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ABSTRACT

FEEDBACK LINEARIZTION CONTROL OF FLEXIBLE JOINT PARALLEL
MANIPULATORS BY SOLVING SINGULAR ACCELERATION LEVEL
DIFFERENTIAL EQUATIONS

ABDALJAWAD, Harith
M.Sc., Department of Mechanical Engineering

Supervisor: Prof. Dr. S. Kemal Ider

June 2016, 61 pages

This study utilizes a certain algorithm where joint drives flexibility is presented for
solving singular set of differential equations by specified implicit numerical integration
method that is called Backward Euler Formula for more advanced order derivative
information. The reason for using such a procedure is that there is singularity presence
at the acceleration level inverse dynamics equations because the control torques can't
perpetuate a direct effectiveness at the end-effector accelerations as a result of the elastic
media. The trajectory tracking control law is utilized for a 3R (revolute joint), three legs
planar parallel manipulator. This law linearizes and decouples the system which leads to
achieve asymptotic stability by the means of feeding back the positions and velocities of
the actuated rotors and joints. The desired path of the end-effector is chosen for the sake

of singularity avoidance.

Keywords: Parallel manipulator, flexible joint, inverse dynamics control
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SINGULER iVME SEVIiYESINDEKI DIiFERANSIYEL DENKLEMLERI
COZMEK SURETIYLE ESNEK MAFSALLI PARALEL
MANIiPULATORLERIN KONTROLU

ABDALJAWAD, Harith
Yiiksek Lisans, Makine Miihendisligi Anabilim Dali

Tez Yoneticisi: Prof. Dr. S. Kemal Ider

Haziran 2016, 61 sayfa

Esnek mafsalli robot manipiilatorlerde elastik ortamdan dolayr kontrol torklari ile ug
islemci ivmesi anlik iligkili degildir. Bu sebeple ivme seviyesindeki ters dinamik
denklemleri singiler bir diferansiyel denklem sistemi (diferansiyel/cebirsel denklem
sistemi) olusturur. Bu tezde bu denklemler bir dolayli (implicit) niimerik integrasyon
yontemi olan geri Euler yontemi ile ¢oziilerek sistemin hareket kontrolu yapilmaktadir.
Yoriinge kontrolunun saglandig1 kontrol kanunu her birinde {i¢c doner mafsal bulunan ii¢
ayakli ve tli¢ serbestlik dereceli bir diizlemsel parallel manipiilatore uygulanmistir.
Mafsallarin ve aktiiator rotorlarinin agisal konumlarini ve agisal hizlarini geri besleyerek

asimtotik stabilite elde edilmistir.



Anahtar Kelimeler: Paralel manipulator, esnek eklem, ters dinamik kontrol.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Parallel manipulators took an interest of research for more than twenty years because of
the advantages they have as compared to the serial ones. As a result of the closed loop
structure of the parallel manipulators, this made them carry heavier loads. Real time
applications like earthquake simulators, flight simulators and micro-motion
manipulators are the most known industrial applications for these mechanics where high
motion accuracy and high load capacity are needed. Also some problems may take
place such as difficulties in the operation of control and also relatively small work space
may be exist, as a result parallel manipulators took a lot of interest in different areas of

research.

Parallel manipulators gains drive singular positions as well as to the kinematic singular
positions which serial robots also have. Singularity analysis of parallel manipulators has

been the subject of many studies in the last years.

Ider [1] examined the singularities that occur in the parallel manipulators and showed
that the manipulator shall pass through the singular positions when the system motion
and the actuator forces keeping its' stability by the mean of modifying the system

equations of motion.



Joint flexibility must be regarded in the control system because of the latters' importance
in control system design and manipulator dynamics, as a result high precision

manipulators will be handled.

Serial manipulators flexible joints control was studied by many researchers as well they
took interest after the derivation of the flexible joint model done by Spong [2].

Two nonlinear control schemes are put forward among all the motion control methods,
those two schemes are called the feedback linearization and singular perturbation

approaches.

The singular perturbation process depends on the benefit of the order decreasing by
resolving the main system into two subsystems that are known as a fast subsystem and a
low subsystem that are the flexible joints and rigid manipulator respectively. By
disregarding and then correcting due to the fast phenomena the model will be lowered,
the latter will be reintroduced by measuring them separately with different time scales
where the slow variables are considered as constant. However this way is said to be
valid if and only if the joint springs are stiff in a sufficient way, this will cause the
approach to be limited.

Another name of the feedback linearization control of flexible-joints that is the

analytical inverse dynamics control which is studied by various authors.

From this method, the intermediate variables are eliminated and the inputs are solved as
functions of end-effector motion till the fourth derivative, Moreover, for the elimination
it will be necessary to differentiate the motion equations and the task equations at

acceleration level twice.

Jankowski and Van Brussel [3] applied inverse dynamics control in discrete time where
solution of the singular sets of differential equations are used to avoid further

differentiations of the system equations of motion.

Forrest-Barlach and Babcock [4] used the inverse dynamics control method for the
cylindrical coordinate arm with drive train compliance and actuator dynamics in the

radial and each of the revolute degree of freedom.



Ider and Ozgéren [5] used an acceleration level feedback linearization control the by
using implied numerical integration methods that account for the greater order
derivatives information for the purpose of solving the set of the singular differential
equations. The asymptotic stability is achieved by feeding back the joints positions,

velocities and velocities of rotors.

All of the above studies focused on the control of flexible joint serial manipulators.
There are limited numbers of studies in the literature concerning control of parallel
manipulators. Most of these studies did not take the joint flexibility into their control

strategies.

Dado and Al-Huniti [6] studied dynamic simulation approach for a mixed-loop planar
manipulators with joint-drive flexibility. The mathematical model of a five-link, three
degree of freedom manipulator was derived using the virtual work method. The drive
signal at the motor was based on the error between the actual and desired motions by
using the suitable gains for position and velocity.

Chablat and Wenger [7] showed that a non-singular robot assembly can that change
trajectory is exist for a symmetrical planar robot with triangle platform and equilateral
base by presenting the kinematic analysis of a three-degree-of-freedom planar parallel
robot. It has been showed that in apposite to serial ones, planar parallel manipulators can
pass through multiple direct kinematic solutions together with the multiple inverse
kinematic ones, that gives greater flexibility with the trajectory-planning stage.

Ider and Korkmaz [8] developed and utilized an inverse dynamics control law for the
aim of control of a path tracking of a specified flexible-joint parallel manipulator by
further differentiation of the dynamic equations till third and fourth order derivatives,
the closed system is converted into an open one by the mean of disconnecting a
satisfying number of non-actuated joints, then by eliminating the intermediate variables
and the Lagrange multipliers that gives a fourth-order input-output relation, after that
and by feeding back the positions and the velocities of the actuated rotors and joints

asymptotic stability is achieved.



1.2 Purpose of Study

The purpose behind this thesis is to decide trajectory tracking control of the end effector
of the planar parallel manipulator by making use of the feedback linearization [inverse
dynamics] approach regarding joint flexibility. To ease the solution and reduce the
online computation, singular acceleration stage inverse dynamic equations are solved by
implicit numerical integration techniques. By utilizing this previous procedure, further
differentiation of the equation of motion, the task equations and the constraint is avoided
so as to reduce the complexity of calculations. The presented control strategy gives
asymptotic stability while testing the trajectory tracking control of the end-effector
motion. On the other hand additional complexity will be avoided by neglecting the
effect of the viscous friction at the passive joints, the rotor damping characteristic and

the structural damping of the active joints.

