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ABSTRACT 

 

 

FEEDBACK LINEARIZTION CONTROL OF FLEXIBLE JOINT PARALLEL 

MANIPULATORS BY SOLVING SINGULAR ACCELERATION LEVEL 

DIFFERENTIAL EQUATIONS 

 

ABDALJAWAD, Harith 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. S. Kemal Ġder  

 

June 2016, 61 pages 

 

This study utilizes a certain algorithm where joint drives flexibility is presented for 

solving singular set of differential equations by specified implicit numerical integration 

method that is called Backward Euler Formula for more advanced order derivative 

information. The reason for using such a procedure is that there is singularity presence 

at the acceleration level inverse dynamics equations because the control torques can't 

perpetuate a direct effectiveness at the end-effector accelerations as a result of the elastic 

media. The trajectory tracking control law is utilized for a 3R (revolute joint), three legs 

planar parallel manipulator. This law linearizes and decouples the system which leads to 

achieve asymptotic stability by the means of feeding back the positions and velocities of 

the actuated rotors and joints. The desired path of the end-effector is chosen for the sake 

of singularity avoidance. 

Keywords: Parallel manipulator, flexible joint, inverse dynamics control 
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ÖZ 

 

 

 

SİNGÜLER İVME SEVİYESİNDEKİ DİFERANSİYEL DENKLEMLERİ 

ÇÖZMEK SURETİYLE ESNEK MAFSALLI PARALEL 

MANİPÜLATÖRLERİN KONTROLÜ 

 

ABDALJAWAD, Harith 

Yüksek Lisans, Makine Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. S. Kemal Ġder  

 

Haziran 2016, 61 sayfa 

 

 

Esnek mafsallı robot manipülatörlerde elastik ortamdan dolayı kontrol torkları ile uç 

işlemci ivmesi anlık ilişkili değildir. Bu sebeple ivme seviyesindeki ters dinamik 

denklemleri singüler bir diferansiyel denklem sistemi (diferansiyel/cebirsel denklem 

sistemi) oluşturur. Bu tezde bu denklemler bir dolaylı (implicit) nümerik integrasyon 

yöntemi olan geri Euler yöntemi ile çözülerek sistemin hareket kontrolu yapılmaktadır. 

Yörünge kontrolunun sağlandığı kontrol kanunu her birinde üç döner mafsal bulunan üç 

ayaklı ve üç serbestlik dereceli bir düzlemsel parallel manipülatöre uygulanmıştır. 

Mafsalların ve aktüatör rotorlarının açısal konumlarını ve açısal hızlarını geri besleyerek 

asimtotik stabilite elde edilmiştir. 
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Anahtar Kelimeler: Paralel manipülatör, esnek eklem, ters dinamik kontrol. 
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CHAPTER 1 

 

INTRODUCTION 

 

  

1.1 Literature Review 

Parallel manipulators took an interest of research for more than twenty years because of 

the advantages they have as compared to the serial ones.  As a result of the closed loop 

structure of the parallel manipulators, this made them carry heavier loads.  Real time 

applications like earthquake simulators, flight simulators and micro-motion 

manipulators are the most known industrial applications for these mechanics where high 

motion accuracy and high load capacity are needed.  Also some problems may take 

place such as difficulties in the operation of control and also relatively small work space 

may be exist, as a result parallel manipulators took a lot of interest in different areas of 

research. 

Parallel manipulators gains drive singular positions as well as to the kinematic singular 

positions which serial robots also have. Singularity analysis of parallel manipulators has 

been the subject of many studies in the last years. 

 

Ġder [1] examined the singularities that occur in the parallel manipulators and showed 

that the manipulator shall pass through the singular positions when the system motion 

and the actuator forces keeping its' stability by the mean of modifying the system 

equations of motion. 

 

  



 

2 
 

Joint flexibility must be regarded in the control system because of the latters' importance 

in control system design and manipulator dynamics, as a result high precision 

manipulators will be handled. 

Serial manipulators flexible joints control was studied by many researchers as well they 

took interest after the derivation of the flexible joint model done by Spong [2]. 

Two nonlinear control schemes are put forward among all the motion control methods, 

those two schemes are called the feedback linearization and singular perturbation 

approaches.  

The singular perturbation process depends on the benefit of the order decreasing by 

resolving the main system into two subsystems that are known as a fast subsystem and a 

low subsystem that are the flexible joints and rigid manipulator respectively. By 

disregarding and then correcting due to the fast phenomena the model will be lowered, 

the latter will be reintroduced by measuring them separately with different time scales 

where the slow variables are considered as constant. However this way is said to be 

valid if and only if the joint springs are stiff in a sufficient way, this will cause the 

approach to be limited. 

Another name of the feedback linearization control of flexible-joints that is the 

analytical inverse dynamics control which is studied by various authors. 

From this method, the intermediate variables are eliminated and the inputs are solved as 

functions of end-effector motion till the fourth derivative, Moreover, for the elimination 

it will be necessary to differentiate the motion equations and the task equations at 

acceleration level twice. 

Jankowski and Van Brussel [3] applied inverse dynamics control in discrete time where 

solution of the singular sets of differential equations are used to avoid  further 

differentiations of the system equations of motion. 

Forrest-Barlach and Babcock [4] used the inverse dynamics control method for the 

cylindrical coordinate arm with drive train compliance and actuator dynamics in the 

radial and each of the revolute degree of freedom. 
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Ġder and Özgören [5] used an acceleration level feedback linearization control the by 

using implied numerical integration methods that account for the greater order 

derivatives information for the purpose of solving the set of the singular differential 

equations. The asymptotic stability is achieved by feeding back the joints positions, 

velocities and velocities of rotors. 

All of the above studies focused on the control of flexible joint serial manipulators. 

There are limited numbers of studies in the literature concerning control of parallel 

manipulators. Most of these studies did not take the joint flexibility into their control 

strategies. 

Dado and Al-Huniti [6] studied dynamic simulation approach for a mixed-loop planar 

manipulators with joint-drive flexibility. The mathematical model of a five-link, three 

degree of freedom manipulator was derived using the virtual work method. The drive 

signal at the motor was based on the error between the actual and desired motions by 

using the suitable gains for position and velocity. 

Chablat and Wenger [7] showed that a non-singular robot assembly can that change 

trajectory is exist for a symmetrical planar robot with triangle platform and equilateral 

base by presenting the kinematic analysis of a three-degree-of-freedom planar parallel 

robot. It has been showed that in apposite to serial ones, planar parallel manipulators can 

pass through multiple direct kinematic solutions together with the multiple inverse 

kinematic ones, that gives greater flexibility with the trajectory-planning stage. 

Ġder and Korkmaz [8] developed and utilized an inverse dynamics control law for the 

aim of  control of a path tracking of a specified flexible-joint parallel manipulator by 

further differentiation of the dynamic equations till third and fourth order derivatives, 

the closed system is converted into an open one by the mean of disconnecting a 

satisfying number of non-actuated joints, then by eliminating the intermediate variables 

and the Lagrange multipliers that gives a fourth-order input-output relation, after that 

and by feeding back the positions and the velocities of the actuated rotors and joints 

asymptotic stability is achieved. 
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1.2 Purpose of Study  

The purpose behind this thesis is to decide trajectory tracking control of the end effector 

of the planar parallel manipulator by making use of the feedback linearization [inverse 

dynamics] approach regarding joint flexibility. To ease the solution and reduce the 

online computation, singular acceleration stage inverse dynamic equations are solved by 

implicit numerical integration techniques. By utilizing this previous procedure, further 

differentiation of the equation of motion, the task equations and the constraint is avoided 

so as to reduce the complexity of calculations. The presented control strategy gives 

asymptotic stability while testing the trajectory tracking control of the end-effector 

motion. On the other hand additional complexity will be avoided by neglecting the 

effect of the viscous friction at the passive joints, the rotor damping characteristic and 

the structural damping of the active joints. 

 

1.3 Outline of the Study  

The following chapters are organized in this thesis in order to demonstrate the control 

algorithm and the case study. 

