

DEEP LEARNING BASED LOG ANOMALY

 DETECTION WITH TIME DIFFERENCES

BARANSEL SAĞINDA

SEPTEMBER 2020

i

DEEP LEARNING BASED LOG ANOMALY

 DETECTION WITH TIME DIFFERENCES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL

AND APPLIED SCIENCES

OF ÇANKAYA UNIVERSITY

BY

BARANSEL SAĞINDA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

AUGUST 2020

iv

ABSTRACT

LOG ANOMALY DETECTION USING

DEEP LEARNING TECHNIQUES

SAĞINDA, Baransel

M.Sc., Computer Engineering Department

Supervisor: Assistant Prof. Dr. Roya CHOUPANI

Co-Supervisor: Prof. Dr. Erdoğan DOĞDU

2020, 51 pages

With the ever-growing digital transformation in our lives and the new computing

systems with the adaption of microservices, systems generated log records are increasing

tremendously. Monitoring and evaluation of these “big” log records are real challenges

due to the size and growing pace of system log generation. Most of the time, these

records are not utilized efficiently for the benefit of increased system availability and

reliability due to the lack of resources to process these records timely and efficiently. In

this work, we propose a method for parsing and evaluating system logs based on the

length of time between the occurrence events in logs and the utilization of these time

periods in learning-based anomaly detection. We specifically use Seq2seq networks for

anomaly detection. Results show that our method is successful at distinguishing between

normal and anomaly events, even without any information about log keys.

Keywords: Log records analysis, anomaly detection, deep learning

v

ÖZ

ZAMAN FARKLARI İLE DERİN ÖĞRENME

TABANLI LOG ANORMALLİĞİ ALGILAMA

SAĞINDA, Baransel

M.Sc., Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

 Tez Danışman: Dr. Öğr. Üyesi Roya CHOUPANI

Ortak Danışman: Prof. Dr. Erdoğan DOĞDU

2020, 51 pages

Sürekli büyüyen dijital hizmetler ve yeni mikro hizmetlerin adaptasyonu ile birlikte yeni

bilgi işlem sistemleri ile oluşturulan kayıtlarin miktarı muazzam bir şekilde artmaktadır.

Bu büyük kayıtların izlenmesi ve değerlendirilmesi, sistem günlüğü oluşturmanın

boyutu ve artan hızı nedeniyle giderek zorlakmaştadır. Çoğu zaman, bu kayıtları

zamanında ve verimli bir şekilde işlemek için kaynaklar yetmemektedir. Bu çalışmada,

sistem günlüklerinin ayrıştırılması ve değerlendirilmesi için, günlüklerdeki meydana

gelen olaylar arasındaki sürenin uzunluğuna dayalı anormallik tespitinde kullanımına bir

yöntem öneriyoruz. Anormallik tespiti için özellikle Seq2seq nörön ağlarını

kullanıyoruz. Sonuçlar, yöntemimizin olay kayıtlarının içeriği hakkında herhangi bir

bilgi sahibi olmaksızın normal ve anormal olayları ayırt etmede başarılı olduğunu

göstermektedir.

Anahtar Kelimeler: Log analizi, hata tespiti, derin öğrenme

vi

ACKNOWLEDGMENTS

I would like to thank my advisors, Assistant Prof Roya CHOUPANI and Prof. Dr.

Erdoğan DOĞDU for their support and motivation.

It would like to express my gratitude to my family for their continued

support.

Lastly I would like to thank Assistant Prof Abdül Kadir GÖRÜR who was there for me

both at the beginning and the end of this study.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM .. 3

ABSTRACT ... 4

ÖZ .. 5

ACKNOWLEDGMENTS ... 6

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Problem Definition ... 4

1.2 Aim of the Study .. 5

1.3 Layout of Thesis ... 5

CHAPTER 2 .. 6

LITERATURE REVIEW... 6

2.1 Log Collectors .. 6

2.2 Log Parsers ... 7

2.3 Log Feature Extraction ... 13

2.4 Log Anomaly Detection ... 13

CHAPTER 3 .. 21

viii

3.1 Detecting Anomalies in Logs Using RNN ... 21

3.1.1 Log Parsing ... 23

3.1.2 Data Preparation .. 25

3.1.3 Anomaly Detection ... 27

CHAPTER 4 .. 28

4.1 Experimental Setup .. 28

4.1.1 Test Environment .. 28

4.1.2 Dataset ... 29

4.2 Evaluation Metrics ... 30

4.3 Results .. 31

4.4 Comparison of Results ... 34

CHAPTER 5 .. 40

CONCLUSION .. 40

ix

LIST OF FIGURES

Figure 1 General Steps of Anomaly Detection [8]... 6

Figure 2 Spell Log Parsing Steps [14] ... 8

Figure 3 Log Parsing Example [15] ... 9

Figure 4 Drain Structure [15]. .. 10

Figure 5 Partitioning of Logs [17] ... 11

Figure 6 LKE Steps [18] .. 12

Figure 7 Anomaly Detection Methods ... 14

Figure 8 LSTM Network Node [7] .. 16

Figure 9 Log Roboust Framework [53] ... 20

Figure 10 Steps of Data Processing ... 23

Figure 11 Comparison of Results ... 34

Figure 12 Comparison of Precision Values ... 35

Figure 13 Comparison of Recall .. 36

Figure 14 Comparison of F1 Values .. 37

Figure 15 Seq2seq compared to other methods ... 38

x

LIST OF TABLES

Table 1 Time Difference Information Parsing ... 24

Table 2 Time Difference Preprocessing Function ... 25

Table 3 Time Difference Processing .. 25

Table 4 Dataset Statistics ... 26

Table 5 Training Files .. 26

Table 6 Seq2seq Parameters .. 27

Table 7 HDFS dataset characteristics .. 29

Table 8 HDFS Dataset Numbers .. 29

Table 9 Most occurring character groups... 29

Table 10 Confusion Matrix for Time Differences ... 31

Table 11 Confusion Matrix for Log Keys .. 32

Table 12 Seq2seq Results .. 33

Table 13 Comparison of Results .. 38

xi

LIST OF ABBREVIATIONS

GRU : Gated Recurrent Unit

NLP : Natural Language Processing

Bi-LSTM : Long Short Term Memory

DNS : Domain Name System

ML : Machine Learning

ANN : Artificial Neural Network

GPU : Graphic Processing Unit

NMT : Neural Machine Translation

IT : Information Technology

1

CHAPTER 1

INTRODUCTION

Current information systems are more complex than ever. Modern large-scale

information processing systems like Hadoop1 and Spark2 run over sometimes thousands

of commodity servers. With the adoption of microservice architectures, even small

systems consist of less coupled applications than traditional system designs. These

advances make modern systems more resilient to hardware failures. Such systems carry

a load of online services (e-commerce systems, social networks, archives, and online

tools) on a 24/7 basis. Depending on the system type, downtime in any of these services

can result in loss of capital or even worse consequences. For example, Heathrow airport

baggage system had a computer failure in March of 2008. This event affected 140,000

people and cost $32 million to the airport3. Proper anomaly detection systems are

necessary for building stable and secure computer systems.

