ibm-pytorch-Seq2seqSeq2seq/ 

Normal_train 334,935 60% Training 

Normal_validate 111,644 20% Training 
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CHAPTER 4 

EVALUATION 

This section presents the evaluation of our methods, the test environment details, 

information about the dataset used, and the results in detail. Software libraries and 

hardware devices used for the experiment are explained. Dataset and properties of the 

data are explored. Finally, we compare our results to other studies. 

4.1 Experimental Setup 

4.1.1 Test Environment 

This section represents the results of the proposed framework. Experiments are 

conducted on a workstation with an i7-7000 processor, 64GB memory, a Nvidia 

GeForce RTX 2080 graphics card. The computers run on Debian Linux 10 and have 

CUDA 10.1 libraries. 

Pytorch10 is a Python11 library for developing neural network models that support 

multiple runtimes, including Nvidia Cuda12. Pytorch supports dynamic graphs, data 

parallelism, and training models using numerous GPUs on numerous servers at the same 

time. 

                                                 
10 https://pytorch.org/ 
11 https://www.python.org/ 
12 https://developer.nvidia.com/cuda-downloads 
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Log parsing was done with custom code. The preprocessing was done with pandas13 data 

frames. The neural network was trained and tested on the GPU. 

The random seed for Pytorch is 2222.  

4.1.2 Dataset 

HDFS dataset was used for several experiments (Table 7). To create the dataset, the 

original authors have written all the logs to the local disk on each node and collected 

them after completing the tests. The collection was done in an offline manner by the 

basic copy operation. The test system had 200EC2 nodes. The software was an 

unmodified off-the-shelf version. The log level was set to default [28]. 

Table 7 HDFS dataset characteristics 

Time Span Messages Data Size 

38.7 hours 11,175,629 1.47GB 

 

Dataset consists of the files presented in Table 8. 

Table 8 HDFS Dataset Numbers 

File Name Number of Logs 

HDFS.log 11,175,629 

Anomaly_labels.csv 575,062 

 

When counted by log keys, some regular events made up 61% of all logs (Table 9).  

Table 9 Most occurring character groups 

Log Key Number of 

Occurrences 

                                                 
13 https://pandas.pydata.org/ 
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Receiving block <*> src: <*> dest: <*>," 1,723,232 

NameSystem.addStoredBlock: blockMap updated: <*> is added to 

<*> size <*>, 

1,719,741 

PacketResponder <*> for block <*> <*>, 1,706,728 

Received block <*> of size <*> from <*>, 1,706,514 

4.2 Evaluation Metrics 

The following metrics were calculated to evaluate the model. 

True Positive (TP)  

The sequence was detected as an anomaly, and it was an anomaly. Detection is correct. 

False Negative (FN) 

The sequence was not detected as an anomaly, but it was an anomaly. Detection failed. 

False Positive (FP) 

The sequence was not detected as an anomaly, but it was an anomaly. Wrong detection. 

True Negative (TN) 

The sequence was not detected as an anomaly, but it was not an anomaly. Detection is 

correct. 

Precision 

Precision is defined as, what proportion of positives was correct. 

 

Recall 

Recall was defined as what proportion of real positives were detected. 
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F1 Measure 

F1 measure is a measurement of test accuracy. 

 

4.3 Results 

Our proposed framework works only by using time differences between events and does 

not require any special parser for log key extraction. Our method is based on detecting 

anomalies without looking into the content of the logs. Our feature extraction method 

removes this information. This makes the method more efficient and effective. 

3.3.1 Difference-based Parser Experiment 

The Seq2seq network trained with difference-based parser reproduced 111,072 normal 

sequences perfectly. This extraction is described in section 3.1.1. The network also 

managed to reproduce 7,185 anomaly sequences perfectly, which were anomalies. These 

anomalies got reported as negatives which hindered the overall detection performance of 

the network. Detection results of the experiment based on time differences parser are 

presented in the confusion matrix in Table 10. 