Chapter 2, is related to the dynamics of the parallel manipulator that are explained when 

the joint flexibility is regarded into the analysis. The system constraint equations and 

system equations of motion are derived, as well the feedback linearization control 

approach is considered. The task space equations and the control law are introduced. 

The execution for the elimination of the non-actuated joint variables from the system 

constraint equations and the elimination of actuator variables off the equations of motion 

are considered so as to get the input/output relation. 

In Chapter 3, the dynamic equations of 3RRR planar parallel manipulator with 

flexibility at the actuated joints are derived, its' control law is formulated and numerical 

simulations are made. 

Chapter 4, discusses and concludes the similes of the simulations. 
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CHAPTER 2  

ROBOT DYNAMICS AND CONTROL 

2.1 Preview 

Let the system of an n degree of freedom parallel manipulator be changed into an open-

tree structure by the mean of seperating a suitable number of non-actuated joints, and 

the degree of freedom of that system is m, i.e., in the parallel manipulator the number of 

independent loop closure constraints be m-n. The set of the generalized coordinates 

corresponding to the robot joint variables that express the relative joint positions 

assumed to be defined as  ̍          ̎. 

So that the vector belongs to the manipulator joint variables of the rigid links which 

contains both of the actuated and non-actuated joints is 

 

 ̅  ̏         ̐
                                                                                                         ̋   ̌    

 

By separating the joint coordinate vector into two sub-vectors that corresponded to the 

variables of the actuated joints and the non-actuated joints respectively  ̅ ̋  

 ̌  ̅ ̏̋   ̌   ̐,such that,  ̅  ̏ ̅  ̅  ̐. 

 

 

The degree of freedom of any parallel manipulator decides the number of the actuated 

joints of that manipulator. Joints elasticity occurs at the actuated joints as a result of the 
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elasticity of the transmissions. The elasticity sources at the joints are mainly harmonic 

drives and thin shafts used in drive trains, couplings. It is important to take joint 

flexibility into consideration so as to gain higher performance from the controller since 

joint flexibility is the main source as compared to the total manipulator flexibility as 

practically verified by Rivin [9]. 

At an actuated joint, Joint elasticity of the power transmission elements is modeled as a 

torsional spring, on the other hand, structural damping is neglected. 

 

For the thi  transmission,  iK  stand for the spring constant as shown in figure 2.1. 

 

 

Figure 1 Flexible Joint Dynamic Model 

 

The figure above refers to the     transmission, where     represent the robot joint 

variable that corresponds to the driven links' angular position (  ) with regard to the link 

(  ̌ where the     actuator is mounted. 

 

Moreover, in the above flexible model,    represents the actuator position of the     

actuator with regard to the link where the actuator mounted.    represents the actuator 

variable that may be given by the following formula  

 



 

7 
 

                                                                                                         (2.2) 

 

where    stands for the speed reduction ratio. 

 

On the other hand, the set of the generalized coordinates refers to the actuator variables 

are  

 

̍        ̎                                                                   

 

As a result, actuator joint variables of the robot may be given by the vector 

 

 ̅  ̏        ̐
                                                                                                (2.3)  

 

    stands for the spring constant of the     transmission. 

 

 

 

2.2 Robot Dynamics 

The equations of motion will be simplified and so as to make them more suitable for the 

control and analysis, this will be done by using some assumptions stated by [2], the 

assumptions are as below: 

 The rotor/gear inertia is symmetric about the axis of rotation of the rotor as a 

result the velocity of the rotor center of mass and the gravitational potential of 

the system become independent of the rotor position. 

 The links of the robot are rigid. 

 By choosing a large enough gear ratio, as a result, the rotor kinetic energy will 

be generally due to its own rotation. 

The formula     ̏  
 (      ̇ )

 
   

  (  
    

 )̐ represents the rotational kinetic 

energy of the     actuator, where   
  stands for the     rotor moment of inertia about its 
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rotational axis and    
   stands for the moment of inertia of the cylindrical rotor about the 

axes that are perpendicular to the rotation axis through the center of mass. 

The angular velocity components          of the link that the actuator is placed where 

the angle of the rotor is mensurationed about the Z-axis.  

Since  ̇  and          have the same order of magnitude and if    is sufficiently large, 

as a result, the rotational kinetic energy of the drive is approximately      
 (   ̇ )

 
 [8]. 

 

Additional degrees of freedom appear because of the elastic transmission between the 

actuators and the links. As a result, at each actuator the rotor is modeled as a fictional 

link and so an n degree of freedom is added to the system that makes the general system 

a 2n degree of freedom system. 

To find the equations of motion responding to the two sets of generalized coordinates 

showed in 2.1 and 2.3, Lagrange's equations are used. 

The Lagrange's equation of the first set of the generalized coordinates that correspond to 

the robot joint variables is shown below  

 

  
(
  

 ̇ 
)  

  

 ̇ 
 

  

 ̇ 
 

  

 ̇ 
  ̃    

          j=1, …., m                                           (2.4) 

 

The Lagrange's equation of the second set of the generalized coordinates that correspond 

to the robot joint variables is shown below  

 

  
(
  

 ̇ 
)  

  

 ̇ 
 

  

 ̇ 
 

  

 ̇ 
   

                  j=1, ….., n                                            (2.5) 

Where K, D, U,  ̃ ,   
  and   

  represent the following terms respectively (kinetic 

energy, dissipation function, potential energy, generalized contact forces, generalized 

constraint forces and generalized actuator forces).  

D terms are all zeros according to the presented assumptions of neglecting the damping 

terms.  

 

2.3 System Equations of Motion  

According to Spong [2] assumptions given in 2.2, the following equations of motion are 

presented  
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 ̂ ̈̅   ̅   ̃   ̅                                                                                                      ̋   ̌  

 

 ̂  ̈̅   ̃̋ ̅   ̅̌   ̅                                                                                                      ̋   ̌  

where,  ̂̋ ̅̌ is the     generalized mass matrix which is positive definite and 

symmetric and  ̅̋ ̅  ̇̅̌ is the     vector of gravitational, centrifugal and Coriolis 

terms.  ̅ and  ̂ are the same as those of the open system case, regardless elasticity 

where the rotors are considered as a part of the identical links. 

 

This is because the terms of the inertia coupling between  ̅     ̅  disappeared. 

 

 

 ̃  is an     vector that contains stiffness terms such a way that 

 ̃  [ ̂
̋ ̅   ̅̌
 

] 

Where  ̂ is an     diagonal stiffness matrix with                  

 

 ̂   is an     matrix that contains the elements of the inertial parameters of the links 

and may be expressed as  

 

 ̂      ̏  
   

 ̐                                                                                                  ̋   ̌  

 

 ̅ is the     vector of the control torques after the speed reduction. 

 

 

 ̅  is the vector of generalized constraint forces due to the closed loop formation. To 

find    loop closure constraint equations must be defined. 

 

  ̇                                                                                                                                   ̋   ̌  
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where  ̋ ̌ is an ̋   ̌    stands for the constraint Jacobian matrix with 

            ,                    

In order to satisfy that the kinetic energy of the rotor is due basically to its' own rotation 

[1], the gear ratio assumed to be large enough. 

As a result,     can be defined as  

 

 ̅   ̂  ̅                                                                                                                         ̋    ̌  

where   is an ̋   ̌    stands for the Lagrange multipliers vector. 

 

Kinetic and potential energy terms and all the other terms related to them will be present 

in chapter 3.  

 

2.4 Closed Loop Constraints  

 

The constraint equations are necessary for the purpose of writing the non-actuated joint 

coordinate by using the actuated joint coordinate terms. 