System logs contain information about significant events that happened in the system to

help debug problems, solve performance issues, find out security breaches, and system

failures. There are mainly three types of logs. “Error logs” include information about

severe problems that happen in the systems. “Warning logs” include information about

the possibility of abnormal situations and warnings for future failures. “Notice logs”

1 https://hadoop.apache.org/
2 https://spark.apache.org/
3 https://www.cnbc.com/id/23892979

2

include information about healthy and normal operations during the execution of

systems.

A study performed on two close-sourced and two open-source systems has shown that

there is one line of logging code against every 58 lines of programming code in software

[1]. Modern software systems produce a significant amount of log records, and

inspecting these log records manually by human observance is very time-consuming and

nearly impossible. Debugging large systems with human labor is challenging and time-

consuming [2]. In a real-world banking system, 200 full-time operators are dedicated to

log monitoring with 67 screens for 190 subsystems [3]. Even with such a workforce,

there is always the possibility of human mistakes, in terms of missing the warnings or

errors. When the system produces an error or a warning message, it is easy to detect the

failure by reading the logs. This only happens after the problem occurs. Depending on

the high availability configuration of the system, a failure on a single subsystem might

stop the whole system. This is referred to as a single point of failure. It is often much

more rewarding to detect the problems before they happen. Also, some issues and

problems do not produce proper logs. Using human labor for analyzing logs poses many

other challenges.

Modern systems such as Docker4 and Kubernetes5 utilize multiple different subsystems.

Different containers take care of different tasks like pod scheduling, network switching,

and disk operations, and a fault in any given subsystem can affect the whole system. All

of these subsystems produce their own logs. To detect anomalies in these systems’ logs,

4 https://www.docker.com/
5 https://kubernetes.io/

3

experts from multiple disciplines need to work together to investigate logs. This makes

anomaly detection with human labor hard for such cases.

These problems show that there is a demand for intelligent systems that can analyze

system logs automatically. Such systems can detect the problems before they happen and

create a time window for responsible technical teams to take action before downtime

happens. Human labor can often detect only the presence of error in logs. However, an

intelligent system can detect the absence of a specific log message that can forewarn a

problem in the system.

Modern systems produce vast amounts of logs. Some large systems produce 120-200

million lines of records per hour [4]. Therefore, log processing is a big data problem.

Dealing with big data brings its challenges. Traditional data processing techniques fail to

deal with the well-known characteristics of big data, namely “volume”, “variety”, and

“velocity”. These are called 3Vs of big data [5]. For console log problems, the volume

comes from the size of the system, variety comes from the subsystems of a system

(DNS, container engine, storage, databases). Velocity in such problems usually arises

from the high-speed occurrence of many events including significant events, such as

failures. For example, if the DNS subsystem fails, depending on the type of failure, it

might not produce any logs, yet, all the other systems will start producing errors logs

rapidly.

Components of the information technology production systems are regularly updated to

newer versions for extra stability and performance. With these updates, old log lines can

be removed from the source code, and new lines of logs can be added to the system. The

4

structure of the existing logs can change with updates. These changes have adverse

effects on rule-based anomaly detection systems; artificial intelligence-based systems on

the other hand just need to be retrained to adapt to the new format.

Machine learning is a subset of Artificial Intelligence. The design of such learning

systems revolves around the idea that machines can learn from the proper amount of

data under the right conditions. Essential elements and design principles of such systems

are derived from the neuron structure of the human brain. Such applications had been

very successful for problems like Natural Language Processing (NLP). There have been

many new and exciting applications and designs for machine learning problems [6].

Such designs these days are mostly based on deep learning algorithms.

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN).

LSTM uses a special memory cell structure to converse its error ratio. Such models

show great promise for learning from sequential data and for working on the NLP

problem [7]. The Seq2seq model uses LSTM networks with attention optimizations. The

primary components of Seq2seq models are encoder and decoder networks. The encoder

turns the given sequence into a corresponding hidden vector and the decoder reverses

this process.

1.1 Problem Definition

As the number of computer systems, which affect our daily lives, keeps growing, their

availability is getting more important for us. Nowadays, problems in a single server can

quickly affect millions of people around the planet. Detecting such problems without

human intervention is very important for keeping such systems available all the time.

5

Automatically processing these big data logs and detecting anomalies in them using the

deep learning method are required to achieve this task.

1.2 Aim of the Study

We aim to utilize big data processing and deep learning methods to create a model that

can detect anomalies in system logs. A framework to detect system anomalies by only

using the time differences between the log lines is proposed. The approach uses LSTM

based Seq2seq networks to detect anomalies.

1.3 Layout of Thesis

The chapters of this thesis are arranged as follows. Chapter 2 explains the related work

in this research area. Chapter 3 presents the proposed method for intelligent anomaly

detection in system logs in detail. Experimental evaluation is presented and discussed in

Chapter 4, and a conclusion is provided in Chapter 5.

6

CHAPTER 2

LITERATURE REVIEW

A framework for the intelligent detection of anomalies in system logs usually consists of

four different parts (Figure 1). “Log Collection” systems collect the logs; “Log Parsing”

systems transform the logs into a different structure, and a “Feature Extraction” system

extracts the critical features for models to detect anomalies. And, an automatic

“Anomaly Detection” system that is based on the previously learned models. Here we

review these parts in the context of previous work.

Figure 1 General Steps of Anomaly Detection [8]

2.1 Log Collectors

Computer systems generate logs on a regular basis to record runtime information. These

logs contain valuable information for anomaly detection. Depending on the

configuration, some systems write their logs into their storage. For analysis purposes,

these logs need to be collected at a central location. Log collection systems take care of

this task. Log collection is handled by specialized systems that store the logs for

7

permanent history or temporary inspection. These systems are planned for the

workloads. Log collection presents more of a technical challenge than an academic

challenge. Almost all of the production systems utilize some form of log collection

solution. For example, BSD Syslog protocol [9] is very widely used in log collection and

comes as a default in Linux. It can ship produced logs over a network.

Elasticsearch6 is a search tool running on a distributed NoSQL database for storing full-

text information in a non-relational manner. It is commonly used for log processing.

Elastic beats provides a modern alternative to the Syslog with its log collector modules

[10]. Elastic log collectors ship data from applications to the Elasticsearch database for

storage and analysis.

These systems can operate in a pull-based or push-based manner. Pull based systems

regularly pull the logs from application servers. Push based systems send the logs from

application servers to log storage servers and usually transfers the logs faster than the

other approach.