1.3 Outline of the Study

The following chapters are organized in this thesis in order to demonstrate the control

algorithm and the case study.

Chapter 2, is related to the dynamics of the parallel manipulator that are explained when
the joint flexibility is regarded into the analysis. The system constraint equations and
system equations of motion are derived, as well the feedback linearization control
approach is considered. The task space equations and the control law are introduced.
The execution for the elimination of the non-actuated joint variables from the system
constraint equations and the elimination of actuator variables off the equations of motion

are considered so as to get the input/output relation.

In Chapter 3, the dynamic equations of 3RRR planar parallel manipulator with
flexibility at the actuated joints are derived, its' control law is formulated and numerical

simulations are made.

Chapter 4, discusses and concludes the similes of the simulations.



CHAPTER 2
ROBOT DYNAMICS AND CONTROL
2.1 Preview

Let the system of an n degree of freedom parallel manipulator be changed into an open-
tree structure by the mean of seperating a suitable number of non-actuated joints, and
the degree of freedom of that system is m, i.e., in the parallel manipulator the number of
independent loop closure constraints be m-n. The set of the generalized coordinates
corresponding to the robot joint variables that express the relative joint positions

assumed to be defined as {6, ....., 0, }.

So that the vector belongs to the manipulator joint variables of the rigid links which

contains both of the actuated and non-actuated joints is

§=1[6g, .o, 0pn]" (2.1)

By separating the joint coordinate vector into two sub-vectors that corresponded to the
variables of the actuated joints and the non-actuated joints respectively g (n X
1),6%[(m — n) x 1],such that, 87 = [gT §*T].

The degree of freedom of any parallel manipulator decides the number of the actuated

joints of that manipulator. Joints elasticity occurs at the actuated joints as a result of the



elasticity of the transmissions. The elasticity sources at the joints are mainly harmonic
drives and thin shafts used in drive trains, couplings. It is important to take joint
flexibility into consideration so as to gain higher performance from the controller since
joint flexibility is the main source as compared to the total manipulator flexibility as
practically verified by Rivin [9].

At an actuated joint, Joint elasticity of the power transmission elements is modeled as a

torsional spring, on the other hand, structural damping is neglected.

For the i" transmission, K, stand for the spring constant as shown in figure 2.1.
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Figure 1 Flexible Joint Dynamic Model

The figure above refers to the it" transmission, where 8y, represent the robot joint
variable that corresponds to the driven links' angular position (k;) with regard to the link

(1,) where the i" actuator is mounted.

Moreover, in the above flexible model, t; represents the actuator position of the it"
actuator with regard to the link where the actuator mounted. ¢; represents the actuator

variable that may be given by the following formula



¢ =1i/1; i=1..n (2.2)
where r; stands for the speed reduction ratio.

On the other hand, the set of the generalized coordinates refers to the actuator variables

are

{$1, ) bn}

As a result, actuator joint variables of the robot may be given by the vector

d = [p1, ers Pnl” (2.3)

K; stands for the spring constant of the it" transmission.

2.2 Robot Dynamics

The equations of motion will be simplified and so as to make them more suitable for the
control and analysis, this will be done by using some assumptions stated by [2], the
assumptions are as below:

e The rotor/gear inertia is symmetric about the axis of rotation of the rotor as a
result the velocity of the rotor center of mass and the gravitational potential of
the system become independent of the rotor position.

e The links of the robot are rigid.

e By choosing a large enough gear ratio, as a result, the rotor kinetic energy will

be generally due to its own rotation.
The formula  1/2[I] (w, +Ti<15i)2 + I (wZ + w?2)] represents the rotational Kinetic

energy of the i*" actuator, where I7 stands for the i" rotor moment of inertia about its



rotational axis and 7" stands for the moment of inertia of the cylindrical rotor about the
axes that are perpendicular to the rotation axis through the center of mass.

The angular velocity components w,, w,, w, of the link that the actuator is placed where
the angle of the rotor is mensurationed about the Z-axis.

Since ¢; and w,, w,, w, have the same order of magnitude and if ; is sufficiently large,

as a result, the rotational kinetic energy of the drive is approximately 1/21{(ri¢'>i)2 [8].

Additional degrees of freedom appear because of the elastic transmission between the
actuators and the links. As a result, at each actuator the rotor is modeled as a fictional
link and so an n degree of freedom is added to the system that makes the general system
a 2n degree of freedom system.

To find the equations of motion responding to the two sets of generalized coordinates
showed in 2.1 and 2.3, Lagrange's equations are used.

The Lagrange's equation of the first set of the generalized coordinates that correspond to

the robot joint variables is shown below

d(oK\ 9K 9D AU _ ~ . -
E(é_j>_é_j+é_j+é_j_Qj+Qj =1, ..., m (2.4)

The Lagrange's equation of the second set of the generalized coordinates that correspond

to the robot joint variables is shown below

d (0K oK aD au .
dt(¢j> 57575, =9 =1, .um (2.5)

Where K, D, U, Qj, Q; and Q; represent the following terms respectively (kinetic
energy, dissipation function, potential energy, generalized contact forces, generalized
constraint forces and generalized actuator forces).

D terms are all zeros according to the presented assumptions of neglecting the damping

terms.

2.3 System Equations of Motion
According to Spong [2] assumptions given in 2.2, the following equations of motion are

presented



MO+Q+K+F =0 (2.6)

F¢-KG-¢)=T (2.7)
where, M(0)is the m x m generalized mass matrix which is positive definite and

symmetric and Q(8,8) is the m x 1 vector of gravitational, centrifugal and Coriolis
terms. Q and M are the same as those of the open system case, regardless elasticity

where the rotors are considered as a part of the identical links.

This is because the terms of the inertia coupling between fand ¢ disappeared.

K isanm x 1 vector that contains stiffness terms such a way that
R = [1? (670— ¢_>)]

Where K is an n x n diagonal stiffness matrix with K;; = k;,i = 1, ..., n.

I™ is an n x n matrix that contains the elements of the inertial parameters of the links

and may be expressed as
I" = diag[I]v#] i=1,..,n (2.8)

T is the n x 1 vector of the control torques after the speed reduction.

F¢ is the vector of generalized constraint forces due to the closed loop formation. To

find F¢ loop closure constraint equations must be defined.

B6=0 (2.9)



where B(6) is an (m — n) x m stands for the constraint Jacobian matrix with

B;j =0q;/06;,i=1,.,m—n,j=1,..,m.

In order to satisfy that the kinetic energy of the rotor is due basically to its' own rotation
[1], the gear ratio assumed to be large enough.

As aresult, F¢ can be defined as

F¢=BT2 (2.10)

where 1 is an (m — n) x 1 stands for the Lagrange multipliers vector.

Kinetic and potential energy terms and all the other terms related to them will be present
in chapter 3.

2.4 Closed Loop Constraints

The constraint equations are necessary for the purpose of writing the non-actuated joint

coordinate by using the actuated joint coordinate terms.