 

After the disconnected constraint equations of the robot are written in loop closure form 

in terms of position, velocity and matrix form as below, 

  ̋        ̌                                                                                                           ̋    ̌  

 

∑     ̇
                                                                                                                        ̋    ̌ 

     

 

 ̂ ̇̅   ̅                                                                                                                            ̋    ̌  

 

  ̂is an ̋   ̌    matrix is now constructed, However there will be two sub-

matrices when the terms of the non-actuated joint variables are written in terms of the 

actuated ones and this shall give an ̋   ̌     ̂             ̋   ̌  

̋   ̌        ̂   and equation 2.12 can be written now as below 
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 ̂  ̇̅   ̂  ̇̅                                                                                                                   ̋    ̌  

 

 ̇̅   May be found as  

 ̂ ̇̅   ̇̅                                                                                                                            ̋    ̌  

 

 ̂   ( ̂ )
  
 ̂                                                                                                             ̋    ̌  

 

and 

 

 ̈̅   ̂ ̈̅   ̇̂ ̇̅                                                                                                                ̋    ̌  

 

and 

 

 ̇̂   (̑ ̇̂ ̒  ̂  ( ̂ )
  
 ̇̂ )                                                                                ̋    ̌  

 

 

where  ̂       ̋   ̌            

Further differentiations will not be needed because an implicit numerical integration 

method will be used for the control scheme.  
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2.5 Inverse Dynamics Control  

2.5.1 Task Space Equations  

The control technique used for the robot that has   links and   actuators at the joints is 

basically depends on finding a connection between the inputs and the outputs. The 

inputs through the actuating motors can be voltages supplied to those actuators or joint 

torques/forces. The outputs are the joint positions either in joint space or in task space 

since the control problem main aim is the end effector position tracking. 

A relation must be derived between the joint space and the task space coordinates since 

the commanded motion is decided in the task space.  

 

Assume              stands for the Cartesian position variables of the end effector. 

In order to connect the coordinates of the end effector with the joint coordinates, certain 

functions are used,            , so the task space equation shall be  

 

     ̋        ̌                                                                                          ̋    ̌  

  is the number of the coordinates as presented in the joint space. 

 

By differentiating Equation 3.1 once, this gives the following velocity relation. 

 

 ̇  ∑    
    

 
                                                                                                  ̋    ̌  

And  

 

   
  

   

  ̇ 
                                                                                                             (2.21) 

 

Equation (2.18) may be written in matrix for as  

 

 ̇̅   ̂  ̇̅                                                                                                                           ̋    ̌  
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 ̂  is the     robot Jacobian matrix. 

 

By making use of Equation 2.15, one can write the Jacobian matrix equation only in 

terms of the actuated variables. As a result the same series of steps is followed to find 

    matrix  ̂ 
 
 and   ̋   ̌ matrix  ̂ 

 
 as the corresponded joint variables 

coefficient matrices. This can be done as follows.  

 

 

 

 ̂ 
 
 ̇̅   ̂ 

 
 ̇̅   ̇̅                                                                                                        ̋    ̌  

 

Substituting Equation 2.15 in into Equation 2.21 gives  

 

 ̂ 
 
 ̇̅   ̂ 

 
̓ ( ̂ )

  
 ̂  ̇̅̔   ̇̅                                                                               ̋    ̌  

 

Separating out the actuated variables joint coordinates vector gives 

 

 ̇̅   ̂ ̇̅                                                                                                                              ̋    ̌  

 

where  ̂ is an     robot Jacobian matrix which is expressed as  

 

 ̂   ̂ 
 
  ̂ 

 
 ̂    ̂                                                                                                  ̋    ̌  

 

Equation 2.23 is differentiated up till snap level as follows. 

 

 ̈̅   ̂ ̇̅̇   ̂ ̈̅                                                                                                                    ̋    ̌  

 

 ̅̉   ̂ ̇̅̈    ̂ ̈̅̇   ̂ ̅̉                                                                                                        ̋    ̌  

 

 ⃜   ̂̉ ̇̅    ̂ ̈̅̈    ̂ ̅̉̇   ̂ ̊̅                                                                                            ̋    ̌  
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Hence, 

 

 ̊̅   ̂  ̋ ̊̅   ̂̉ ̇̅    ̂ ̈̅̈    ̂ ̅̉̇                                                                                      ̋    ̌  

 

At this point, it's necessary to write the system equations of motion of the system by 

using only the actuated joint variables terms and this may be done by get rid of the non-

actuated joint accelerations and the Lagrange multipliers   that stand for the forces at 

the disconnected joints. 

 

M and Q can be factorized into actuated and non-actuated joint variables as follows. 

 

 ̂  [
 ̂   ̂  

 ̂    ̂  
]                                                                                                      ̋    ̌   

 

and 

 

 ̅  [
 ̅ 

 ̅ ]                                                                                                                        ̋    ̌   

 

Where  

 

 ̂   is an     sub-matrix that engendered by symmetric generalized mass matrix. 

 

 ̂    is an   ̋   ̌ sub-matrix that engendered by symmetric generalized mass 

matrix. 

 ̂   is an ̋   ̌  ̋   ̌ sub-matrix that engendered by symmetric generalized 

mass matrix. 

 

 ̅  is an     sub-matrix that engendered by  ̅ vector that includes Colriolis, 

centrifugal and gravitational terms.  
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 ̅   is an ̋   ̌    sub-matrix that engendered by   vector that includes Colriolis, 

centrifugal and gravitational terms. 

 

Equation 2.6 can be written now in two parts as follows. 

 

 ̂   ̈̅   ̂   ̈̅   ̅   ̂̋ ̅   ̅̌   ̂   ̅                                                      ̋     ̌  

 

 ̂    ̈̅   ̂   ̈̅   ̅   ̂   ̅                                                                           ̋     ̌  

 

By eliminating  ̅ after Substituting Equation 2.17 into Equation 2.32 and 2.33, the 

following n dimensional equations are obtained. 

  

 ̂  ̈̅   ̅   ̂̋ ̅   ̅̌                                                                                           ̋    ̌  

 

where, 

 

 ̂  ̓ ̂    ̂   ̂    ̂ ̔   ̂  ̑ ̂   ̒
 

̓ ̂     ̂   ̂    ̂ ̔            ̋    ̌  

 

 ̅  [  ̂   ̂    ̇̂   ̂  ̑ ̂   ̒
 

 ̂   ̂    ̇̂ ]  ̇̅   

       [  ̂   ̂    ̇̂   ̂  ̑ ̂   ̒
 

 ̂   ̂    ̇̂ ]  ̇̅   

        ̅   ̂  ̑ ̂   ̒
 

 ̅                                                                                         ̋    ̌    

 

 

After eliminating the intermediate variables  ̅      ̅ in the dynamic equations, the 

following equation may show the relation between the input torques T and the output 

which is the independent end effector coordinates to accompany with constraint 
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surface  . After the elimination procedure as explained in [5], the input output relation is 

given as follows. 

 

 ̋ ̌ ⃜   ̋ ⃛  ̈  ̇  ̌                                                                                             ̋    ̌  

 

where, 

 

   ̂   ̂  ̂ ̂                                                                                                              ̋    ̌  

 

   ̂  ̍ ̂ ̏  ̂  ̂  ̑  ̂ ̅̉̇   ̂ ̈̅̈   ̂̉ ̇̅̒    ̇̂  ̅̉   ̈̂ ̈̅  

       ̅ ̈   ̂ ̈̅̐   ̂ ̈̅   ̅ ̎                                                                                        ̋    ̌ 

 

By using the above equations, a feedback linearization (inverse dynamics) control 

method can be developed that will decouple and linearize the system. Numerical 

integration can be used for the purpose of calculating the corresponding control torque 

vector   yet, this course of action needs knowledge of  ̇̂   ̈̂   ̇̅   ̈̅   ̈̂      ̂̉ and the 

resulting expressions will be too complex and long specifically for    , which makes 

this method unsuitable for real time applications. 

 

 

2.5.2 Control Law 

 

The dynamic equations shall be used at the acceleration level so as to draw up an inverse 

feedback linearization (invers dynamics) control law for the purpose of finding the input 

torques needed to realize the desired end-effector motion. 