2.2 Log Parsers

The goal of parsing is to group raw logs into numeric tokens based on the static parts of

the logs. Different researchers have given different names to these keys. They are called

message types [11], log key [12], or event type [8], and they all refer to the same

concept.

6 https://www.elastic.co/

8

There are many different log parsing methods proposed in the literature. All have their

advantages and disadvantages. The quality of parsing directly affects the performance of

anomaly detection [13].

Spell (Streaming Parse for Event Logs) is an online streaming method to parse logs [14].

The design stands on the assumption that when we view the logline as a sequence, in

most outputs, most of the line will consist of constants. This method works in a

streaming manner (Figure 2).

Figure 2 Spell Log Parsing Steps [14]

He, Pinjia et al. [15] proposed the Drain method. It is a representation algorithm for log

parsing, namely, a fixed depth tree-based online log parsing. It can work in streaming

and timely manner. The method utilizes a fixed depth parse tree. This method works

with regular expressions that are created by using domain expertise. These regular

expressions are used to parse logs. This method extracts the block ids from the HDFS

dataset and parses logs (Figure 3).

9

Figure 3 Log Parsing Example [15]

The first layer of nodes is created by using the length of the logline. This helps drain to

be useful for online parsing. Leaf nodes are created by using the first word in the log as a

token. When a new log arrives at the same leaf, it compares the similarity between log

messages to decide whether to put this node into the existing log group or create a new

group for the log. (Figure 4). Otherwise, a new group will be created for the log. Regex

parsing prevents branch explosion.

10

Figure 4 Drain Structure [15].

SLCT is another method for parsing logs, designed to cluster log files, so each cluster

represents a particular line pattern. SLCT starts with making a pass over words in the

logs and counting their occurrences and checking their positions. Words that appear

more than a certain threshold are defined as frequent words; they are saved in the cluster

candidates’ table. After the first stage, SLCT makes a second pass over the logs,

focusing only on frequent words. This second pass selects the cluster candidates. The

last mandatory step is to prepare the output templates. Logs that are not chosen by the

method are considered as outliers. [16]

Makanju et al. [17] proposed another parsing algorithm called IPLoM. This method

takes advantage of the unique characteristics of log messages to extract message types.

11

This method starts with partitioning the data by event size, putting logs into a different

cluster based on the log length. After clustering logs by lengths, in the second step,

IPLoM clusters the data by token positions. This step is based on the assumption that it

is likely for a column with the least number of unique words to be constants in that

position. After this step, IPLoM starts to search for bijection. Two columns of the logs

are selected for further partitioning by investigating the relationship between them. The

last step of the algorithm is the log key extraction. For each column, the number of

unique words is counted to choose wildcards and constants (Figure 5).

Figure 5 Partitioning of Logs [17]

Another method proposed for this problem is the LKE (Log Key Extraction) method.

This method starts with erasing parameters by empirical rules. The second step of the

algorithm is the raw log key clustering; it calculates the number of edit operations

needed to transform a log into another log. After this operation, LKE splits the groups by

checking the largest common sequence. By doing this, the method finds the constant

12

parts and the dynamic parts of the logs. The last step of the algorithm is to extract log

keys from already split groups [18]. The steps of the algorithms are shown in Figure 6.

Figure 6 LKE Steps [18]

Tang, Liang et al [19] Proposed another method for parsing logs, namely LogSig. This

method generates word pairs from log each line of the log. Users need to determine the

13

number of clusters using domain knowledge. LogSig uses this information to parse the

logs and move them to clusters if needed. Finally, the method extracts log keys from

these clusters.

2.3 Log Feature Extraction

After parsing the logs, related features need to be extracted from the logs. Windowing

methods can be used for this task. Different windowing methods are applied to separate

log data into groups [20].

Time series data can be windowed by fixed time length; all events that happened in a

fixed time window are considered a sequence. Sliding windows can be used instead of a

fixed window; this method will produce more sequences, and events in these sequences

can be repeated depending on the step size. Another approach to windowing is session

windows. For this method, a unique identifier is needed to generate the sequences. This

method groups the logs according to the objects or tasks and sequences consist of events

related to the same object or task [8].

Windowing with fixed time frames is applied to extract features is based on creating

fixed time frame windows and merging all the events that happened in that time frame in

those windows. Each time window has a fixed size, and logs that occurred in the same

window are regarded as log sequences [8].

2.4 Log Anomaly Detection

General methods for detecting anomalies can be grouped as shown in Figure 7. Log

anomaly detection methods can be divided into two “Programmed” and “Self-Learning”

14

groups. Programmed methods include “Rule-Based”, “Limit Based” and “Statistical”

methods. Self-Learning methods are usually based on machine learning methods.

Figure 7 Anomaly Detection Methods

Chandola et al. [21]. compares different techniques for detection anomalies, discussing

their strengths and weaknesses. They conclude that unsupervised methods are not

suitable for anomaly detection at a large scale as they assume that anomalies in the data

are rare and not the case for all log types.

Another work provides an overview of studies done in the area of anomaly detection

[22]. They categorize existing detection methods and systems based on underlying

computational techniques and show that classification is the most popular approach

among these studies.

15

2.4.1 Programmed Methods

Earlier works about the log anomaly detection were heavily dependent on rules and

domain expertise. These approaches can be more accurate than the neural network-based

approaches, but they require domain expertise and labor as well as manual rule updates

to stay functional [23]. Yen et al. [24] proposes the Beehive method, which identifies

potential anomalies by unsupervised clustering of features and manually labels these

clusters. Another downside of rules-based designs is that they usually focus on detecting

a particular type of anomalies. This system, called PerfAugur, is designed for identifying

performance issues [25]. Bao et al. [26] mention that such methods are also limited to

specific applications and require domain expertise.

2.4.2 Self-Learning Methods

Over the years, there have been many studies about log-based anomaly detection, which

utilizes log count vectors. These log count vectors hold events in a log sequence. Lou,

Jian-Guang et al. [27] proposed the Invariant Mining Method to mine linear

relationships between log events from count vectors. New logs are compared with

invariants to detect if they include anomalies. Xu et al. [28] utilize the Principal

Component Analysis to construct anomaly and normal spaces for log count vectors. The

distance of the log count vector to the normal space determines if there is an anomaly.

Classical neural networks are designed to mimic the neural structure of the human brain.

A standard neural network is made of many connected units, which are called neurons.

These neurons act as processors. At the one end of any network, there are input neurons,

which are fed with information about the problems. These neurons process the input and

feed the other neurons in the system over weighted connections between them.

16

Depending on the data, some neurons will be triggered by other neurons. A neural

network will learn to exhibit desired behavior by changing the weights of its

connections. Basic neural networks are also called shallow neural networks and have

been around for the last few decades [29]. Deep learning networks are neural networks

with multiple hidden layers. They usually consist of hierarchical architecture with

multiple layers. Such networks can represent higher complexities [30].