After the disconnected constraint equations of the robot are written in loop closure form

in terms of position, velocity and matrix form as below,

qi (04, ....,0,) =0 (2.11)
;nlein'u (2.12)
BO; =0 (2.13)

Bis an (m — n) x m matrix is now constructed, However there will be two sub-
matrices when the terms of the non-actuated joint variables are written in terms of the
actuated ones and this shall give an (m — n) x n B¢ matrix and (m — n) x

(m — n)matrix B* and equation 2.12 can be written now as below

10



Bugv = Bog (2.14)

g May be found as

Cg = ov (2.15)
¢ =—(Bv) Be (2.16)
and
6% = CG+ Cg (2.17)
and
¢=- ((éu) B + (Eu)'léa) (2.18)

where € is an (m — n) X n matrix.
Further differentiations will not be needed because an implicit numerical integration

method will be used for the control scheme.



2.5 Inverse Dynamics Control

2.5.1 Task Space Equations

The control technique used for the robot that has m links and n actuators at the joints is
basically depends on finding a connection between the inputs and the outputs. The
inputs through the actuating motors can be voltages supplied to those actuators or joint
torques/forces. The outputs are the joint positions either in joint space or in task space
since the control problem main aim is the end effector position tracking.

A relation must be derived between the joint space and the task space coordinates since

the commanded maotion is decided in the task space.
Assume x;,i = 1, ....,n stands for the Cartesian position variables of the end effector.

In order to connect the coordinates of the end effector with the joint coordinates, certain

functions are used, 6;,j = 1, ....,m, so the task space equation shall be

x; = f;(04, ., O) i=1,...,n (2.19)
m is the number of the coordinates as presented in the joint space.

By differentiating Equation 3.1 once, this gives the following velocity relation.

=Y. T 6 i=1,...,n (2.20)
And

ofi
7= agj (2.21)

Equation (2.18) may be written in matrix for as

tadl
Il
=
~
D

(2.22)

12



'? is the n x m robot Jacobian matrix.

By making use of Equation 2.15, one can write the Jacobian matrix equation only in
terms of the actuated variables. As a result the same series of steps is followed to find

n xn matrix [?* and n x (m —n) matrix I'7* as the corresponded joint variables

coefficient matrices. This can be done as follows.

PG + PP 0" = % (2.23)

[P+ 07" [-(B%) " Beg| = % (2.24)

Separating out the actuated variables joint coordinates vector gives

¥=Jq (2.25)
where J is an n x n robot Jacobian matrix which is expressed as

J=FP" —fPUpuT e (2.26)
Equation 2.23 is differentiated up till snap level as follows.

i=Jg+]q (2:27)
¥=JG+2§+J§ (2.28)
¥=Jq+3]G+3/G+]§ (2.29)

13



Hence,

G=]" -]~ 3]~ 37 (2:30)

At this point, it's necessary to write the system equations of motion of the system by
using only the actuated joint variables terms and this may be done by get rid of the non-
actuated joint accelerations and the Lagrange multipliers A that stand for the forces at

the disconnected joints.

M and Q can be factorized into actuated and non-actuated joint variables as follows.

. Maee  jppaev

M= T 1\71””] (2.31)
and

_ na

0= [g_u] (2.32)
Where

M?@ is an n X n sub-matrix that engendered by symmetric generalized mass matrix.

M% is an n x (m —n) sub-matrix that engendered by symmetric generalized mass
matrix.
M™* is an (m —n) x (m —n) sub-matrix that engendered by symmetric generalized

mass matrix.

Q% is an n x 1 sub-matrix that engendered by Q vector that includes Colriolis,

centrifugal and gravitational terms.

14



Q" is an (m —n) X 1 sub-matrix that engendered by Q vector that includes Colriolis,

centrifugal and gravitational terms.

Equation 2.6 can be written now in two parts as follows.

MG + 4% + 0% +R(G—¢) — B 1=0 (2.33a)
TG + gt + g% — B 1= 0 (2.33b)

By eliminating A after Substituting Equation 2.17 into Equation 2.32 and 2.33, the

following n dimensional equations are obtained.

M*G+Q*+K(@—¢)=0 (2.34)
where,
1A -1\T . PN
7" = [#19e — mevpeT ge| - pe’ (BTY) [Mew” — freupv B (2.35)
—_ ~ -1 A ~ -~ — T —~ A —1 A
Q* — [_MauBu lBa + BaT (Bu 1) MuuBu 1BCl:I q
_ -1 A ~ o=\ 1] s
+ [—M“”B” "Be+ BT (BYTY) mMeepv 1B“] o
— ~ ~ —1\T —
+Q - B (B*7") Qv (2.36)

After eliminating the intermediate variables g and ¢ in the dynamic equations, the
following equation may show the relation between the input torques T and the output

which is the independent end effector coordinates to accompany with constraint

15



surface x. After the elimination procedure as explained in [5], the input output relation is

given as follows.

A%+ B(X,%,%,x) =T (2.37)
where,
A=K Mj (2.38)

Q*} (2.39)

By using the above equations, a feedback linearization (inverse dynamics) control
method can be developed that will decouple and linearize the system. Numerical
integration can be used for the purpose of calculating the corresponding control torque

vector T yet, this course of action needs knowledge of ﬁ*,ﬁ*, @*, 5*,fand f and the
resulting expressions will be too complex and long specifically for n > 3, which makes

this method unsuitable for real time applications.

2.5.2 Control Law

The dynamic equations shall be used at the acceleration level so as to draw up an inverse
feedback linearization (invers dynamics) control law for the purpose of finding the input
torques needed to realize the desired end-effector motion.

Till this far, the system dynamic equations 2.34, 2.7, 2.27 may be presented in

augmented form as follows.

16



*
(@]
(@]

(2.40)

— o X
~
3
|
—~—
~ S
Il
N
)
|
©-
p—g

o
o

Replacing x by the control variable z which stands for the command acceleration, it is
seen from Equation 2.37 that in the forward dynamics problem, the torque vector T
instantly affects the end-effector jerk rate x. As a result, the command jerk rates need to
be decided in the control law. Utilizing the errors in the end-effector states and the

desired jerk rates, the command jerk rates then can be formed as

Z=x®W4 4 ¢ (x4 — ) + €, (X% — X) + C5(x% — %)
+C4 (X% = X) (2.41)

where the superscript d indicates desired values and C;, C,, C5 and C, are constant

feedback gain diagonal matrices, where C; = diag[C;;],j = 1,.., ;i =1,..,4.

As a matter of fact, at the inverse dynamics problem, only the first and the third rows of
Equation 2.40 include the kinematic variables and may be short term as inverse
kinematic equations. While, the second raw of Equation 2.40 is utilized for the purpose
of finding the control torques. Inertia and elastic force terms are included in the inverse
kinematic equations as well due to redundancy caused by joint flexibility where inverse

kinematic equations may be formed as follows.

A* 0 K(@q- ¢)
7ol =l e @

The above equation represents a singular package of differential equations so it can't be
solved in that form. The reason behind singularity is that the ways of transmitting the

control torques to the end-effector which is done through the elastic joints which make

17



the control torques do not have an instant effect on the acceleration of the end-effector.
This causes the problem to be time-anticipatory. Equation 2.37 clearly showed that the
torques do have an instant effect on the second derivative of the acceleration of the end-
effector. In fact, an implicit numerical integration methods need to be used [5], because
the acceleration coefficient matrix in Equation 2.42 is not able to be inverted to get an
explicit system of ordinary differential equations. As an implicit numerical integration
method, backward Euler method will be presented, the latter is one of the simplest
implicit integration techniques where the integration is fully dependent of the following

backward difference formula.