Table 10 Confusion Matrix for Time Differences 

 

Real Class 

Predicted Class 

Anomaly Normal 
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Anomaly 

True Positives False Negatives 

9,653 7,185 

Normal 

False Positives True Negatives 

572 111,072 

 

3.3.3 Comparison of Experiment Results 

To properly compare log parsing approaches with each other, we run the experiment 

with log keys extracted by key-based parser like other methods. This is only to compare 

the detection rate under the same detection circumstances. For this test, log keys are 

generated by Drain [15] to compare the methods' performance under the same 

circumstances. 

Table 11 shows the number of false positives and false negatives based on key-based 

parser on HDFS data. Method assigned most of the samples to correct classes. A low 

false positive value means that alerts from this can be considered accurate. 

Table 11 Confusion Matrix for Log Keys 

 

Real Class 

Predicted Class 

Anomaly Normal 

Anomaly 

True Positives False Negatives 

16,477 361 

Normal 

False Positives True Negatives 

982 110,662 
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Original sequences are compared with the reconstructed sequences for anomaly 

detection. If they are not the same, sequences are considered as an anomaly. We also 

noted the average similarity between original and reconstructed sequences for normal 

and anomaly data. 

The average difference between the original sequence and produced sequences for 

normal logs are 0.9994621628598735. Which shows the networks constructed normal 

log sequences with a high similarity average. 

The average difference between the original sequence and produced sequences for 

anomaly logs are 0.6799552992148196. These were much worse than normal sequences 

as expected.  

The results of the two experiments are presented in Table 12. Both parsing methods 

achieved almost identical precision values. Log-key based parser achieved a much better 

recall value than the difference-based parser. Therefore, F1 score is much better for log-

key based parser with 96%. Difference-based parser is much easier to implement and 

does not require a specialized log parser. 

Table 12 Seq2seq Results 

 Precision Recall F1 

Seq2seq with Time Differences 0.9441 0.5733 0.7134 

Seq2seq with Log Keys 0.9438 0.9786 0.9608 

 

Both approaches shown similar precision values, meaning both models were able to 

produce most of the sequences successfully. Logs key-based method achieved much 

better recall and F1 values as it was more capable of detecting anomalies (Figure 11). 
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Figure 11 Comparison of Results 

Time difference-based method does not require any specialized parsers. Log key-based 

methods require parsers [14] [15] [16] [17] [18] . 

4.4 Comparison of Results 

We compared our findings with works on the same dataset [12] [32] [52] [53] [54]. 

DILAF stands for DIstributed Log Analysis Framework for anomaly detection in large-

scale software systems. This method uses Message Count Vectors as primary features 

[53]. CausalConvLSTM [32] achieved better results than compared GRU, LSTM, and 

CNN implementation for the problem. Our implementation works only with time 

differences and ignores the log keys, unlike the given CausalConvLSTM. Lu, Siyang et 

al. proposed a CNN with logkey2vec embedding layer [54]. 

All of the methods we are comparing against [32] [52] [53] [54] ignore the time 

difference information. Deeplog [12] uses both log key and timestamp information at the 

same time.  
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While comparing the results, it is essential to keep in mind; our implementation has no 

way of knowing the information in the given log event. There is no information about 

the difference between an error log that includes a stack trace and a notice log, which 

says the health check is successful. All other methods [12] [32] [52] [53] [54] has this 

information while detecting anomalies. Regardless of this lack of information, there is 

only 3% difference in precision between the time-based method and key-based methods 

(Figure 12).  