Till this far, the system dynamic equations 2.34, 2.7, 2.27 may be presented in 

augmented form as follows. 
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[
 ̂   
  ̂   ̂
 ̂   

] [

 ̈̅

 ̈̅

 ̅

]  [

  ̅   ̂̋ ̅   ̅̌

 ̂̋ ̅   ̅̌

  ̂ ̇̅̇   ̈̅

]                                                              ̋    ̌  

 

 

Replacing  ̈̅ by the control variable   which stands for the command acceleration, it is 

seen from Equation 2.37 that in the forward dynamics problem, the torque vector  ̅ 

instantly affects the end-effector jerk rate  ̊̅. As a result, the command jerk rates need to 

be decided in the control law. Utilizing the errors in the end-effector states and the 

desired jerk rates, the command jerk rates then can be formed as 

 

 ̅̈   ̅̋ ̌    ( ̅
̋ ̌   ̅̋ ̌)    ̋ ̈̅

   ̈̅̌    ̋ ̇̅
   ̇̅̌  

           ̋ ̅
   ̅̌                                                                                                          ̋    ̌ 

 

 

where the superscript    indicates desired values and                 are constant 

feedback gain diagonal matrices, where        [   ]                  

 

As a matter of fact, at the inverse dynamics problem, only the first and the third rows of  

Equation 2.40 include the kinematic variables and may be short term as inverse 

kinematic equations. While, the second raw of Equation 2.40 is utilized for the purpose 

of finding the control torques. Inertia and elastic force terms are included in the inverse 

kinematic equations as well due to redundancy caused by joint flexibility where inverse 

kinematic equations may be formed as follows. 

 

[
 ̂  
 ̂  

] ̙
 ̈̅

 ̈̅
̚  ̙

  ̅   ̂̋ ̅   ̅̌

  ̂ ̇̅̇   ̅
̚                                                                          ̋    ̌  

 

The above equation represents a singular package of differential equations so it can't be 

solved in that form. The reason behind singularity is that the ways of transmitting the 

control torques to the end-effector which is done through the elastic joints which make 
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the control torques do not have an instant effect on the acceleration of the end-effector. 

This causes the problem to be time-anticipatory. Equation 2.37 clearly showed that the 

torques do have an instant effect on the second derivative of the acceleration of the end-

effector. In fact, an implicit numerical integration methods need to be used [5], because 

the acceleration coefficient matrix in Equation 2.42 is not able to be inverted to get an 

explicit system of ordinary differential equations. As an implicit numerical integration 

method, backward Euler method will be presented, the latter is one of the simplest 

implicit integration techniques where the integration is fully dependent of the following 

backward difference formula. 

 

 ̇    
 

 
̋       ̌                                                                                                   ̋    ̌    

 

where   stands for the time interval and   represents the time step number. Using Eq. 

2.43, Eq. 2.40 can be written at time      as  

 

 ̂  

 
̋ ̇̅     ̇̅ ̌   ̅   ̂ ̑  ̇̅     ̅    ̇̅     ̅ ̒                            ̋    ̌  

 

 ̂ 
 

 
̑ ̇̅     ̇̅ ̒   ̂ ̑  ̇̅     ̅̅    ̇̅     ̅ ̒   ̅                                ̋    ̌  

 

 ̂
 

 
̋ ̇̅     ̇̅ ̌   ̂ ̇̅̇                                                                                         ̋    ̌  

 

where  ̂ ̋  ̇̅     ̅ ̌  ̅
 ̋  ̇̅     ̅   ̇̅   ̌  ̋  ̇̅     ̅ ̌     

  ̂ ̇̋   ̇̅     ̅   ̇̅   ̌  also depend on  ̇̅   . Equations (2.44-2.46) are a set of    

algebraic equations that solved for the    unknowns  ̇̅     ̇̅         ̅    as below. 

The term   appears in Equation      shall be obtained by integration of Equation      . 

Piecewise smooth functions for is utilized to decide the desired motion. 

In the time interval         , assume   ̋ ̌ be smooth till the third derivative. Then 

by integration of Equation      twice at this time interval gives. 
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      ̇ ̋    ̌   ̈   ̈ 
   ⃛ 

 ̋    ̌    ̏̋ ̇
   ̇̌  ̋ ̇ 

   ̇ ̌  

̋ ̈ 
   ̈ ̌̋    ̌̐    ̏̋ 

   ̌  ̋  
    ̌  ̋ ̇ 

   ̇ ̌̋    ̌̐    ̋  
  

  ̌̋    ̌    ∫  ̈̋ ̌     ∫ ̏∫  ̈̋ ̌  ̐   
 

  

 

  

 

  
                                         ̋    ̌  

 

         

 

where   ̈      . 

 

Evaluation of Equation ̋    ̌ at time      gives  

 

  ̅     ̅   ̅̇ ̋       ̌   ̈̅   
   ̈̅ 

   ̅̉ 
 ̋       ̌   ̂ ̏( ̇̅   

   ̇̅    

̋ ̇̅ 
   ̇̅ ̌  ̋ ̈̅ 

   ̈̅ ̌̋       ̌]   ̂ [( ̅   
   ̅   )  ̋ ̅ 

   ̅ ̌  ̋ ̇̅ 
  

 ̇̅ ̌̋       ̌]   ̂ ̋ ̅ 
   ̅ ̌̋       ̌   ̂ ̋  ̈̅     ̇̅ ̌   ̂ ̋ 

  ̈̅      ̇̅  

 ̅ ̌                                                                                                                                    ̋    ̌                         

 

            

 

where  ̈̅     ̅   
   ̅   . 

 

Moreover, to stay away from any jump of the command accelerations   and their 

derivatives  ̇ caused by that the control torques does not hold an instant effect on the 

end-effector jerks and acceleration and this can be done by decide the integration 

constants to be the same as        ̇ at the intermissions of the desired motion. This is 

obtained by selecting the integration constants such a way that:  

  ̅   ̅̋  
 ̌   ̅̋  

 ̌      ̅̇   ̅̇̋  
 ̌   ̅̇̋  

 ̌  . (When the system start from the rest,  

then   ̅     ̅̇   .). 
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In any singular package of differential equations, the initial conditions are not 

autonomous according to [4]. The initial conditions must satisfy specified relations 

found by using Equation 2.42. Premultiplying the second raw of the latter Equation and 

subtracting the result from the first raw, gives  

 

 ̂  ̂  ̑  ̂ ̇̅̇   ̅̒   ̅   ̂̋ ̅   ̅̌                                                                   ̋    ̌  

 

To find the control torque  ̅    by using Equations (2.44-2.46), the initial values of 

           ̇  are required. When  ̅   ̅       ̇̅  are calculated at time    , they will 

not satisfy Equation (2.49) when disturbance and modeling error are existed. This 

conflict results the control torques to be incorrect. As a matter of fact, when    , they 

diverge. To attain the consistency, one may solve Equation (2.49) for  ̅  or  ̇̅ . 

Choosing  ̅  for this aim it can be gained by using Equation (2.49) at time    as  

 

 ̅   ̅   ̂  ̕ ̂  ̂  ̑  ̂ ̇̅̇    ̅̒   ̅ ̖                                                          ̋    ̌  

 

where  ̅  and  ̇̅  are the measured quantities. 

Equation (2.46) stands for   nonlinear algebraic equations solved for  ̇̅   .   ̅   in 

Equation (2.46) is given by Equation (2.48) where  ̅  and  ̇̅  are calculated from  ̅  and 

 ̇̅  by using Equation (2.25) and its' integration. Then Equation (2.44) is put to use to 

find  ̇̅    as  

 

 ̇̅    ( ̂ )
  
̓ ̂  

 
̋ ̇̅     ̇̅ ̌   ̅   ̂̋ ̅   ̅ ̌̔   ̇̅                        ̋    ̌   

Finally, the control torques  ̅    are calculated from Equation 2.45.  
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2.5.3 Position Error Dynamics 

 

The computed torques by (2.40) Equation linearize and decouple the command jerks. To 

show that, consider that, the actual accelerations are similar to the command 

accelerations i.e.  ̈    in the obscurity of error in modeling and this gives the following 

error dynamics. 

 

 ̅̋ ̌   ̂  ̅
̋ ̌   ̂  ̈̅   ̂  ̇̅   ̂  ̅                                                                         ̋    ̌  

 

where  ̅   ̅   ̅. Asymptotic stability is reached by suitable selection of feedback 

gains. To do this, performance indices such as Integral Square Error (ISE), Integral of 

the Absolute Magnitude of Error (IAE), Integral Time Absolute Error (ITAE) and 

Integral Time Square Error (ITSE) can be used. In this study ITAE performance index 

which is shown below will be used. 