. 1
Vi1 = 5 View1 = Vi) (2.43)

where h stands for the time interval and k represents the time step number. Using Eq.

2.43, EQ. 2.40 can be written at time t;,., as

%(Qk+1 gr) + Q" +K (hﬁk+1 + Gy — hppsr — ¢_’k) =0 (2.44)
Ir %(¢k+1 ¢k) (hCIk+1 + . — h$k+1 - qgk) = Th+1 (2.45)
j%(§k+1 —q) + Jqr1 = Zrsa (2.46)

where M*(hgx+1 + Gi), Q" ("ies1 + Ti Q1)) (hies1 + @) and

J(hGksr + Gr Grss)  @lso depend on §y,,. Equations (2.44-2.46) are a set of 3n
algebraic equations that solved for the 3n unknowns g1, $k+1 and Ty,, as below.
The term z appears in Equation 2.46 shall be obtained by integration of Equation 2.41.
Piecewise smooth functions for is utilized to decide the desired motion.

In the time interval t, <t < t,, assume x“(t) be smooth till the third derivative. Then

by integration of Equation 2.41 twice at this time interval gives.
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z—24—25(t —ty) = ¥ —%§ — Xq(t — to) + C[(x? — %) — (% — %) —

(x.g - xa)(t - ta)] + CZ[(xd - x) - (xéll - xa) - (Xg - xa)(t - ta)] - C3(xg -

%) (£ = ta) + C3 [, w(DdT +C, [ [[; w(s)ds)dr, (2.47)
t, <t<t,
where w = x?% — x.

Evaluation of Equation (2.47) at time t;,, gives

Zir1 = Zg + Zg(tgyr — o) + Xy — X3 — X3 (tpr — ta) + 61[(9?1?“ — Xj41 —

(fg - ).Ea) - (fg - ﬁa)(tk+1 - ta)] o 6‘2[(flcci+1 - fk+1) - (fg - fa) - (ftczl -

%) (1 — ta)] — C3(x¢ — %) (tgy1 — ta) + C3(hWgyq + W) + Co(h?Wyyy + hivy +
wy), (2.48)

ta < tks1 S tp
where Wy, = %, , —
k+1 = Xig1 — X1

Moreover, to stay away from any jump of the command accelerations z and their
derivatives z caused by that the control torques does not hold an instant effect on the
end-effector jerks and acceleration and this can be done by decide the integration
constants to be the same as z and z at the intermissions of the desired motion. This is
obtained by selecting the integration constants such a way that:

Z, = z(t}) = z2(t7) and z, = z(t}) = z(t7) . (When the system start from the rest,

then Z_O = 0, Z‘_O = 0)
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In any singular package of differential equations, the initial conditions are not
autonomous according to [4]. The initial conditions must satisfy specified relations
found by using Equation 2.42. Premultiplying the second raw of the latter Equation and
subtracting the result from the first raw, gives

w7 (-fg+2)+ Q" +R@-¢) =0 (2.49)

To find the control torque Ty,, by using Equations (2.44-2.46), the initial values of
qx, O and g, are required. When gy, ¢, and g, are calculated at time t_k, they will
not satisfy Equation (2.49) when disturbance and modeling error are existed. This

conflict results the control torques to be incorrect. As a matter of fact, when h — 0, they

diverge. To attain the consistency, one may solve Equation (2.49) for ¢, or $k.

Choosing ¢, for this aim it can be gained by using Equation (2.49) at time t, as
b =G +K* {M*A_l (_jc;lk + Z_k) + (_?*} (2.50)

where g, and g, are the measured quantities.
Equation (2.46) stands for n nonlinear algebraic equations solved for g,.;. Zy4q1 in
Equation (2.46) is given by Equation (2.48) where x, and X, are calculated from g, and

d, by using Equation (2.25) and its' integration. Then Equation (2.44) is put to use to

find $k+1 as

$k+1 = (kh)_l [M*%(§k+1 — i)+ Q"+ K(qx — ¢_)k)] + Qrt1 (2.51)

Finally, the control torques Ty, are calculated from Equation 2.45.
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2.5.3 Position Error Dynamics

The computed torques by (2.40) Equation linearize and decouple the command jerks. To
show that, consider that, the actual accelerations are similar to the command
accelerations i.e. ¥ = z in the obscurity of error in modeling and this gives the following

error dynamics.

where & = x4 — x. Asymptotic stability is reached by suitable selection of feedback
gains. To do this, performance indices such as Integral Square Error (ISE), Integral of
the Absolute Magnitude of Error (IAE), Integral Time Absolute Error (ITAE) and
Integral Time Square Error (ITSE) can be used. In this study ITAE performance index

which is shown below will be used.
T
ITAE = fo tle(t)|dt (2.53)

Effect of large initial errors is reduced while small errors in long-term are vanished, this
happens by using ITAE performance index and because of the multiplication by time t.
For closed-loop system, the form of property equation that based on ITAE standard is
ST+ Cs™ L+ Cps™ 2 + -+ + C,,. To satisfy the ITAE criteria, the feedback diagonal
matrices C;,j = 1,2,3,4 are chosen as such that

Ci; = 2.1w;, Cy; = 3.4w?, C3; = 2.7w3, C4 = w}, i =1,2,3; where w; is a positive

constant.
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CHAPTER 3

THREE REVOLUTE JOINTS THREE LEGS PLANAR
PARALLEL ROBOT STUDY AND SIMULATION

3.1 Planar Parallel Robot Study

To explain and test the execution of the control law presented in the previous chapter, a
planar parallel robot shown in Figure 3.1and Figure 3.2 is regarded. Parallel robots are
usually defined according to the number of legs from the base to the platform as well as
the type and number of the joints these legs have. The 3-RRR parallel robot shown
below is to be studied, where 3-RRR means that the robot has three legs each one of

them has three revolute joints between the fixed base and the moving platform.
The robot is supported with a fixed surface which in contact with the end-effector and

this surface is a fixed plane parallel to the x-z plane. This study focuses completely on

the motion control where the contact forces and force control are not considered.
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Figure 2 3-RRR Planar Parallel Robot Architecture
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Figure 3 3-RRR Planar Parallel Robot

Where, M1, M2, M3 are the three actuating motors.

The system has eight links regarding the fixed link and nine revolute joints. Actuators
that located on A, B and C are actuating the system by the generated torques and 6, 6,
and 65 are the joint variables of A, B and C respectively. The robot has a total of six
degrees of freedom because of the three added degrees of freedom of the flexible joints.
The motors rotation is perpendicular to the plane of the motion and the weight's action is

in the —y direction.

Vectors of joint variables and actuator variables has been defined already in chapter 2,
the vector of the joints variables may be split into actuated and non-actuated sub-vectors

as below.
0 =[g" o“T" (3.1
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where,

q =16, 6, 65]" (3.2)
oY = [0, 65 65 6,17 (3.3)
The vector of the actuator variables may be written as well as below.

5 = [¢1 (0B ¢3]T (3.4)

The system owns three degrees of freedom i.e. n = 3 except those coming from the
flexible joints and seven joint variables are presented i.e. m = 7. This results in four
constraint equations where m —n =7 — 3 = 4 and this is done by disconnecting the

joins at I and H to get four open kinematic chain as shown in Figures 3.3 and 3.4.