 

Figure 12 Comparison of Precision Values 

When we compare the precision values, even without log key information, our method 

shows better precision values than CasualConvLSTM [32]. Precision value is worse than 

all other methods  

Most of the failures in the given dataset were represented by special logs. These error 

logs correspond to log keys which were never present in the healthy logs. These error 
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messages make detection much easier for such cases. Even with a simple rule-based 

approach, such events could easily be detected. Since time difference-based extraction 

removes this information, our implementation suffers from False Negatives which gets 

reflected negatively in recall value (Figure 13). This extraction is described in section 

3.1.1 

 

Figure 13 Comparison of Recall 

 

Comparison between the F1 values of the methods which shows the overview of 

compared methods is presented in Figure 14. Only three methods achieved more than 

%96 and Seq2seq with key-based parser was one of them. 
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Figure 14 Comparison of F1 Values 

The summary of the evaluation metrics of all the compared studies is presented in Figure 

13. This shows the performance of our method compared to the other studies over the 

HDFS dataset using recall, precision, and F-measure. 
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Figure 15 Seq2seq compared to other methods 

Our approach produced a precision level similar to that of other studies using only the 

timing information. Results presented in Table 12 show that the difference-based parser 

shows the worst F1 value. Even though the value is worse compared to other studies, it 

is still an acceptable value. There is valuable information in the time differences 

between log events. It is important to keep in mind that difference-based parser does not 

know the information within the log line. Network succeeds at detecting anomalies by 

using only time differences within a reasonable level. Achieving the same feat by using 

the same data is near impossible with a human. 

With proper implementation, we can detect anomalies in such a system by only working 

with timestamps.  

Table 13 Comparison of Results 

 Precision Recall F1 

Seq2seq with Time Differences 0.9441 0.5733 0.7134 

Seq2seq with Log Keys 0.9438 0.9786 0.9608 

CausalConvLSTM with Log Keys 0.8959 0.9972 0.9438 
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DILAF with Log Keys 0.9758 0.6649 0.7909 

K Means with Log Keys 0.9708 0.8876 0.9273 

Deeplog Log Key + Time Differences 0.9500 0.9600 0.9600 

CNN with Log Keys(logkey2vec) 0.9732 0.9504 0.9617 

 

Our method is capable of processing logs in a streaming manner. Our method supports 

online processing. Some log parsers only work in an offline manner [16] [17] [18] [19], 

which requires batch processing which requires all the data to be available before 

processing. A recent study compared existing log parsers, showed that most of them are 

not capable of processing logs in an online manner [55]. Drain parser [15] supports 

online parsing but requires domain knowledge about the internals of the application. 

Spell [14] parser supports online parsing but it requires parameter tuning.  

In real life deployments, extreme slowness in the systems is usually considered 

anomalies. Key-based parsers remove this information from data. This makes it much 

harder for pure key-based methods to detect slowness. 
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CHAPTER 5 

CONCLUSION 

Many anomaly detection systems have been developed with different approaches to 

protect computer systems from downtime. Such systems are still far away from detecting 

root causes without human intervention, yet identifying possible anomalies in such logs 

provides a valuable advantage for professional technical teams. Inspecting problems 

over a selected number of lines of logs can improve response times instead of reading 

through lengthy log files. New methods, like LSTM based Seq2seq networks, provide 

promising solutions for such issues.  

Our proposed methods do not rely on any specific parser. Sequences were generated 

purely based on log timestamps and time differences between events. The Seq2seq 

model was later trained to reconstruct sequences. The difference between a given 

original sequence and a reconstructed sequence is used for detecting anomalies. HDFS 

dataset is used for testing. Since our model does not require any form of parsing, it can 

be plugged into any system without any domain expertise or modification.  

Experiments have shown that anomaly detection with difference-based parsing using 

Seq2seq networks shown precision values close to the detection methods based on key-

based parsers. Seq2seq networks also learned to reconstruct key-based sequences with a 

good performance by only using the normal data for training.  

In future work, information from multiple log producers can be analyzed to create a 

framework that can learn the relationship between various systems. Most of the modern 
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systems allow sub-second level timing between log records. Such detailed timing 

systems can improve the performance of the time difference-based anomaly detection 

methods greatly. 
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