LeCun et al. [31] first proposed the basis for Convolutional Neural Networks. Such

networks can efficiently extract special features in a parallel fashion [32].

Long Short-Term Memory networks are often used for detection. They were first

proposed in 1997. One of the design's main features was being less prone to the

vanishing gradient problem because of the constant error flow in the design. The model

uses gate units to avoid input weight conflicts (Figure 8). These networks have memory

cells [7].

Figure 8 LSTM Network Node [7]

17

GRU networks control the flow of information with gate units, similar to LSTM

networks. But they do not use a memory unit. This makes such networks more

computationally efficient [33].

Vaswani et al. proposed an attention mechanism to improve the LSTMs. Attention

works by mapping a query and a set of key-value pairs to output, all of which are

vectors. The output is computed by a weighted sum of values [34].

The Seq2seq model is based on Encoder and Decoder networks [35]. This method uses

LSTM with attention mechanism. Attention improves the performance of the classical

LSTM. This model is often used for Neural Machine Translation (NMT) tasks [35] [36]

[37] [38] [39] [40] [41]. Seq2seq models can also be used for anomaly detection by

teaching networks to reconstruct the normal sequences. Such models fail to reconstruct

the sequences when anomaly sequences are received [42] [43]. This approach has also

been applied to system logs. [44]

CausalConvLSTM [32] method utilizes CNN networks with the LSTM network at the

same time to take advantage of both networks for anomaly detection in system logs.

LSTM captures sequential relationships and CNN extracts the special features.

Du, M. et al. [12] created a popular console log dataset by renting 200 EC2 instances

from Amazon Web Services to host a HDFS cluster. This dataset has 11, 197, 954 log

entries, and 2.9% of them are anomaly events. A domain expert labeled all the data by

hand. They also generated an OpenStack dataset for testing. They considered logs of

natural language and used NLP methods for parsing the logs before training. They used

LSTM networks to detect probability distributions of log sequences. This network

18

detects sequential patterns. Based on earlier logs, the network predicts the next event and

compares the predicted event with a real event. Based on the comparison, the system

decides if the event is normal or anomaly. This method supports both online and offline

processing.

You, Chenyu et al. [45] developed a Stacked Bidirectional LSTM Network for anomaly

detection in system logs. Their models encode the entire log messages such as

timestamps, TCP statistics, and packet values. They compared LSTM, stacked LSTM

and bidirectional stacked LSTM with a different attention mechanism. They did not

cover multi-domain computer systems. In their test, Stacked Bidirectional LSTM with

multiplicative attention created the best accuracy.

Nedelkoski et al [46] Presented an approach using AEVB (Auto-Encoding Variational

Bayes) and GRU networks. They used HTTP URL, IP address, service name, request

type for their log sources. They tested with data from a microservice-based global cloud

service provider. They focused on keeping prediction time short for industrial

applications. Their method reached 90% accuracy with a prediction time lower than

10ms.

Zhang et al. [47] propose a general log analysis approach for learning regular

expressions from heterogeneous logs, which reduces feature space and sparsity. They

formalized the problem as a sequential classification problem, and they use an LSTM

neural network to predict failures.

Hao et al. [48] This work focuses on Web Application Firewall applications of Bi-

LSTM. They used word2vec to encode their logs. They analyzed the logs with Bi-LSTM

19

network to overcome the vanishing gradient problem. They used CSIC 2010 dataset.

They achieved a 98.17% detection rate with a test accuracy of 98.35% by training for ten

epochs.

Another framework called loganomaly, leverages template2vector [49] method to

extract semantic information from logs. This helps this framework to parse log which it

has not seen before in an online manner. They found this method produces much less

false alarms than the compared systems [50].

Logrobust framework is designed to deal with log instability [51]. According to the

authors, such stability can come from many sources. Firstly, as the newer versions of the

software get released, the logging statements get changed. Collection, preprocessing,

and retrieval operations can create noise in the log distribution. It deals with this

problem by transforming every log into a semantic vector. These vectors are later

sequenced before entering the attention-based bidirectional LSTM model (Figure 9).

20

Figure 9 Log Roboust Framework [53]

In another study, the authors compared the results with different implementations [52].

Later same authors study this method for parallel processing with DILAF. DILAF stands

for DIstributed Log Analysis Framework for anomaly detection in large-scale software

systems [53]. This system works without inspecting the source code of the application,

which most of the existing parsers are also capable of [14] [16] [17]. The main focus of

the framework is scalability and parallel processing.

Lu, et al. [54] proposed CNN based method for detecting anomalies. This work utilizes

logkey2vec embedding layers tree 1D convolutional layers. They used the HDFS dataset

for testing. Max-overtime pooling is used for picking up the maximum values.

21

CHAPTER 3

This section presents information about the methods we developed to detect anomalies

in system logs. We discuss the difference between log key-based parsing and time

difference-based parsing approaches. We parse the logs with both methods and

preprocess the data for time difference-based approach. We train a Seq2seq model to

reconstruct the normal log sequences. Then, we detect anomalies by reconstructing

sequences in the trained model.

3.1 Detecting Anomalies in Logs Using RNN

 Usually, system log anomaly detection systems consist of four different parts, log

collection, log parsing, feature extraction, and anomaly detection. Log parsing steps use

different methods to extract log keys from the data source and tag every line of the log

with a proper log key. Later during the feature extraction, these events are transformed

into event sequences. This step allows the neural network to understand the data more

accurately. During this stage, the exact timestamp information of the logs is often

removed from the data. During this stage, the exact timestamp information of the logs is

often removed from the data. The only time-related information that remains in the

sequences is the order of events. This approach is useful for failure detection as most of

the failure produces unique logs (stack traces, exceptions, warnings). Such log lines are

22

not present in logs from healthy operations. Yet creating these log keys from the given

log files requires an extra step, which requires extra computation and effort.

We propose a different approach for the log parsing and feature extraction steps. Instead

of tokenizing logs and removing the time information from the records, we extracted

only the time session.

 Since our approach uses only the time differences between any two events, it completes

parsing and feature extraction in a single step. For the HDFS dataset normal data is split

into test and training groups but all anomaly data is used for testing (Figure 10).

23

Figure 10 Steps of Data Processing

We make references to the weak points of the state-of-the-art studies, and present our

solutions to these weak points below.

 Most of the similar studies mentioned above remove the time information from

the data before detecting anomalies [27] [28] [3] [47] [54]. We only focus on the

time difference information and completely ignore the log key information. Our

results clearly show, there is valuable information in these time differences.

 Existing methods [14] [15] [16] [17] [18] require a log parser method to extract

log keys from the logs. Depending on the methods, this step might require

domain expertise. Not all parsers can function in an online manner. However, our

method happens to functions online without using log keys. It can be plugged

into any production system without any domain information.

 Unlike the methods which discard the time information [27] [28] [3] [47] [54],

our method can detect performance problems that do not produce any logs

related to the issue.