Figure 4 Three Open Kinematic Chains

For the described system, Lagrange formulation will be used for deriving equations of

motion.
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3.1.1 Kinetic Energy

Expressions of the kinetic energy can be got by substituting the components of the
translational and angular velocities of each link and actuator in the following equations

of kinetic energy of any link and actuator.

Kinetic energy of the i*" link:

KEy; = smb(PE)TVk + 5 @H oo} (3.5)
Where,

Vi = L2 W56 (3.6)
of = XL, Q56 3.7)
fl = [¢OD)fL [¢OD]" (3.8)

In the equations above,

m? is the i*" link's mass, V%, is the vector of the i*" link's mass center velocity that
presented in the fixed reference frame, Wiﬁ is the coefficient vector of the velocity
influence, @’ is the i*" link's angular velocity that presented in the fixed reference

frame, ﬁfj is the angular coefficient vector of the velocity influence, I is the it" link's

moment of inertia matrix presented in the fixed reference frame, C©9 is the
transformation matrix from the reference frame of the i* link to the fixed reference
frame and I%; is the i** link's moment of inertia matrix presented in its body reference

frame.

Kinetic energy of the i*" actuator:
KE. =1 .A(VA.)TVA. p 1Az 3.8
Al zml Gi Gi 21 T; ( . )
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Link-1
‘Fc(lo) = Lz_l (C91 + 861)

L .
—7150191

— . L . .
VG(lo) == T'G(f) =2 (_59191 + C0191) = ﬁcelgl
2

2
0
0
6

As a result, kinetic energy related to Link-1 is presented as

1 L3
KE;, = 2 [m1 27 Ilzz]

Link-2
f(;(z()) = LZ_Z (C92 + 592)

L .
_?159202

_ . L . .
VG(ZO) = TG(ZO) = ?2(_59292 +¢6,6,) = Lco,6,
2

0
0,

As a result, kinetic energy related to Link-2 is presented as

0

1 L3
KE;, = > [m%f + IZZZ]

Link-3

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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o) =22 (cts + s63) (3.17)

—L2—159393
= s L y )
VG(30) = T‘G(;)) = ?3 (_59393 + C9393) = L_1C939.3 (318)
2
0

0
ago) _ [0‘ (3.19)

03

As a result, kinetic energy related to Link-3 is presented as

1 L%
KEjs =3 [mb= + Iy, | (3.20)
Link-4
7o) = Ly(cOy + 56;) + = (cOuy + 5614) (3.21)

_ . . L . :
Vo) = Ly (—5016; + c0:0,) + = (5014614 + 014614)

_L1591é1 - Lf 5914914

0
0

o = ['0 ‘ (3.23)
914

As a result, kinetic energy related to Link-4 is presented as

1 . 1 . . .
KEL4 = EmiL?LHf + EmiL1L4C(61 - 014)91(91 + 04)
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+1/2 [mﬂ;% + I4zz] (6, + 94)2
Link-5

‘FG(SO) = Lz(CHZ + 562) + %(CHZS + 5625)

— . . L . .
VG(so) = Ly(—5020, + c6,0,) + = (=562505 + c6,5625)

. L .
—Lzsezez — 75 5925625

L2C9292 + 2—4C625925
0

0
o = [ 0 ]
025

As a result, kinetic energy related to Link-5 is presented as
1 . 1 . . .
KE s = Em’gL%HZZ + gméLstc(ez - 925)92(92 + 925)

2 . .
+2[mE = + sy | (6, + 65)°

Link-6

_ L
7 = Ly(cOs + 563) + = (cOs6 + 5635)

— . . 6 . .
VG(:) = L3(—56303 + c0563) + - (—5636636 + cO36036)

_L359393 - L2_6 5936936

0

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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0
o = [.O ] (3.31)
025

As a result, kinetic energy related to Link-6 is presented as
1 . 1 . . .
KE5 = EméL%Hf + EméL3L6C(93 — 036)03(65 + 636)

1
2

[mE% + 1., | (65 + 65)° (332)

+ 67

Link-7

T_'G(7O) = L1(691 + 591) + L4(C914 + 5914)

+d;[c(0147 + B) +5(8147 + B)] (3.33)
_ o) [ —L15010; — Ly5614014 — d75 (0147 + B)B14y
Vo,” = | L1c6:6; + L4cO14014 + dyc(B147 + 80147 (3.39)
0
r 0
o =] 0 (3.35)
10147

As a result, kinetic energy related to Link-7 is presented as

KEy; = 2mbI36, +3mb13(6; +6,)° +2[mbg3 + 1,,)(6: + 6, +6,)°
+mbLyLyc(6; — 614)01(6, + 6,)
+m5Lyg,¢(6; — 0147 — 3)91(91 + 0, + 6.’7)

+m]7“L4g7(914 — 0147 — B)(el + 94) (3.36)
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Actuator-1

_1‘4 =0 (3.37)
0
oT)‘{1 = [ 0 (3.38)
e

As a result, kinetic energy related to Actuator-1 is presented as

1 .
KEq =3 [ 1,107 (3.39)
Actuator-2
Vi =0 (3.40)
0
w4 =[ 0 (3.41)
¢,

As a result, kinetic energy related to Actuator-2 is presented as

1 .
KEAZ = E [rzzlgzz]qb% (3'42)
Actuator-3
VA=0 (3.43)
0
wi = [ O. (3.44)
r3¢3

As a result, kinetic energy related to Actuator-1 is presented as
1 .
KEy3 = > (315,163 (3.45)

The sum of links and actuators kinetic energy values represents the total kinetic energy

of the system.
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The Lagrange components related to the Kinetic energy are given as follow.

oK . L3
(661) =6 {( b ~+ Im) +mgL3 + miLiLyc(—6,) + [m4 + 1422] +miLi +
m7Lﬁ + [m%g% + I7,,] + 2m’7“L1L4C(—94) + 2m%L1g7c[—(94 +6; + )] +

= L L3
2mbLagrcl—(0; + PI1} + 0, {mh 2 Luc(=0,) + [my = + I, | + mbi3 +

[m%g7 + I;,,] + m5L1Lyc(—6,) + m5Ly g,c[—(0,4 + 05 + B)] + 2mbL,g,c[—(6; +

1} + 8,((mb g3 + I,,) + MELygc[—(04 + 6, + B)] + M Lygoc[—(8, +
A1} (3.46)

d (0K\ . 1 L%
a(a—ez> = 92 {lm% ZZ + Izzzl + méL% + MéLzLSC(_QS) + lméz + 1522]}

+05 (EmbLoLoc(=05) + [mb 2 + 1, ]} (3.47)

d(ok\ . ([ ,I3 , 12
a 6_93 =93 mgz+l3zz +m6L +M6L3L6C( 96)+ m6 4 +IGZZ

+05 (EmELsLec(=0g) + [m: 2 + I, (3.48)

() = 6, {[m % + 1, + mb13 + [mbg? + 1) + 2mbe[— 6, + P

i1 L%
+0,{(5mEL1Lac(=0,) + [mb 25 + Ly, |+ mELG + [mb g2 + Iy,,] +

MLy Lyc(=8,) + mbLygyc[—(0, + 07 + B)] + 2mbLagrc[—(6; + B)]}

+6,{[mh g% + I;,,] + mkLyg,c[—(6; + )1} (3.49)
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L(2) = b {|m mb St I, | 4 0, B LoLse(=09) + [mi 2+ 1]} (350)