 

     ∫  | ̋ ̌|                                                                                                      ̋    ̌
 

 
  

 

Effect of large initial errors is reduced while small errors in long-term are vanished, this 

happens by using ITAE performance index and because of the multiplication by time t. 

For closed-loop system, the form of property equation that based on ITAE standard is 

      
       

        . To satisfy the ITAE criteria, the feedback diagonal 

matrices              are chosen as such that 

                     
            

       
 ,          where    is a positive 

constant. 
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CHAPTER 3 

 

THREE REVOLUTE JOINTS THREE LEGS PLANAR  

PARALLEL ROBOT STUDY AND SIMULATION 

 

 

 

 

3.1 Planar Parallel Robot Study 

 

To explain and test the execution of the control law presented in the previous chapter, a 

planar parallel robot shown in Figure 3.1and Figure 3.2 is regarded. Parallel robots are 

usually defined according to the number of legs from the base to the platform as well as 

the type and number of the joints these legs have. The 3-RRR parallel robot shown 

below is to be studied, where 3-RRR means that the robot has three legs each one of 

them has three revolute joints between the fixed base and the moving platform. 

 

The robot is supported with a fixed surface which in contact with the end-effector and 

this surface is a fixed plane parallel to the  -  plane. This study focuses completely on 

the motion control where the contact forces and force control are not considered.  
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                         Figure 2 3-RRR Planar Parallel Robot Architecture 
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Figure 3 3-RRR Planar Parallel Robot 

 

Where, M1, M2, M3 are the three actuating motors. 

The system has eight links regarding the fixed link and nine revolute joints. Actuators 

that located on A, B and C are actuating the system by the generated torques and       

and    are the joint variables of A, B and C respectively. The robot has a total of six 

degrees of freedom because of the three added degrees of freedom of the flexible joints. 

The motors rotation is perpendicular to the plane of the motion and the weight's action is 

in the    direction.  

Vectors of joint variables and actuator variables has been defined already in chapter 2, 

the vector of the joints variables may be split into actuated and non-actuated sub-vectors 

as below. 

 ̅  ̏ ̅     ̅  ̐                                                                                                                  ̋   ̌  
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where, 

 ̅  ̏          ̐
                                                                                                                ̋   ̌  

 ̅  ̏              ̐
                                                                                                       ̋   ̌  

The vector of the actuator variables may be written as well as below. 

 ̅  ̏          ̐
                                                                                                             ̋   ̌  

The system owns three degrees of freedom i.e.     except those coming from the 

flexible joints and seven joint variables are presented i.e.    . This results in four 

constraint equations where           and this is done by disconnecting the 

joins at I and H to get four open kinematic chain as shown in Figures 3.3 and 3.4. 

 

                Figure 4 Three Open Kinematic Chains 

 

For the described system, Lagrange formulation will be used for deriving equations of 

motion. 
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3.1.1 Kinetic Energy  

Expressions of the kinetic energy can be got by substituting the components of the 

translational and angular velocities of each link and actuator in the following equations 

of kinetic energy of any link and actuator. 

Kinetic energy of the     link: 

     
 

 
  

 ̋ ̅  
 ̌  ̅  

  
 

 
̋ ̅ 

 ̌  ̂ 
  ̅ 

                                                                         ̋   ̌    

Where, 

 ̅  
  ∑  ̅  

  ̇                                                                                                               ̋   
 
   ̌  

 ̅ 
  ∑  ̅  

  ̇                   
 
                                                                                               ̋   ̌  

 ̂ 
  [ ̂̋   ̌] ̂  

 [ ̂̋   ̌]
 
                                                                                                   ̋   ̌  

 

In the equations above,  

  
  is the     link's mass,  ̅  

  is the vector of the     link's mass center velocity that 

presented in the fixed reference frame,  ̅  
  is the coefficient vector of the velocity 

influence,  ̅ 
  is the     link's angular velocity that presented in the fixed reference 

frame,   ̅  
  is the angular coefficient vector of the velocity influence,  ̂ 

  is the     link's 

moment of inertia matrix presented in the fixed reference frame,  ̂̋   ̌ is  the 

transformation matrix from the reference frame of the     link to the fixed reference 

frame and  ̂  
  is the     link's moment of inertia matrix presented in its body reference 

frame. 

Kinetic energy of the     actuator: 

     
 

 
  

 ( ̅  
 )

 
 ̅  
  

 

 
  
  ̇ 

                                                                                    ̋   ̌  
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Link-1 

 ̅  
̋ ̌  

  

 
̋       ̌                                                                                                      ̋   ̌   

 ̅  
̋ ̌   ̇̅  

̋ ̌  
  

 
(      ̇       ̇)  [

 
  

 
     ̇

  

 
     ̇

 

]                                            ̋    ̌   

 ̅ 
̋ ̌  [

 
 
 ̇ 

]                                                                                                                     ̋    ̌    

As a result, kinetic energy related to Link-1 is presented as 

     
 

 
̓  

   
 

 
     ̔                                                                                               ̋    ̌  

 

Link-2 

 ̅  
̋ ̌  

  

 
̋       ̌                                                                                                    ̋    ̌   

 ̅  
̋ ̌   ̇̅  

̋ ̌  
  

 
(      ̇       ̇)  [

 
  

 
     ̇

  

 
     ̇

 

]                                            ̋    ̌   

 ̅ 
̋ ̌  [

 
 
 ̇ 

]                                                                                                                     ̋    ̌    

As a result, kinetic energy related to Link-2 is presented as 

     
 

 
̓  

   
 

 
     ̔                                                                                               ̋    ̌  

 

Link-3 



 

28 
 

 

 ̅  
̋ ̌  

  

 
̋       ̌                                                                                                    ̋    ̌   

 ̅  
̋ ̌   ̇̅  

̋ ̌  
  

 
(      ̇       ̇)  [

 
  

 
     ̇

  

 
     ̇

 

]                                            ̋    ̌   

 ̅ 
̋ ̌  [

 
 
 ̇ 

]                                                                                                                     ̋    ̌    

As a result, kinetic energy related to Link-3 is presented as 

     
 

 
̓  

   
 

 
     ̔                                                                                               ̋    ̌  

Link-4 

 ̅  
̋ ̌    ̋       ̌  

  

 
̋         ̌                                                                ̋    ̌  

 

 

 

 ̅  
̋ ̌

   (     ̇      ̇ )  
  

 
(      ̇        ̇  )  

         [

       ̇  
  

 
      ̇  

      ̇  
  

 
     ̇  

 

]                                                                               ̋    ̌  

 ̅ 
̋ ̌  [

 
 
 ̇  

]                                                                                                                    ̋    ̌  

As a result, kinetic energy related to Link-4 is presented as 

     
 

 
  

   
  ̇ 

  
 

 
  

      ̋      ̌ ̇ ( ̇   ̇ )  
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                   ̓  
   

 

 
     ̔ ( ̇   ̇ )

 
                                                                   ̋    ̌  

Link-5 

 ̅  
̋ ̌    ̋       ̌  

  

 
̋         ̌                                                                ̋    ̌  

 

 ̅  
̋ ̌

   (     ̇      ̇ )  
  

 
(      ̇        ̇  )  

         [

       ̇  
  

 
      ̇  

      ̇  
  

 
     ̇  

 

]                                                                              ̋    ̌  

 ̅ 
̋ ̌  [

 
 
 ̇  

]                                                                                                                   ̋    ̌  

As a result, kinetic energy related to Link-5 is presented as 

     
 

 
  

   
  ̇ 

  
 

 
  

      ̋      ̌ ̇ ( ̇   ̇  )  

                
 

 
̓  

   
 

 
     ̔ ( ̇   ̇ )

 
                                                                       ̋    ̌  

 

Link-6 

 ̅  
̋ ̌    ̋       ̌  

  

 
̋         ̌                                                                ̋    ̌  

 

 ̅  
̋ ̌    (     ̇      ̇ )  

 

 
(      ̇        ̇  )  

         [

       ̇  
  

 
      ̇  

      ̇  
  

 
     ̇  

 