3.1.1 Log Parsing

For the first step of our method, we need to group raw data based on a unique ID. For

the HDFS dataset, anomaly labels are given for HDFS block IDs, which is also used as

unique ID for grouping logs into sequences. Depending on the system logs, any unique

ID can be used to group the events. Request ID, job names, or even IP addresses can be

used for grouping.

24

These groups include all the events for the given block. These events later transformed

into sequences of time differences between any two events belonging to the same block

ID. The time difference for the first event of the given group is set to 0. Events logged in

the same second also get the time difference of 0.

Most works use key-based classical encoding methods for this step. Classical encoding

methods convert the log rows into log keys. These keys represent the log key of the

given row. To show the difference between the proposed time difference-based parser

and the classical key-based parser, the given lines are also converted to log keys by

using the Drain method [15]. This is only for comparison reasons. Drain [15] method

requires a small amount of domain information, but it assures near-perfect tokenization.

The Drain method's results are not used in our approach and are given only to show the

difference between log key-based parsing and time difference-based parsing. Table 1

presents the results of the same log sequence under different parsing methods.

Table 1 Time Difference Information Parsing

Event Number 1 2 3 4 5 6 7 8

Drain Encoding 1 1 2 14 3 15 19 20

Time Difference Encoding 0 0 0 60 1 0 657 0

Time differences are calculated as seconds since the dataset only included timestamps in

seconds. The difference between some log records can be relatively large. Under this

assumption events that occur more than 100 seconds apart are not very significant for

our approach; values larger than 100 seconds are smoothed out with the following

function. These values can get too high unless cleaning with such a function is done

(Table 2).

25

Table 2 Time Difference Preprocessing Function

Condition Result

n

100 + x

This function only alters the 7th event in our example as it is the only event larger than

100:

if n=657 then n > 1001 and x = 1, therefore nnew = 100 + 1 = 101

Results of preprocessing of a sequence is presented in Table 3.

Table 3 Time Difference Processing

Event Number 1 2 3 4 5 6 7 8

Time Difference Encoding 0 0 0 60 1 0 657 0

Preprocessed Time Difference Encoding 0 0 0 60 1 0 101 0

3.1.2 Data Preparation

The given dataset comes with anomaly labels. These labels provide ground-truth for the

block ID’S which had anomalies. In earlier steps, we grouped our data by the block ids.

Using anomaly labels, our data is split into two groups. Normal and anomaly data

frames are created. Block ID information is discarded in this step since we no longer

need this information. Within these two data frames, duplicate sequences are removed.

After having cleaned the cleaning duplicates, we create two files (Table 4).

26

Table 4 Dataset Statistics

Our method is based on the Seq2seq method, which is generally used as a supervised

algorithm. Our approach uses the Seq2seq network in an unsupervised manner. The

network is trained only using normal data and tested with abnormal and normal data.

The normal file is split into test, training, and validation files. Training and validation

files will be used during the training, and the test file is used for evaluating our results.

Before we split the normal file, we shuffled it based on hash values to make the results

reproducible. Linux sort command from Linux coreutils7 was used with a fixed seed.

The bash8 script used for sorting and splitting is available in Appendix A. Table 5

presents the resulting files. This file consists of ordered sequences, shuffling them by

rows does not alter the order of events in sequences.

Table 5 Training Files

7 https://www.gnu.org/software/coreutils/manual/coreutils.html
8 https://www.gnu.org/software/bash/

File Name Number of Log Sequences Percentage

Anomaly 16,838 3%

Normal 558,223 97%

Total 575,061

File Name
Number of Log

Sequences
Split Percentage

Usage

Anomaly_test 16,838 100% Evaluation

Normal_test 111,644 20% Evaluation

27

The network is trained only using a partition of normal data. “Anomaly_test” and

“Normal_test” are used to evaluate the results.

3.1.3 Anomaly Detection

Using these data files, the Seq2seq network is trained to reconstruct the sequences. We

used the IBM Pytorch Seq2seq implementation9. Seq2seq network trains with normal

sequences and learns to reconstruct normal sequences accurately. Table 6 presents the

parameters of the implementation. Training is done with the following parameters.

Table 6 Seq2seq Parameters

Epochs 22

Teacher Forcing Ratio 0.5

Batch Size 32

Hidden Size 128

Finally, to sum up briefly the approach details, our approach:

 Compatible with all types of logs.

 Does not require domain knowledge.

 More capable of detecting performance issues.

9 https://github.com/vincentzlt/ibm-pytorch-Seq2seqSeq2seq/

Normal_train 334,935 60% Training

Normal_validate 111,644 20% Training

28

CHAPTER 4

EVALUATION

This section presents the evaluation of our methods, the test environment details,

information about the dataset used, and the results in detail. Software libraries and

hardware devices used for the experiment are explained. Dataset and properties of the

data are explored. Finally, we compare our results to other studies.

4.1 Experimental Setup

4.1.1 Test Environment

This section represents the results of the proposed framework. Experiments are

conducted on a workstation with an i7-7000 processor, 64GB memory, a Nvidia

GeForce RTX 2080 graphics card. The computers run on Debian Linux 10 and have

CUDA 10.1 libraries.

Pytorch10 is a Python11 library for developing neural network models that support

multiple runtimes, including Nvidia Cuda12. Pytorch supports dynamic graphs, data

parallelism, and training models using numerous GPUs on numerous servers at the same

time.

10 https://pytorch.org/
11 https://www.python.org/
12 https://developer.nvidia.com/cuda-downloads

29

Log parsing was done with custom code. The preprocessing was done with pandas13 data

frames. The neural network was trained and tested on the GPU.

The random seed for Pytorch is 2222.

4.1.2 Dataset

HDFS dataset was used for several experiments (Table 7). To create the dataset, the

original authors have written all the logs to the local disk on each node and collected

them after completing the tests. The collection was done in an offline manner by the

basic copy operation. The test system had 200EC2 nodes. The software was an

unmodified off-the-shelf version. The log level was set to default [28].

Table 7 HDFS dataset characteristics

Time Span Messages Data Size

38.7 hours 11,175,629 1.47GB

Dataset consists of the files presented in Table 8.

Table 8 HDFS Dataset Numbers

File Name Number of Logs

HDFS.log 11,175,629

Anomaly_labels.csv 575,062

When counted by log keys, some regular events made up 61% of all logs (Table 9).

Table 9 Most occurring character groups

Log Key Number of

Occurrences

13 https://pandas.pydata.org/

30

Receiving block <*> src: <*> dest: <*>," 1,723,232

NameSystem.addStoredBlock: blockMap updated: <*> is added to

<*> size <*>,

1,719,741

PacketResponder <*> for block <*> <*>, 1,706,728

Received block <*> of size <*> from <*>, 1,706,514

4.2 Evaluation Metrics

The following metrics were calculated to evaluate the model.