= (550) = b6 {[m 5 4 Loy |} + 05 {2 3Lec(=06) + [mE 2 + 1., |} (3.51)

o]
(a:) 97{[7’1797 + 17,1} + 91{[7”797 +1,,,] + my Lig,c[—(6,+ 6, + B)] +

mbg;c[—(6; + B} + 54{[771%9% + I7,,] + mig,c[—(6; + B} (3.52)
%(;_i) = ¢, [r1],,] (3.53)
%(;—K) = §,[r}13,,] (3.54)
%(:TI;) = $3[ri1L,,] (3.55)
?

a_:l =0 (3.56)
d

ﬁ =0 (3.57)
d

% =0 (3.58)
K

1
20, 5912{m4L Lys(—0,) + 2mbL,L,s(—6,) + 2m5L d,s[— (8, + 6, + B)]} +

9194 {% m2L1L4S(_94) + m%L1L4S(_94) + m%L1d7s[—(94 +6; + ,3)]} +

9197{m%L1d7s[—(94 + 6, + )1} (3.59)
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2_55 = 263mELyLss(—05) + 6,05 mELyLss(—65) (3.60)

6K 1 '2 L . . 1 L

30, = 3 03MeLsLes(=06) + 0305 ;mgLsLes(—06) (3.61)

K _ , _

56, = 07 {miL1d;s[= (04 + 07 + B)] + miLadys[—(8; + PII} + O3 {mfLadys[— (6, +

B1} + 6,04[mbLyd;s[—(6, + 6, + )] + 2mbLyd;s[— (6, + P} +
6,0,{m5L,d;s[— (04 + 67 + B)] + mbd,s[—(6; + B} + 0,6,{mkL,d,s[—(6, +

A1} (3.62)
oK

X =0 (3.63)
a

6TI>(z =0 (3.64)
a

671; ~ 0 (3.65)

3.1.2 Potential Energy

Potential energy formulas of links and actuators are given as follow.

PEy; = mbg=st (3.66)
PE,, = m%g%s@z (3.67)
PEL; = mbg = s6, (3.68)
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PE,, =mkg :Llsel + LZ—" 5(914)] (3.69)

PE,s = mkg|Lys6; +=5(655)) (3.70)
PEL6 = még _L3S€3 + 2_68(636)] (371)
PE;; = mbg[L,s0; + L,s0.4 + g,5(0; + 6, + 0, + B)] (3.72)
PE,, = %K(¢1 - 91)2 (3-73)
PE,; = %K(qf’z - 92)2 (3-74)
PEs; = ZK(¢3 — 05)? (3.75)

The total potential energy of the system is the sum of all potential energies of links and

actuators.

U= mfng—lsé?l + m%gLZ—ZSBZ + mégL2—3593 +mig [L1591 + L2—4 5(914)] +
L L
mkg [LZSHZ + 755(625)] +mkg [L3st93 + ?65(936)] + mbg[L,50; + L4s6.4 +
1 1
9750, + 64+ 6, +B)] + EK(¢1 —6,)% + EK(d’z —6,)% +

S K (s = 65)? (3.76)

The Lagrange components related to the total kinetic energy are given as bellow.

au L L

36 = m%g;lcel +mkg [L1061 + 74 C(914)] +mLg[LicO; + Lyc(614) +
g-c(6; +6,+6, +

£l (3.77)
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S =mbgZch, +mkg [Locly += c(85)]
2

U L L6
E — még?c63 + még [L3C63 + ? C(936)]

d
% =m4g %C(eu) +mbg[Lyc(814) + gsc(thetayy; + )]

ov _ L,Ls
0. msg-, c(65)

o _ L.Ls
0. msg-, c(6,5)

d
_a: = m%g[g7c(9147 + p)l
7

ou

90, = K(¢1—61)
To = K(¢2 = 6)

ouU
300 = K(¢p3 — 63)

3.1.3 Closed-Loop Constraint Equations

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

Disconnecting the system at H and | at Figure 3.2 gives four open kinematic chains

which result in four constraint equations. Position level constraint equations may be

formulated by re-connect the disconnected joints at H and 1. this may be done according

to the formula below.

l»bl'(elf "--fem) =0 i=1, ,(m —n)

(3.87)
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L1691 + L4C914 + L7C0147 - L2C02 - L5C025 - do = O
L1591 + L45914 + L759147 - Lzsez - L5$025 = 0
L1691 + L4C914 + d7C(9147 + a) - L3C03 - L6C036 = O

L1$91 + L45914 + d7$(0147 + (l) - L3593 - L65036 = 0

Differentiating the above equations gives the following.

—L156160; — L45614614 — L75601476147 + L5650, + Ls56,50,5
L1¢6101 + LyC014014 + L7CO14760147 — Lyc6,0, — LscOp56,5
—L156,0; — L45014014 — d;5(0; + @)(0;) + L350305 + LesO36(036)

L1C9191 + L4C914914 + d7C(97 + C()(97) F L3C0393 - L6C036(0.36)

The above equations may be written with symbols as follows.
B116;1 + B126, + B1305 + B146, + Bis0s + B1s0s + Bi76,
By16; + Byy0; + B33 + Boaby + BysOs + Bygs + By,
B316; + B30, + B3303 + B3a0, + B3sOs + B3ss + B30,
B4161 + Buz0, + By303 + BuyB4 + BysOs + Bugs + Barb;
where,

By = —L1501 — L45014 — L750147

By, = Lys0; + L,s0,5

B3 =0

Biy = —L45014 — L750147

(3.88)
(3.88)
(3.89)

(3.90)

(3.91)
(3.92)
(3.93)

(3.94)

(3.95)
(3.96)
(3.97)

(3.98)

(3.99)
(3.100)
(3.101)

(3.102)
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Bis = Lss0;s
Big=0
Bi7 = —L;50147

B,y = L1cOq + LycOq4 + L7CO147

By, = —L,c0, — LscBy5

By =0

By = LycO14 + L7CO147

B;s = —LscO;s

Bye =0

By7 = L7147

B3y = —Ly58; — Lys014 — d75(6147 + @)
B3, =0

B33 = L3503 + Lgs0O34

B3y = —L4s014 — d7 5(0147 + @)

B;s =0

B3 = LesO36

B3; = —d;5(0147 + @)

By = LicO; + LycBqs + d7c(0147 + @)
B,, =0

B4z = —L3c03 — LgCO34

Byy = LycOiy +d7c(0147 + @)

(3.103)
(3.104)
(3.105)
(3.106)
(3.107)
(3.108)
(3.109)
(3.110)
(3.111)
(3.112)
(3.113)
(3.114)
(3.115)
(3.116)
(3.117)
(3.118)
(3.119)
(3.120)
(3.121)
(3.122)

(3.123)
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Bys =0
Bye = —LecO36

By; = d;¢(0147 + @)

Separating the non-actuated joint variables gives.

|[9'4]| Bia Bis Bis Bi;] '[Bin Biz Bis 0,
|95 | = _ Bys Bas Bys B By1 By Bgs 0
lé6J B3y Bss Bzg B B3y Bs; Bss||.?