]                                                                              ̋    ̌  
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 ̅ 
̋ ̌  [

 
 
 ̇  

]                                                                                                                   ̋    ̌  

As a result, kinetic energy related to Link-6 is presented as 

     
 

 
  

   
  ̇ 

  
 

 
  

      ̋      ̌ ̇ ( ̇   ̇  )  

                
 

 
̓  

   
 

 
     ̔ ( ̇   ̇ )

 
                                                                       ̋    ̌  

 

 

Link-7 

 

 ̅  
̋ ̌

   ̋       ̌    ̋         ̌  

               ̏ ̋      ̌   ̋      ̌̐                                                                   ̋    ̌  

 ̅  
̋ ̌  [

       ̇         ̇      ̋      ̌ ̇   
      ̇         ̇      ̋      ̌ ̇   

 

]                                      ̋    ̌  

 ̅ 
̋ ̌  [

 
 

 ̇   

]                                                                                                                  ̋    ̌  

As a result, kinetic energy related to Link-7 is presented as 

     
 

 
  

   
  ̇  

 

 
  

   
 ( ̇   ̇ )

 
 

 

 
̏  

   
      ̐( ̇   ̇   ̇ )

 
  

                  
      ̋      ̌ ̇ ( ̇   ̇ )  

                  
      ̋         ̌ ̇ ( ̇   ̇   ̇ )  

                 
     ̋          ̌( ̇   ̇ )                                                         ̋    ̌  
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Actuator-1 

 ̅ 
   ̅                                                                                                                             ̋    ̌  

 ̅ 
  [

 
 

   ̇ 

]                                                                                                                  ̋    ̌  

As a result, kinetic energy related to Actuator-1 is presented as 

     
 

 
̏  

     
 ̐ ̇ 

                                                                                                      ̋    ̌  

Actuator-2 

 ̅ 
   ̅                                                                                                                             ̋    ̌  

 ̅ 
  [

 
 

   ̇ 

]                                                                                                                  ̋    ̌  

As a result, kinetic energy related to Actuator-2 is presented as 

     
 

 
̏  

     
 ̐ ̇ 

                                                                                                      ̋    ̌  

Actuator-3 

 ̅ 
   ̅                                                                                                                             ̋    ̌  

 ̅ 
  [

 
 

   ̇ 

]                                                                                                                  ̋    ̌  

As a result, kinetic energy related to Actuator-1 is presented as 

     
 

 
̏  

     
 ̐ ̇ 

                                                                                                      ̋    ̌  

The sum of links and actuators kinetic energy values represents the total kinetic energy 

of the system. 
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The Lagrange components related to the kinetic energy are given as follow. 
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                                                                                                                               ̋    ̌  

 

  

   
 

 

 
 ̇ 
 ̍  

      ̋   ̌     
      ̋   ̌     

      ̏ ̋       ̌̐̎  

 ̇  ̇ ̕
 

 
  

      ̋   ̌    
      ̋   ̌    

      ̏ ̋       ̖̌̐  

 ̇  ̇ ̍  
      ̏ ̋       ̌̐̎                                                                             ̋    ̌  
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 ̇ 
   

      ̋   ̌   ̇  ̇ 
 

 
  

      ̋   ̌                                              ̋    ̌  

 

  

   
 

 

 
 ̇ 
   

      ̋   ̌   ̇  ̇ 
 

 
  

      ̋   ̌                                              ̋    ̌  

 

  

   
  ̇ 

 ̍  
      ̏ ̋       ̌̐    

      ̏ ̋    ̌̐̎   ̇ 
 ̍  

      ̏ ̋   

 ̐̎   ̇  ̇ ̏  
      ̏ ̋       ̌̐     

      ̏ ̋    ̌̐̎  

 ̇  ̇ ̍  
      ̏ ̋       ̌̐    

    ̏ ̋    ̌̐̎   ̇  ̇ ̍  
      ̏ ̋   

 ̌̐̎                                                                                                                                   ̋    ̌  

 

  

   
                                                                                                                              ̋    ̌  

  

   
                                                                                                                              ̋    ̌  

  

   
                                                                                                                              ̋    ̌  

 

3.1.2 Potential Energy  

Potential energy formulas of links and actuators are given as follow. 

 

       
  

  

 
                                                                                                           ̋    ̌  

 

       
  

  

 
                                                                                                           ̋    ̌  

       
  

  

 
                                                                                                           ̋    ̌  
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  ̓      

  

 
  ̋   ̌̔                                                                             ̋    ̌  

       
  ̓      

  

 
 ̋   ̌̔                                                                              ̋    ̌      

       
  ̓      

  

 
 ̋   ̌̔                                                                              ̋    ̌  

       
  ̏                ̋          ̌̐                                   ̋    ̌  

     
 

 
 ̋     ̌

                                                                                                   ̋    ̌  

     
 

 
 ̋     ̌

                                                                                                   ̋    ̌  

     
 

 
 ̋     ̌

                                                                                                   ̋    ̌  

The total potential energy of the system is the sum of all potential energies of links and 

actuators. 

    
  

  

 
      

  
  

 
      

  
  

 
      

  ̓      
  

 
  ̋   ̌̔  

  
  ̓      

  

 
 ̋   ̌̔    

  ̓      
  

 
 ̋   ̌̔    

  ̏             

   ̋          ̌̐  
 

 
 ̋     ̌

  
 

 
 ̋     ̌

  

 

 
 ̋     ̌

                                                                                                                  ̋    ̌  

 

 

The Lagrange components related to the total kinetic energy are given as bellow. 

 

  

   
   

  
  

 
      

  ̓      
  

 
  ̋   ̌̔    

  ̏         ̋   ̌  

   ̋         

 ̌̐                                                                                                                                     ̋    ̌  
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   ̏      
  

 
  ̋   ̌̐                                                       ̋    ̌  

 

  

   
   

  
  

 
      

   ̏      
  

 
  ̋   ̌̐                                                       ̋    ̌  

  

   
   

  
  

 
 ̋   ̌    

  ̏   ̋   ̌     ̋          ̌̐                           ̋    ̌  

  

   
   

  
  

 
 ̋   ̌                                                                                                      ̋    ̌  

  

   
   

  
  

 
 ̋   ̌                                                                                                      ̋    ̌  

  

   
   

  ̏   ̋      ̌̐                                                                                         ̋    ̌  

  

   
  ̋     ̌                                                                                                          ̋    ̌  

  

   
  ̋     ̌                                                                                                          ̋    ̌  

  

   
  ̋     ̌                                                                                                          ̋    ̌  

 

3.1.3 Closed-Loop Constraint Equations 

Disconnecting the system at H and I at Figure 3.2 gives four open kinematic chains 

which result in four constraint equations. Position level constraint equations may be 

formulated by re-connect the disconnected joints at H and I. this may be done according 

to the formula below. 

 

  ̋        ̌                    ̋   ̌                                                           ̋    ̌  
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                                                                           ̋    ̌  

                                                                                  ̋    ̌  

                ̋      ̌                                                   ̋    ̌  

                ̋      ̌                                                   ̋    ̌  

 

Differentiating the above equations gives the following. 

       ̇         ̇           ̇          ̇         ̇                         ̋    ̌  

      ̇         ̇           ̇          ̇         ̇                            ̋    ̌  

       ̇         ̇      ̋    ̌( ̇ )        ̇        ( ̇  )          ̋    ̌  

      ̇         ̇      ̋    ̌( ̇ )        ̇        ( ̇  )             ̋    ̌  

 

The above equations may be written with symbols as follows. 