True Positive (TP)

The sequence was detected as an anomaly, and it was an anomaly. Detection is correct.

False Negative (FN)

The sequence was not detected as an anomaly, but it was an anomaly. Detection failed.

False Positive (FP)

The sequence was not detected as an anomaly, but it was an anomaly. Wrong detection.

True Negative (TN)

The sequence was not detected as an anomaly, but it was not an anomaly. Detection is

correct.

Precision

Precision is defined as, what proportion of positives was correct.

Recall

Recall was defined as what proportion of real positives were detected.

31

F1 Measure

F1 measure is a measurement of test accuracy.

4.3 Results

Our proposed framework works only by using time differences between events and does

not require any special parser for log key extraction. Our method is based on detecting

anomalies without looking into the content of the logs. Our feature extraction method

removes this information. This makes the method more efficient and effective.

3.3.1 Difference-based Parser Experiment

The Seq2seq network trained with difference-based parser reproduced 111,072 normal

sequences perfectly. This extraction is described in section 3.1.1. The network also

managed to reproduce 7,185 anomaly sequences perfectly, which were anomalies. These

anomalies got reported as negatives which hindered the overall detection performance of

the network. Detection results of the experiment based on time differences parser are

presented in the confusion matrix in Table 10.

Table 10 Confusion Matrix for Time Differences

Real Class

Predicted Class

Anomaly Normal

32

Anomaly

True Positives False Negatives

9,653 7,185

Normal

False Positives True Negatives

572 111,072

3.3.3 Comparison of Experiment Results

To properly compare log parsing approaches with each other, we run the experiment

with log keys extracted by key-based parser like other methods. This is only to compare

the detection rate under the same detection circumstances. For this test, log keys are

generated by Drain [15] to compare the methods' performance under the same

circumstances.

Table 11 shows the number of false positives and false negatives based on key-based

parser on HDFS data. Method assigned most of the samples to correct classes. A low

false positive value means that alerts from this can be considered accurate.

Table 11 Confusion Matrix for Log Keys

Real Class

Predicted Class

Anomaly Normal

Anomaly

True Positives False Negatives

16,477 361

Normal

False Positives True Negatives

982 110,662

33

Original sequences are compared with the reconstructed sequences for anomaly

detection. If they are not the same, sequences are considered as an anomaly. We also

noted the average similarity between original and reconstructed sequences for normal

and anomaly data.

The average difference between the original sequence and produced sequences for

normal logs are 0.9994621628598735. Which shows the networks constructed normal

log sequences with a high similarity average.

The average difference between the original sequence and produced sequences for

anomaly logs are 0.6799552992148196. These were much worse than normal sequences

as expected.

The results of the two experiments are presented in Table 12. Both parsing methods

achieved almost identical precision values. Log-key based parser achieved a much better

recall value than the difference-based parser. Therefore, F1 score is much better for log-

key based parser with 96%. Difference-based parser is much easier to implement and

does not require a specialized log parser.

Table 12 Seq2seq Results

 Precision Recall F1

Seq2seq with Time Differences 0.9441 0.5733 0.7134

Seq2seq with Log Keys 0.9438 0.9786 0.9608

Both approaches shown similar precision values, meaning both models were able to

produce most of the sequences successfully. Logs key-based method achieved much

better recall and F1 values as it was more capable of detecting anomalies (Figure 11).

34

Figure 11 Comparison of Results

Time difference-based method does not require any specialized parsers. Log key-based

methods require parsers [14] [15] [16] [17] [18] .

4.4 Comparison of Results

We compared our findings with works on the same dataset [12] [32] [52] [53] [54].

DILAF stands for DIstributed Log Analysis Framework for anomaly detection in large-

scale software systems. This method uses Message Count Vectors as primary features

[53]. CausalConvLSTM [32] achieved better results than compared GRU, LSTM, and

CNN implementation for the problem. Our implementation works only with time

differences and ignores the log keys, unlike the given CausalConvLSTM. Lu, Siyang et

al. proposed a CNN with logkey2vec embedding layer [54].

All of the methods we are comparing against [32] [52] [53] [54] ignore the time

difference information. Deeplog [12] uses both log key and timestamp information at the

same time.

35

While comparing the results, it is essential to keep in mind; our implementation has no

way of knowing the information in the given log event. There is no information about

the difference between an error log that includes a stack trace and a notice log, which

says the health check is successful. All other methods [12] [32] [52] [53] [54] has this

information while detecting anomalies. Regardless of this lack of information, there is

only 3% difference in precision between the time-based method and key-based methods

(Figure 12).

Figure 12 Comparison of Precision Values

When we compare the precision values, even without log key information, our method

shows better precision values than CasualConvLSTM [32]. Precision value is worse than

all other methods

Most of the failures in the given dataset were represented by special logs. These error

logs correspond to log keys which were never present in the healthy logs. These error

36

messages make detection much easier for such cases. Even with a simple rule-based

approach, such events could easily be detected. Since time difference-based extraction

removes this information, our implementation suffers from False Negatives which gets

reflected negatively in recall value (Figure 13). This extraction is described in section

3.1.1

Figure 13 Comparison of Recall

Comparison between the F1 values of the methods which shows the overview of

compared methods is presented in Figure 14. Only three methods achieved more than

%96 and Seq2seq with key-based parser was one of them.

37

Figure 14 Comparison of F1 Values

The summary of the evaluation metrics of all the compared studies is presented in Figure

13. This shows the performance of our method compared to the other studies over the

HDFS dataset using recall, precision, and F-measure.

38

Figure 15 Seq2seq compared to other methods

Our approach produced a precision level similar to that of other studies using only the

timing information. Results presented in Table 12 show that the difference-based parser

shows the worst F1 value. Even though the value is worse compared to other studies, it

is still an acceptable value. There is valuable information in the time differences

between log events. It is important to keep in mind that difference-based parser does not

know the information within the log line. Network succeeds at detecting anomalies by

using only time differences within a reasonable level. Achieving the same feat by using

the same data is near impossible with a human.

With proper implementation, we can detect anomalies in such a system by only working

with timestamps.

Table 13 Comparison of Results

 Precision Recall F1

Seq2seq with Time Differences 0.9441 0.5733 0.7134

Seq2seq with Log Keys 0.9438 0.9786 0.9608

CausalConvLSTM with Log Keys 0.8959 0.9972 0.9438

39

DILAF with Log Keys 0.9758 0.6649 0.7909

K Means with Log Keys 0.9708 0.8876 0.9273

Deeplog Log Key + Time Differences 0.9500 0.9600 0.9600

CNN with Log Keys(logkey2vec) 0.9732 0.9504 0.9617

Our method is capable of processing logs in a streaming manner. Our method supports

online processing. Some log parsers only work in an offline manner [16] [17] [18] [19],

which requires batch processing which requires all the data to be available before

processing. A recent study compared existing log parsers, showed that most of them are

not capable of processing logs in an online manner [55]. Drain parser [15] supports

online parsing but requires domain knowledge about the internals of the application.