B4-4 B45 B4-6 B4-7 B41 B4-2 B43 93
As a result,

'_u _ A .
0sx1 = Cax3q3x1

One can write the constraint matrix B as follows.

where,

N Bll BlZ Bl3

B% =|By1 By, B
B31 Bz, Bss

and

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)
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(3.131)

The end-effector position and orientation can be written as follows.

X1
xz =
X3

(L1501 + L5614 + d;5(0147 + a))

l(Llcgl + L4C914 + d7C(9147 + a))

6147

(3.132)

Where x; and x, stand for the position of the end-effector in the x-direction and the y-

direction respectively and x;stands for the orientation of the end-effector.

3.1.4 System Equations of Motion

Corresponding to the vector of the robot joint variables of the rigid links from Equation

2.1, one can write in matrix form the following system equations of motion.

M4
0
0

My,
0
0

My,

Where,

0
M3,
0
0
M
0
0

0
0
M33
0
0
M3
0

M, O
0 M;s
0 0

M,, 0
0  Mss
0 0

M,, 0

0 M

0 0
My O

0 M,

0 0
Mg O

0 M,

+ Q4

_Ql_
Q2
Qs

Qs
Qs

Q]

+B™A=0 (3.133)

1.2 L?
Myy = [mb 54 h | + MELE + MELy Loy + [ME 54 L, |+ mi L

4

+[mlig% + I7,,] + 2m%L1L4(:64 + 2m%L1g7C(94 +6; +p)

+2mbL,g,c(6; + B)

(3.134)
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1 L
M14 = 5 MiL1L4C04 + I:mif + I4zz] + m%Li + [m%g% + I7ZZ] + m%LlL‘ch‘l’

+m5L,g,c(84 + 65 + B) + 2mbL,g,c(6, + B) (3.135)

My, = [mlig% + 17,,] + mliL197C(94 +6;+p)+ m’;L4g7c(97 + ) (3.136)

L3 12
My = [mb 2 + Ly, | + mLE + mhL,LscOy + |[mE = + Iy, | (3.137)
1.7 LLE
Mys = 3 mhLyLscfs + [mb = + Ig,, | (3.138)
May = [m5 2+ Iy, | + mb12 + mbLyLacts + [m 2+ I, (3.139)
33 — 34 3zz 6~3 6~346“Ye6 64 6zz .
1L LLE
M36 = E m6L3L6C96 + [m6 : + IGZZ] (314‘0)

L2
M4y = [mzL}f + I4zz] +myLg + [mf g3 + Iy,,] + 2mbLagyc(6; + B) (3.141)

My; = [m5g7 + I;,,] + m5Lagrc(6; + B) (3.142)
2

Mss = mk= + Is,, (3,143)
2

Mgs = mE=2 + Iy, (3,144)

M7, = még% +I7,, (3,145)

L ) [ 1 L 72 L ) 4 L 12
Ql == _m4L1L45646194 - E m4L1L459494 - 2m7L1L45949194 - m7L1L459404 -

Zm%L197L15(94 +6; + 3)91Q7 - Zm%L197L15(94 +6; + 3)9497 - ml7“L1975(94 +
0; + 3)92 - ml7“L1975(94 +6; + 3)94é7 - m’;ng7s(94 +6; + ﬁ)9497 -
m%ng7s(94 +6; + 3)972 - Zm%L4g7s(97 + 3)9197 - m%L4g7s(97 + ﬁ)9497 -

. . L
m%L4g7s(97 + 3)972 - m%L4g7s(97 + £)6,6; + mfgjl co; + mf;g [L1591 +

L2_4 C(914)] +m5g[LicO;y + Lac(B14)] + g7¢(6147 + B) (3.146)
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Q, = —mEL,L:5650,05 —% mEL,Lss0:02 + méng—2 c, + mkg[L,cH, +

= c(6; + 65) (3.147)

Q3 = _méL3L659693é6 _% méL3L65060.62 + méng_s C03 + mlgg[L3C93 +

= c(6; + 05) (3.148)

Q4 = [-mbLyg,5(60; + B) — mhL,g,5(0; + B)1616; + [—2m5L,g,s(6; + $)16,6;
[-mkL,g,5(0, + B)10% + [mhL,L4s60, + 2mbL,L,s60, + 2m5L, g,5(0, + 6, +

1 - L
,3)]5 912 +migf €14 +

m5[LacOi4 + g7¢(0147 + )] (3.149)
Qs = é 02[mLL,Lss05] + mégLZ—5 O, (3.150)
Qs =5 03[mLLyLesOs] +mEg =2 cByq (3.151)

Q; = [mhL,1g;5(047 + B) + miL — 4 g;5(6; + B)167 + [mhLy g,5(6, + B)16Z +
[Zm’;L4g7s(97 + ﬁ)]9194 + [g7¢(B147 + ﬁ)]m%g (3.152)

Corresponding to the vector of the actuator joint variables from Equation 2.2, one can

write in matrix form the following system equations of motion.

L, 0 0 ¢1 K1(6, — ¢1) Ty
[0 I, 0] b2 | — | K2(02 — p2) | = Tz] (3.153)
0 0 Isl]g, K5(605 — ¢3) T3

It is wished for writing Equation 3.133 in only terms of actuated joint variables, this

may be done by first writing the above mentioned equation in two parts as below.

+
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Maag + Maugu + Q*+K({@—¢)—B"1=0 (3.154)
MauT 4 fpuugu 4 Qv —B¥YT1=0 (3.155)
where,

K = diag[K;] fori =1,2,3.

My; O 0
M =]0 My 0 ] (3.156)
0 0 M
M@ =0 My 0 0 ] (3.157)
[0 0 My O
Mgy 0 0 My
M™“ =0 Mg 0 0 ] (3.158)
My, 0 0 M,
QU =[Q; Q2 Qs] (3.159)
QI=1[Qs Qs Qs Q7] (3.160)

In order to eliminate the non-actuated joint variables, Equation 2.15 and 2.17 will be
used, after that, Equation 3.153 will be solved for A and then it will be substituted in

Equation 3.152 gives.

Mqg+Q*+K(@—¢)=0 (3.161)
Where,

* = [Maa _ Maugu-lga] _ EaT(Eu_l)[MauT _ Muugu-lgu] (3.162)
Q* =

[_Maugu_léa + BaT(Eu‘l)TMuuBu_léa] C_l +

[_Maugu_léu + BaT(Bu‘l)TMuuéu_léu] é‘u + Qa — EaT(Eu_l)TQu (3.163)



3.2 Control Simulation and Results

The execution of the control law is tested by using MATLAB® software. All the
constants and the variables of the system are presented and an m-file program is written

to carries out the procedures to calculate the control torques at each decided time step.

The early mentioned control algorithm in Chapter 2 will be exercised together with the
implicit numerical integration method to find the control torques exactly as mentioned

before and the procedure will be as follows.