    ̇      ̇      ̇      ̇      ̇      ̇      ̇                                ̋    ̌  

    ̇      ̇      ̇      ̇      ̇      ̇      ̇                               ̋    ̌  

    ̇      ̇      ̇      ̇      ̇      ̇      ̇                               ̋    ̌  

    ̇      ̇      ̇      ̇      ̇      ̇      ̇                                ̋    ̌  

where, 

                                                                                                    ̋    ̌  

                                                                                                                ̋     ̌  

                                                                                                                                ̋     ̌  

                                                                                                            ̋     ̌  
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                                                                                                                         ̋     ̌  

                                                                                                                               ̋     ̌  

                                                                                                                      ̋     ̌  

                                                                                                   ̋     ̌  

                                                                                                            ̋     ̌  

                                                                                                                               ̋     ̌  

                                                                                                              ̋     ̌  

                                                                                                                       ̋     ̌  

                                                                                                                               ̋     ̌  

                                                                                                                         ̋     ̌  

                     ̋      ̌                                                            ̋     ̌  

                                                                                                                               ̋     ̌  

                                                                                                               ̋     ̌  

                ̋      ̌                                                                           ̋     ̌  

                                                                                                                               ̋     ̌  

                                                                                                                         ̋     ̌  

        ̋      ̌                                                                                              ̋     ̌  

                    ̋      ̌                                                               ̋     ̌  

                                                                                                                               ̋     ̌  

                                                                                                            ̋     ̌  

              ̋      ̌                                                                               ̋     ̌  
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                                                                                                                               ̋     ̌  

                                                                                                                       ̋     ̌  

       ̋      ̌                                                                                                 ̋     ̌  

 

 

Separating the non-actuated joint variables gives. 

 

[
 
 
 
 
 ̇ 
 ̇ 
 ̇ 
 ̇ ]
 
 
 
 

  [

            
            
            
            

]

  

[

         
         
         
         

] [

 ̇ 
 ̇ 
 ̇ 

]                           ̋     ̌  

As a result, 

 ̇̅   
   ̂    ̇̅                                                                                                            ̋     ̌  

One can write the constraint matrix B as follows.  

 

 ̂  

[
 
 
 
 
 
 
            
            
            
            
            
            
            ]

 
 
 
 
 
 

                                                                                 ̋     ̌  

where, 

 ̂  [
         
         
         

]                                                                                            ̋     ̌  

and  
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 ̂  [

            
            
            
            

]                                                                                 ̋     ̌  

The end-effector position and orientation can be written as follows. 

 

[

  
  
  
]  [

(                ̋      ̌)

(                ̋      ̌)

    

]                                                     ̋     ̌  

Where    and    stand for the position of the end-effector in the  -direction and the  -

direction respectively and   stands for the orientation of the end-effector.  

 

3.1.4 System Equations of Motion  

Corresponding to the vector of the robot joint variables of the rigid links from Equation 

2.1, one can write in matrix form the following system equations of motion.  

[
 
 
 
 
 
 
             

           
           
             

           
           
             ]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 ̈ 
 ̈ 
 ̈ 
 ̈ 
 ̈ 
 ̈ 
 ̈ ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
  
  
  
  
  
  
  ]
 
 
 
 
 
 

  ̂               ̋     ̌   

Where, 

     ̓  
   

 

 
     ̔    

   
    

         ̓  
   

 

 
     ̔    

   
  

               ̏  
   

      ̐     
            

      ̋       ̌  

                  
      ̋    ̌                                                                                   ̋     ̌  
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         ̓  
   

 

 
     ̔    

   
  ̏  

   
      ̐    

          

                 
      ̋       ̌     

      ̋    ̌                                  ̋     ̌  

    ̏  
   

      ̐    
      ̋       ̌    

      ̋    ̌         ̋     ̌   

 

    ̓  
   

 

 
     ̔    

   
    

         ̓  
   

 

 
     ̔                       ̋     ̌  

    
 

 
   

         ̓  
   

 

 
     ̔                                                                  ̋     ̌  

    ̓  
   

 

 
     ̔    

   
    

         ̓  
   

 

 
     ̔                       ̋     ̌  

    
 

 
   

         ̓  
   

 

 
     ̔                                                                  ̋     ̌  

    ̓  
   

 

 
     ̔    

   
  ̏  

   
      ̐     

      ̋    ̌        ̋     ̌  

    ̏  
   

      ̐    
      ̋    ̌                                                          ̋     ̌   

      
   

 

 
                                                                                                          ̋     ̌  

      
   

 

 
                                                                                                          ̋     ̌  

      
   

                                                                                                          ̋     ̌  

      
         ̇  ̇  

 

 
   

         ̇ 
     

         ̇  ̇    
         ̇ 

  

   
        ̋       ̌ ̇  ̇     

        ̋       ̌ ̇  ̇    
      ̋   

    ̌ ̇ 
    

      ̋       ̌ ̇  ̇    
      ̋       ̌ ̇  ̇  

  
      ̋       ̌ ̇ 

     
      ̋    ̌ ̇  ̇    

      ̋    ̌ ̇  ̇  

  
      ̋    ̌ ̇ 

    
      ̋    ̌ ̇  ̇    

  
  

 
       

  ̓      

  

 
  ̋   ̌̔    

  [         ̋   ̌]     ̋      ̌                                    ̋     ̌  



 

42 
 

      
         ̇  ̇  

 

 
   

         ̇ 
    

  
  

 
       

  ̏      

  

 
  ̋     ̌                                                                                                               ̋     ̌  

 

 

      
         ̇  ̇  

 

 
   

         ̇ 
    

  
  

 
       

  ̏      

  

 
  ̋     ̌                                                                                                               ̋     ̌  

   ̏   
      ̋    ̌    

      ̋    ̌̐ ̇  ̇  ̏    
      ̋    ̌̐ ̇  ̇  

̏   
      ̋    ̌̐ ̇ 

  ̏  
            

            
      ̋      

 ̌̐
 

 
  ̇ 

    
  

  

 
      

  
 ̏          ̋      ̌̐                                                                                  ̋     ̌  

   
 

 
  ̇ 

 ̏  
        ̐    

  
  

 
                                                                     ̋     ̌  

   
 

 
  ̇ 

 ̏  
        ̐    

  
  

 
                                                                     ̋     ̌  

   ̏  
      ̋     ̌    

        ̋    ̌̐ ̇ 
  ̏  

       ̋    ̌̐ ̇ 
  

̏   
      ̋    ̌̐ ̇  ̇  ̏   ̋      ̌̐  

                                              ̋     ̌  

 

Corresponding to the vector of the actuator joint variables from Equation 2.2, one can 

write in matrix form the following system equations of motion. 

 

[
     
     
     

] [

 ̈ 
 ̈ 

 ̈ 

]  [

  ̋     ̌

  ̋     ̌

  ̋     ̌
]  [

  
  
  

]                                                   ̋     ̌  

It is wished for writing Equation 3.133 in only terms of actuated joint variables, this 

may be done by first writing the above mentioned equation in two parts as below. 
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 ̂   ̈̅   ̂   ̈̅   ̅   ̂̋ ̅   ̅̌   ̂   ̅                                                    ̋     ̌  

 ̂     ̂   ̈̅   ̅   ̂   ̅                                                                            ̋     ̌  

where, 

 ̂      ̏  ̐ for        . 

 ̂   [

     
     
     

]                                                                                       ̋     ̌  

 ̂   [

        

      
      

]                                                                           ̋     ̌  

 ̂   [
        

      
        

]                                                                               ̋     ̌  

 ̅   ̏      ̐                                                                                                ̋     ̌  

 ̅   ̏        ̐                                                                                      ̋     ̌   

 

In order to eliminate the non-actuated joint variables, Equation 2.15 and 2.17 will be 

used, after that, Equation 3.153 will be solved for   and then it will be substituted in 

Equation 3.152 gives. 

 ̂  ̈̅   ̅   ̂̋ ̅   ̅̌                                                                                        ̋     ̌  

Where, 

 ̂  [ ̂    ̂   ̂    ̂ ]   ̂  ( ̂   )[ ̂     ̂   ̂    ̂ ]                 ̋     ̌  

   

̓  ̂   ̂    ̇̂   ̂  ( ̂   )
 
 ̂   ̂    ̇̂ ̔  ̇̅  

̓  ̂   ̂    ̇̂   ̂  ( ̂   )
 
 ̂   ̂    ̇̂ ̔  ̇̅   ̅   ̂  ( ̂   )

 
 ̅      ̋     ̌  
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3.2 Control Simulation and Results 

The execution of the control law is tested by using         software. All the 

constants and the variables of the system are presented and an m-file program is written 

to carries out the procedures to calculate the control torques at each decided time step. 