Spell [14] parser supports online parsing but it requires parameter tuning.

In real life deployments, extreme slowness in the systems is usually considered

anomalies. Key-based parsers remove this information from data. This makes it much

harder for pure key-based methods to detect slowness.

40

CHAPTER 5

CONCLUSION

Many anomaly detection systems have been developed with different approaches to

protect computer systems from downtime. Such systems are still far away from detecting

root causes without human intervention, yet identifying possible anomalies in such logs

provides a valuable advantage for professional technical teams. Inspecting problems

over a selected number of lines of logs can improve response times instead of reading

through lengthy log files. New methods, like LSTM based Seq2seq networks, provide

promising solutions for such issues.

Our proposed methods do not rely on any specific parser. Sequences were generated

purely based on log timestamps and time differences between events. The Seq2seq

model was later trained to reconstruct sequences. The difference between a given

original sequence and a reconstructed sequence is used for detecting anomalies. HDFS

dataset is used for testing. Since our model does not require any form of parsing, it can

be plugged into any system without any domain expertise or modification.

Experiments have shown that anomaly detection with difference-based parsing using

Seq2seq networks shown precision values close to the detection methods based on key-

based parsers. Seq2seq networks also learned to reconstruct key-based sequences with a

good performance by only using the normal data for training.

In future work, information from multiple log producers can be analyzed to create a

framework that can learn the relationship between various systems. Most of the modern

41

systems allow sub-second level timing between log records. Such detailed timing

systems can improve the performance of the time difference-based anomaly detection

methods greatly.

42

REFERENCES

[1] Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M.R., & Zhang, D. (2015). Learning To

Log: Helping Developers Make Informed Logging Decisions. 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, 1, 415-425.

[2] Chen, A. (2019). An Empirical Study on Leveraging Logs for Debugging

Production Failures. 2019 IEEE/ACM 41st International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion), 126-128.

[3] Yu, X., Joshi, P., Xu, J., Jin, G., Zhang, H., & Jiang, G. (2016). loudSeer:

Workflow Monitoring of Cloud Infrastructures via Interleaved Logs. In Proceedings

of the Twenty-First International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS '16). Association for

Computing Machinery, 489–502.

[4] Mi, H., Wang, H., Zhou, Y., Lyu, M.R., & Cai, H. (2013). Toward Fine-Grained,

Unsupervised, Scalable Performance Diagnosis for Production Cloud Computing

Systems. IEEE Transactions on Parallel and Distributed Systems, 24, 1245-1255..

[5] Safhi, H.M., Frikh, B., & Ouhbi, B. (2019). Assessing Reliability of Big Data

Knowledge Discovery Process. Procedia Computer Science, 148, 30-36.

[6] Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013). Machine

43

Learning: An Artificial Intelligence Approach. Springer Science & Business Media.

[7] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735-1780.

[8] He, S., Zhu, J., He, P., & Lyu, M.R. (2016). Experience Report: System Log

Analysis for Anomaly Detection. 2016 IEEE 27th International Symposium on

Software Reliability Engineering (ISSRE), 207-218.

[9] Lonvick, C. (2001). the BSD Syslog Protocol. RFC, 3164, 1-29.

[10] Rochim, A.F., Aziz, M.A., & Fauzi, A. (2019). Design Log Management System of

Computer Network Devices Infrastructures Based on ELK Stack. 2019

International Conference on Electrical Engineering and Computer Science

(ICECOS), 338-342.

[11] Haque, A., Delucia, A., & Baseman, E. (2017). Markov Chain Modeling for

Anomaly Detection in High Performance Computing System Logs. Fourth Annual

Workshop on HPC User Support Tools, Article 3, 1–8.

[12] Du, M., Li, F., Zheng, G., & Srikumar, V. (2017). Deeplog: Anomaly Detection and

Diagnosis From System Logs through Deep Learning. Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, 1285–

1298.

[13] He, P., Zhu, J., He, S., Li, J., & Lyu, M.R. (2018). Towards Automated Log Parsing

for Large-Scale Log Data Analysis. IEEE Transactions on Dependable and Secure

44

Computing, 15, 931-944.

[14] Du, M., & Li, F. (2019). Spell: Online Streaming Parsing of Large Unstructured

System Logs. IEEE Transactions on Knowledge and Data Engineering, 31, 2213-

2227.

[15] He, P., Zhu, J., Zheng, Z., & Lyu, M.R. (2017). Drain: An Online Log Parsing

Approach With Fixed Depth Tree. 2017 IEEE International Conference on Web

Services (ICWS), 33-40.

[16] Vaarandi, R. (2003). A Data Clustering Algorithm for Mining Patterns From Event

Logs. Proceedings of the 3rd IEEE Workshop on IP Operations & Management

(IPOM 2003) (IEEE Cat. No.03EX764), 119-126.

[17] Makanju, A., Zincir-Heywood, A.N., & Milios, E.E. (2009). Clustering Event Logs

Using Iterative Partitioning. International Conference on Knowledge Discovery and

Data Mining, 1255–1264.

[18] Fu, Q., Lou, J., Wang, Y., & Li, J. (2009). Execution Anomaly Detection in

Distributed Systems through Unstructured Log Analysis. 2009 Ninth IEEE

International Conference on Data Mining, 149-158.

[19] Tang, L., Li, T., & Perng, C. (2011). Logsig: Generating System Events From Raw

Textual Logs. In Proceedings of the 20th ACM International Conference on

Information and Knowledge Management (CIKM '11). Association for Computing

Machinery, 785–794.

45

[20] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R.,

Lax, R., Mcveety, S., Mills, D., Perry, F., Schmidt, E., & Whittle, S. (2015). The

Dataflow Model: A Practical Approach To Balancing Correctness, Latency, and

Cost in Massive-Scale, Unbounded, Out-Of-Order Data Processing. Proc. VLDB

Endow, 8, 1792-1803.

[21] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey.

ACM Computing Surveys, Article 15,58.

[22] Bhuyan, M.H., Bhattacharyya, D.K., & Kalita, J.K. (2014). Network Anomaly

Detection: Methods, Systems, and Tools. IEEE Communications Surveys &

Tutorials, 16, 303-336.

[23] Cinque, M., Cotroneo, D., & Pecchia, A. (2013). Event Logs for the Analysis of

Software Failures: A Rule-Based Approach. IEEE Transactions on Software

Engineering, 39, 806-821.

[24] Yen, T., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., & Kirda,

E. (2013). Beehive: Large-Scale Log Analysis for Detecting Suspicious Activity in

Enterprise Networks. In Proceedings of the 29th Annual Computer Security

Applications Conference 2013, 199–208.