The nonlinear algebraic equation 2.46 will be solved by functional iteration. For this
purpose, using Equation 2.48, Equation 2.43, Equation 2.25, Equation 2.46 is written in

the following form

=~ a1 A AP A 2 A - A s -1 a1l - — =

Gior = (T3 +J + CJ + Cohf + CsR2] + Ch3]) {5 G+ Za + Za(tias — ta) +
52.]?+1 - fg - fg (tk+1 - ta) + CAl[(flcci+1 - fk) - (fg - fa) - (fg - ;a)(tk+1 - ta)] +
CA‘Z [(f;(i+1 - fk) - (fg - fa) - (fg - J._Ca)(tk+1 - ta)] - CAS(fg - JZa)(tk,+1 - ta) +

Co(hlyy — Wy + @) + Ca(W2TLyy — R2Ty + h + @) (3.164)

In the right hand side, beginning with g, for g, , after that, Equation 2.164 will be
solved for the new value of g, at the left hand side. Iteration lasts till the norm of
difference between any two sequent iterations is minimal than a small number 7. The
simulation shows that forn = 107¢, maximum three iterations are necessary. After
finding the control torques they will be applied to the actual system expressed below to
find the actual acceleration which will be numerically integrated to find the new joint

and rotor velocities and positions to be used for the next time step.
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The performance of the control law will be tested for three groups of simulation. First

group is held with initial error and constant deployment motion stated as

x11  [xg 1.8m
[xz =yt = [ 1.3m ].Second group is tested with initial error and without moeling
X3 o4 20deg

error while the third group is tested with initial and modeling error. Modeling error is
regarded by setting the robot mass and inertia properties and the torsional constants to

be 20% smaller in the model.

The mass and geometric data, gear ratios and inertial properties utilized in the
simulation are given in Table 1 and Table 2.

Symbol Value Symbol Value
Ly 1.0m L, 1.0m
L, 1.0m d, 0.57735m
Ly 1.0m g7 0.57735m
Ly 1.0m do 3.0m
Ls 1.0m a 30 deg.
Le 1.0m B 60 deg.

Table 1 Geometric Data
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Symbol Value Symbol Value
mk 10 kg mé 1.2 kg
m5 10 kg m# 1.2 kg
m} 10 kg I, 8 x 10 5kg.m?
mik 10 kg L, 8 x 10-5kg. m?
mé 10 kg I, 8 X 10 5kg.m?
mé 10 kg 7 100
mk 15 kg T 100
m# 12kg rs 100

Table 2 Inertial, mass properties and Gear Ratios

The system is initially at rest with the following active joint positions.

6,, = 84°
6,, = 167°
65, = 203°

This gives the following initial position of the end-effector.
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Xp, = 1.5789m (3.167)
Yp, = 1.5081m (3.168)

G, = 0° (3.169)

The desired motion trajectories are presented as follows.

T Tt
x4 = {1 62+— [t—z—smT m OStST} (3.170)
2.12m t>T
yg:{145——[t——smT m OStST} (3.171)
0.95m t>T
20 ~_gin <t <t<
ol = {5 + [t Sm ]deg 0<t< T} (3.172)
25deg. t>T

where, T = 0.5s is the period of deployment motion and t = 0.75s is the full time of

simulation.

It is assumed that, during the path of the desired motion there will be no singular

positions and it's also proved practically during the simulation.

The sampling time interval is set to be h = 0.002. Each group of simulation is held first
with w; = 20 rad/s fori = 1, 2,3 and then with w; = 30 rad/s fori =1, 2, 3.

Results are presented as below.
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First Group of Simulations
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Figure 5 Position Response 1. x;, 2. x5, 3. x5 (First Group w; = 20rad/s)
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Figure 6 Position Response 1. x4, 2. x5, 3. x5 (First Group w; = 30rad/s)
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Figure 7 Control Torques 1.T}, 2. T4, 3. T5(First Group w; = 20 rad/s)
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Figure 8 Control Torques 1. T}, 2. T4, 3. T5'(First Group w; = 30 rad/s)
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Deflection

Elastic Deflection

Figure 9 Deflections 1.0, — ¢4, 2.6, — ¢, 3. 05 — ¢3(First Group w; = 20rad/s)
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Figure 10 Deflections 1.6; — ¢4, 2.0, — ¢, 3. 05 — ¢p5(First Group w; = 30rad/s)
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Second Group of Simulations
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Figure 11 Position Response 1. x4, 2. x5, 3. x3 (Second Group w; = 20rad/s)
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Figure 12 Position Response 1. x4, 2. x5, 3. x3 (Second Group w; = 30rad/s)

51



4000

3000

2000

1000

Torque

-1000

-2000

control Torques

T T T T H T
§ —
: — 2
........................................... B s s e A R VT
i 1 I i 1 i 1
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8

Time

Figure 13
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Elastic Deflection

Deflection

Figure 15 Deflections 1.6, — ¢4, 2.0, — ¢,, 3.605 — ¢p3(Second Group w; = 20rad/s)
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Figure 16 Deflections 1.6; — ¢4, 2.0, — ¢,, 3. 605 — ¢p3(Second Group w; = 30rad/s)
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Figure 18 Position Errors (Second Group w; = 30 rad/s)
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Third Group of Simulations
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Figure 19 Position Response 1. x4, 2. x5, 3. x3 (Third Group w; = 20rad/s)
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Figure 21 Control Torques 1.7, 2. T4}, 3. T4 (Third Group w; = 20 rad/s)
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Figure 22 Control Torques 1. T, 2. T4, 3. T4 (Third Group w; = 30 rad/s)
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Figure 23 Deflections 1.6; — ¢4, 2.0, — ¢,,3.65 — ¢p5 (Third Group w; = 20rad/s)
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CHAPTER 4

DISCUSSIONS AND CONCLUSION

4.1 Discussions

The simulations are executed for two independent groups with the same feedback gain
constants. The first group is simulated without regarding modeling errors while the
second group will be simulated by considering modeling errors. In both of the groups
and while taking initial position error into consideration, it is noticed that good tracing
performances are reached for motion tracking. Then again, it is observed that initial

errors in position lead to large initial control torques and large initial elastic deflections.

Because of the gravitational forces, none of the initial and final elastic deflections will

be zero.

Each group is simulated under the determinant of initial position errors, while, the
second group is simulated under the consideration of modeling errors as well as the
initial position errors. For this issue, mass/inertia parameters and spring constant are
assumed to be 20% smaller in the model. No notable change is noticed in tracking
elastic deflections, errors and control torques. The control torques are increased (as
observed also by the previous studies) at the discontinuities of the reference motion

trajectories.
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4.2 Conclusion

This thesis granted the motion trajectory tracking control law of flexible joint parallel
robots use as a basis on solving the singular acceleration level inverse dynamic
equations. By using the proposed method, further differentiations of task equations,
constraint equations and equations of motion are avoided. This eases the calculations
and makes the complexity less in equations. Actuator rotor and joint positions and
velocities are the feedback variables only. Since it is only motion tracking control
problem, contact forces are not existed though. The important thing about the algorithm
is that any jump in z, 2, T and I requires infinitely large input control torques because
they cannot make an instant effect on the end-effector accelerations and jerks. To avoid
this z, 2z, T and I' are matched at the discontinuities of the reference motion trajectories

by selecting the appropriate integration constants.

Simulations are executed for two groups with the same feedback gain constants but the
first group is without regarding modeling errors and the second group is with regarding
modeling errors. As a result, there will be good tracking properties for motion

trajectories by using the proposed control algorithm.

In this thesis the motor dynamics is regardless so as to focus on the dynamics of the
flexible joint manipulator. As a result it is assumed that the required control torques are
utilized without notable delay. This assumption is satisfied if brushless DC motors are
utilized that are widely used in manipulator applications. The frequency response of the
current loop in brushless DC motors is wide enough for reducing any effect on outer

control loops and though the motor dynamics can be disregarded.
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