The early mentioned control algorithm in Chapter 2 will be exercised together with the 

implicit numerical integration method to find the control torques exactly as mentioned 

before and the procedure will be as follows. 

 

 

The nonlinear algebraic equation 2.46 will be solved by functional iteration. For this 

purpose, using Equation 2.48, Equation 2.43, Equation 2.25, Equation 2.46  is written in 

the following form  

 ̇̅    ̑ ̂
 

 
  ̂̇   ̂  ̂   ̂   ̂   ̂  

  ̂   ̂  
  ̂̒

  

 ̕ ̂
 

 
 ̇̅    ̅   ̅̇ ̋       ̌  

 ̈̅   
   ̈̅ 

   ̅̉ 
 ̋       ̌   ̂ [( ̇̅   

   ̇̅ )  ̋ ̇̅ 
   ̇̅ ̌  ̋ ̈̅ 

   ̈̅ ̌̋       ̌]  

 ̂ [( ̅   
   ̅ )  ̋ ̅ 

   ̅ ̌  ̋ ̇̅ 
   ̇̅ ̌̋       ̌]   ̂ ̋ ̅ 

   ̅ ̌̋       ̌  

 ̂ (  ̅   
    ̅   ̇̅ )   ̂ ( 

  ̅   
     ̅   ̇̅    ̅ )̖                        ̋     ̌  

In the right hand side, beginning with  ̇̅  for  ̇̅    , after that, Equation 2.164 will be 

solved for the new value of  ̇̅    at the left hand side. Iteration lasts till the norm of 

difference between any two sequent iterations is minimal than a small number  . The 

simulation shows that for       , maximum three iterations are necessary. After 

finding the control torques they will be applied to the actual system expressed below to 

find the actual acceleration which will be numerically integrated to find the new joint 

and rotor velocities and positions to be used for the next time step. 
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[
 ̂   
  ̂   
 ̂   

] [

 ̈̅

 ̈̅

 ̅

]  [

  ̅   ̂̋ ̅   ̅̌

 ̂̋ ̅   ̅̌

  ̂ ̇̅̇   ̈̅

]                                                           ̋     ̌  

 

 

The performance of the control law will be tested for three groups of simulation. First 

group is held with initial error and constant deployment motion stated as 

 [

  
  
  
]  [

  
 

  
 

  

]  [
    
    
     

].Second group is tested with initial error and without moeling 

error while the third group is tested with initial and modeling error. Modeling error is 

regarded by setting the robot mass and inertia properties and the torsional constants to 

be 20% smaller in the model. 

The mass and geometric data, gear ratios and inertial properties utilized in the 

simulation are given in Table 1 and Table 2. 

 

Symbol Value Symbol Value 

   1.0m    1.0m 

   1.0m    0.57735m 

   1.0m    0.57735m 

   1.0m    3.0m 

   1.0m   30 deg. 

   1.0m   60 deg. 

                            Table 1 Geometric Data 
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Symbol Value Symbol Value 

  
  10 kg    

  1.2 kg 

  
  10 kg   

  1.2 kg 

  
  10 kg     

              

  
  10 kg     

              

  
  10 kg     

              

  
  10 kg    100 

  
  15 kg    100 

  
  1.2 kg    100 

         Table 2 Inertial, mass properties and Gear Ratios 

 

 

 

The system is initially at rest with the following active joint positions. 

                                                                                                                             ̋     ̌  

                                                                                                                           ̋     ̌  

                                                                                                                           ̋     ̌  

 

This gives the following initial position of the end-effector. 
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                                                                                                                      ̋     ̌  

                                                                                                                      ̋     ̌  

                                                                                                                              ̋     ̌  

 

 

The desired motion trajectories are presented as follows. 

  
  ̛

     
   

 
 ̓  

 

  
   

   

 
̔                                  

                                                                                     
̜                     ̋     ̌  

 

  
  ̛

     
   

 
 ̓  

 

  
   

   

 
̔                                  

                                                                                       
̜                  ̋     ̌  

 

   ̛
  

  

 
 ̓  

 

  
   

   

 
̔                                           

                                                                                        
̜                 ̋     ̌  

where,        is the period of deployment motion and         is the full time of 

simulation. 

It is assumed that, during the path of the desired motion there will be no singular 

positions and it's also proved practically during the simulation. 

The sampling time interval is set to be        . Each group of simulation is held first 

with             for         and then with             for        . 

 

Results are presented as below. 
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First Group of Simulations 

 

Figure 5 Position Response                (First Group           ) 

 

Figure 6 Position Response                (First Group           ) 
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Figure 7 Control Torques     
      

      
 (First Group            ) 

 

Figure 8 Control Torques     
      

      
 (First Group            ) 
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Figure 9 Deflections                        (First Group           ) 

 

Figure 10 Deflections                        (First Group           ) 
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Second Group of Simulations  

 

Figure 11 Position Response                (Second Group           ) 

 

Figure 12 Position Response                (Second Group           ) 
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Figure 13 Control Torques     
      

      
 (Second Group            ) 

 

Figure 14 Control Torques     
      

      
 (Second Group            ) 
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Figure 15 Deflections                        (Second Group           ) 

 

Figure 16 Deflections                        (Second Group           ) 
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Figure 17 Position Errors (Second Group            ) 

 

Figure 18 Position Errors (Second Group            ) 
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Third Group of Simulations 

 

Figure 19 Position Response                (Third Group           ) 

 

Figure 20 Position Response                (Third Group           ) 
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Figure 21 Control Torques     
      

      
 (Third Group            ) 

 

Figure 22 Control Torques     
      

      
 (Third Group            ) 
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Figure 23 Deflections                         (Third Group           ) 

 

Figure 24 Deflections                         (Third Group           ) 
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Figure 25 Position Errors (Third Group            ) 

 

Figure 26 Position Errors (Third Group            ) 
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CHAPTER 4 

DISCUSSIONS AND CONCLUSION  

 

4.1 Discussions 

The simulations are executed for two independent groups with the same feedback gain 

constants. The first group is simulated without regarding modeling errors while the 

second group will be simulated by considering modeling errors. In both of the groups 

and while taking initial position error into consideration, it is noticed that good tracing 

performances are reached for motion tracking. Then again, it is observed that initial 

errors in position lead to large initial control torques and large initial elastic deflections. 

Because of the gravitational forces, none of the initial and final elastic deflections will 

be zero. 

Each group is simulated under the determinant of initial position errors, while, the 

second group is simulated under the consideration of modeling errors as well as the 

initial position errors. For this issue, mass/inertia parameters and spring constant are 

assumed to be 20% smaller in the model. No notable change is noticed in tracking 

elastic deflections, errors and control torques. The control torques are increased (as 

observed also by the previous studies) at the discontinuities of the reference motion 

trajectories. 
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4.2 Conclusion  

This thesis granted the motion trajectory tracking control law of flexible joint parallel 

robots use as a basis on solving the singular acceleration level inverse dynamic 

equations. By using the proposed method, further differentiations of task equations, 

constraint equations and equations of motion are avoided. This eases the calculations 

and makes the complexity less in equations. Actuator rotor and joint positions and 

velocities are the feedback variables only. Since it is only motion tracking control 

problem, contact forces are not existed though. The important thing about the algorithm 

is that any jump in    ̇        ̇ requires infinitely large input control torques because 

they cannot make an instant effect on the end-effector accelerations and jerks. To avoid 

this    ̇        ̇ are matched at the discontinuities of the reference motion trajectories 

by selecting the appropriate integration constants. 

Simulations are executed for two groups with the same feedback gain constants but the 

first group is without regarding modeling errors and the second group is with regarding 

modeling errors. As a result, there will be good tracking properties for motion 

trajectories by using the proposed control algorithm.  

In this thesis the motor dynamics is regardless so as to focus on the dynamics of the 

flexible joint manipulator. As a result it is assumed that the required control torques are 

utilized without notable delay. This assumption is satisfied if brushless DC motors are 

utilized that are widely used in manipulator applications. The frequency response of the 

current loop in brushless DC motors is wide enough for reducing any effect on outer 

control loops and though the motor dynamics can be disregarded. 
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