[25] Roy, S., König, A.C., Dvorkin, I., & Kumar, M. (2015). Perfaugur: Robust

Diagnostics for Performance Anomalies in Cloud Services. 2015 IEEE 31st

International Conference on Data Engineering, 1167-1178.

46

[26] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution Anomaly

Detection in Large-Scale Systems through Console Log Analysis. J. Syst. Softw.,

143, 172-186.

[27] Lou, J., Fu, Q., Yang, S., Xu, Y., & Li, J. (2010). Detecting Large-Scale System

Problems by Mining Console Logs.. Int. Conf. on Machine Learning, 37-46.

[28] Xu, W., Huang, L., Fox, A., Patterson, D., & Jordan, M.I. (2009). Detecting Large-

Scale System Problems By Mining Console Logs. 22nd Symposium on Operating

Systems Principles , 117–132.

[29] Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural

Networks : The Official Journal of the International Neural Network Society, 61,

85-117.

[30] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F.E. (2017). A Survey of

Deep Neural Network Architectures and the ir Applications. Neurocomputing, 234,

11-26.

[31] Lecun Y., Haffner P., Bottou L., Bengio Y. (1999) Object Recognition With

Gradient-Based Learning. In: Shape, Contour and Grouping in Computer Vision.

Lecture Notes in Computer Science, Vol 1681. Springer, Berlin, Heidelberg.

[32] Yen, S., Moh, M., & Moh, T. (2019). Causalconvlstm: Semi-Supervised Log

Anomaly Detection through Sequence Modeling. 2019 18th IEEE International

Conference on Machine Learning and Applications , 1334-1341.

47

[33] Cho, K., Merrienboer, B.V., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,

H., & Bengio, Y. (2014). Learning Phrase Representations Using Recurrent Neural

Network Encoder-Decoder for Statistical Machine Translation. Empirical Methods

in Natural Language Processing, 1724-1734.

[34] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,

Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. Arxiv,

Abs/1706.03762.

[35] Sutskever, I., Vinyals, O. & Le, Q. V. (2014). Sequence to Sequence Learning with

Neural Networks. Advances in Neural Information Processing Systems 3104-3112.

[36] Liu, L., Malak, D., & Médard, M. (2019). Guesswork for Inference in Machine

Translation With Seq2seq Model. 2019 IEEE Information the ory Workshop (ITW),

1-5.

[37] Dessì, R., & Baroni, M. (2019). Cnns Found To Jump Around More Skillfully Than

Rnns: Compositional Generalization in Seq2seq Convolutional Networks. Arxiv,

Abs/1905.08527.

[38] Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By

Jointly Learning To Align and Translate. Computing Research Repository,

Abs/1409.0473.

[39] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical

Attention Networks for Document Classification. Conference of the North

American Chapter of the Association for Computational Linguistics: Human

48

Language Technologies, 1480-1489.

[40] Gehring, J., Auli, M., Grangier, D., & Dauphin, Y. (2017). A Convolutional

Encoder Model for Neural Machine Translation. Association for Computational

Linguistics, 123–135

[41] Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H., & Courville, A.C.

(2015). Describing Videos By Exploiting Temporal Structure. 2015 IEEE

International Conference on Computer Vision , 4507-4515.

[42] Shin, D., Park, R.C., & Chung, K. (2020). Decision Boundary-Based Anomaly

Detection Model Using Improved Anogan From ECG Data. IEEE Access, 8,

108664-108674.

[43] Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G.

(2016). LSTM-Based Encoder-Decoder for Multi-Sensor Anomaly Detection.

Arxiv, Abs/1607.00148.

[44] Wu, P., Lu, Z., Zhou, Q., Lei, Z., Li, X., Qiu, M., & Hung, P. (2019). Bigdata Logs

Analysis Based on Seq2seq Networks for Cognitive Internet of Things. Future

Generation Computer Systems, 90, 477-488.

[45] You, C., Wang, Q., & Sun, C. (2019). Sbilsan:Stacked Bidirectional Self-Attention

LSTM Network for Anomaly Detection and Diagnosis From System Logs.

[46] Nedelkoski, S., Cardoso, J., & Kao, O. (2019). Anomaly Detection and

Classification Using Distributed Tracing and Deep Learning. 2019 19th IEEE/ACM

49

International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 241-

250.

[47] Zhang, K., Xu, J., Min, M.R., Jiang, G., Pelechrinis, K., & Zhang, H. (2016).

Automated IT System Failure Prediction: A Deep Learning Approach. 2016 IEEE

International Conference on Big Data, 1291-1300.

[48] Hao S., Long J., Yang Y. (2019) BL-IDS: Detecting Web Attacks Using Bi-LSTM

Model Based on Deep Learning. In: Li J., Liu Z., Peng H. (Eds) Security and

Privacy in New Computing Environments, Vol 284, 551-563.

[49] Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of

Word Representations in Vector Space. Computing Research Repository,

abs/1301.3781.

[50] Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Chen, Y., Zhang, R., Tao, S., Sun,

P., & Zhou, R. (2019). Loganomaly: Unsupervised Detection of Sequential and

Quantitative Anomalies in Unstructured Logs. International Joint Conference on

Artificial Intelligence.

[51] Zhang, X., Xu, Y., Lin, Q., Et Al.(2019). Robust Log-Based Anomaly Detection on

Unstable Log Data. Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, 807–817.

[52] Astekin, M., Zengin, H., & Sözer, H. (2018). Evaluation of Distributed Machine

Learning Algorithms for Anomaly Detection From Large-Scale System Logs: A

50

Case Study. 2018 IEEE International Conference on Big Data, 2071-2077.

[53] Astekin, M., Zengin, H., & Sözer, H. (2019). DILAF: A Framework for Distributed

Analysis of Large‐Scale System Logs for Anomaly Detection. Software: Practice

and Experience, 49, 153 - 170.

[54] Lu, S., Wei, X., Li, Y., & Wang, L. (2018). Detecting Anomaly in Big Data System

Logs Using Convolutional Neural Network. 2018 IEEE 16th International

Conference on Dependable, Autonomic and Secure Computing, 151-158.

[55] Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., & Lyu, M.R. (2019). Tools and

Benchmarks for Automated Log Parsing. 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice (ICSE-

SEIP), 121-130.

	d7e7eec8668831fa8e54b9fec667f9305cab61230a4ca6fb4e94120bec4cb4ab.pdf
	1b44dd7b4dfce756b6e642e68aa58a38fe97088c7e5e16c81f976a14db13349a.pdf

	d7e7eec8668831fa8e54b9fec667f9305cab61230a4ca6fb4e94120bec4cb4ab.pdf
	5633eba44f65ec9c92388af7774f7438ece74e156d95a3c3d64e5b16f2a0afb5.pdf
	1b44dd7b4dfce756b6e642e68aa58a38fe97088c7e5e16c81f976a14db13349a.pdf

