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Abstract. In this manuscript, we discuss the square-integrable property of a fractional differential equation
having a complex-valued potential function and we show that at least one of the linearly independent
solutions of the fractional differential equation must be squarely integrable with respect to some function
containing the imaginary parts of the spectral parameter and the potential function.

1. Introduction

In 1957 Sims [1] investigated the square-integrable property of the solutions for

− f ′′ + q(t) f = µ f , t ∈ (a, b), (1)

such that µ denote the spectral parameter, q represents a complex-valued function on (a, b) such that q =
q1 + iq2, continuous on (a, b) and has a singularity at a and b. This investigation is a nontrivial generalization
of the results of Weyl [2]. In fact, in 1910 Weyl showed that the second-order equation

−(p(t) f ′)′ + q(t) f = µ f , t ∈ [0,∞), (2)

such that p, q denote real-valued functions on [0,∞), p > 0, p−1, q represent localy integrable functions on
[0,∞),has always at least one square-integrable solution on [0,∞).Moreover, the other independent solution
of (2) may be squarely integrable on [0,∞). The theory including these results is known as limit-point/circle
theory and this name is coming from the geometric representation of the fractional equation obtained by
the combination of the independent solutions of (2). Sims showed that at a singular point for (1) there may
occur one of the following three situations:

(i) a limit-point case but one square-integrable solution,
(ii) a limit-point case and two square-integrable solutions,
(iii) a limit-circle case and two square-integrable solutions.

The second case can not occur when q is real-valued function. Furthermore, Sims gave two examples
containing cases (i) and (ii).
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Although the Eq.s (1) and (2) play a central role in quantum-mechanics, modern electromagnetic theory
and classical physics, in recent years, the authors have given a special attempt to get some results for
the differential equations containing non-integer orders. The results obtained for these non-integer order
differential equations are the generalizations of the results obtained for the integer order differential equa-
tions. Such generalizations are done by using some special differential expressions and special integrals
(for example, see, [3], [4]). One of them is the Riemann-Liouville derivative of order α which is defined as

Dα
a+ f =

dm

dxm (Im−α
a+ f ),

where Re(α) ∈ (m − 1,m) and

Iαa+ f =
1

Γ(α)

∫ x

a
(x − σ)α−1 f (σ)dσ, a < x,

and the other one is the Caputo derivative of order β which is defined as

CDβ
b− f = In−β

b−

(
−

dn f
dxn

)
,

where Re(β) ∈ (n − 1,n) and

Iβb− f =
1

Γ(β)

∫ b

x
(σ − x)β−1 f (σ)dσ, x < b.

Here Γ represents the Euler gamma function. One of the generalizations of (2) can now be represented by

CDβ
b−p(t)Dα

a+ f + q(t) f = µw(t) f , (3)

and some important results for the Eq. (3) (such as symmetry of the equation) and some boundary conditions
have been introduced by Klimek and Agrawal in [5] for α ∈ (0, 1) ∪ (1, 2), p , 0 for all t ∈ [a, b], w > 0, p, q
are real-valued and continuous on [a, b]. In [6], the authors showed that the Eq. (3) with p ≡ w ≡ 1, q is
real-valued continuous function on [a, b) has at least one solution which is squarely integrable on [a, b) and
moreover the other independent solution of the same form of (3) may be squarely integrable on the same
interval. The results in [6] are the generalization of the results of Weyl for the differential equation with
non-integer order and fulfill some gaps on this theory.

Our work will generalize the results of Sims and Uğurlu et. al. for the differential equation with
non-integer order having the complex-valued potential function and this will fulfill some gaps on such
problems.

2. Differential equation

Below we discuss the equation,namely

τα( f ) :=C Dα
b−D

α
a+ f + q(t) f = µ f , t ∈ [a, b). (4)

Here µ represents the complex parameter, q is continuous function on each compact subset of [a, b) having
a singularity at b, q is a complex-valued function such that q = q1 + iq2 and 0 < α < 1.

We define the Wronskian of two functions f1 and f2 with the rule

W[ f1, f2] = (I1−α
a+ f1)(Dα

a+ f2) − (Dα
a+ f1)(I1−α

a+ f2).

We should note that the Eq. (4) has a unique solution f satisfying the conditions [7]
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(I1−α
a+ f )(l) = l1, (Dα

a+ f )(l) = l2,

where l1 and l2 are arbitrary complex numbers and l ∈ [a, b).
Following the same procedure given in [6] for the proofs we may introduce the following Lemmas.

Lemma 2.1. Let f , 1 be the solutions of (4).
(i) If W[ f , 1](t0) = 0 for t0 ∈ [a, b), then f , 1 are linearly dependent.
(ii) If f , 1 are linearly dependent solutions of (4), then W[ f , 1] ≡ 0 on [a, b).

Lemma 2.2. Let f1, f2 be the solutions of (4) satisfying

(I1−α
a+ fs)(t0) = cs1, (Dα

a+ fs)(t0) = cs2,

where s = 1, 2, cs1, cs2, are arbitrary complex numbers and

det
[

c11 c12
c21 c22

]
, 0.

Then the other solution z of (4) can be represented by f1 and f2.

Lemma 2.3. The set of solutions of (4) obeys a 2 dimensional linear space 2.

We will consider the ordinary inner product of the functions f and 1 as follows

( f , 1) =

∫ b

a
f1dt

in the Hilbert space H that contains the functions f satisfying the following

∫ b

a

∣∣∣ f ∣∣∣2 dt < ∞.

Let D be a subset of H with the functions f ∈ H such that Dα
a+ f , CDα

b−D
α
a+ f are meaningful and τα( f ) ∈ H.

For f , 1 ∈ D one obtains the following Lagrange’s formula [5]

∫ b

a

[
τα( f )1 − fτα(1)

]
dt = W[ f , 1](b) −W[ f , 1](a). (5)

From (5) we obtain that if f (t, µ) and 1(t, µ) are the solutions of (4) corresponding to the same value µ then
W[ f , 1] is independent of t and depends only on µ.

For f , 1 ∈ D we get

(τα( f ), 1) − ( f , τα(1)) = 2i
∫ b

a
q2 f1dt + W[ f , 1](b) −W[ f , 1](a). (6)

For the further calculations we will use the equation (6).
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3. The circle equation

Using Lemma 2.3 we may represent an arbitrary solution of (4) as a combination of two linearly
independent solutions of (4).

Let ξ(t, µ) and ζ(t, µ) be the solutions of (4) such that

(
I1−α1
a+ ξ

)
(a, µ) = sin δ1,

(
I1−α1
a+ ζ

)
(a, µ) = cos δ1,(

Dα1
a+ξ

)
(a, µ) = − cos δ1,

(
Dα1

a+ζ
)

(a, µ) = sin δ1,

where 0 ≤ δ1 < π.Note that W[ξ, ζ](a) = 1 and therefore by Lemma 2.1 they constitute a linearly independent
set of solutions.

Let κ be a solution of (4). Then according to Lemma 2.3 one may write κ(t, µ) as

κ(t, µ) = ξ(t, µ) + mζ(t, µ), t ∈ [a, b),

such that m denotes a constant.
Let consider on the subinterval [a, c] of [a, b) the followings

cosγ1

(
I1−α1
a+ f

)
(c) + sinγ1

(
Dα1

a+ f
)

(c) = 0, (7)

where 0 ≤ γ1 < π. Since κ is a solution of (4) we obtain from (7) that

(Λ + mΞ) cosγ1 + (Θ + mΦ) sinγ1 = 0, (8)

where

Λ =
(
I1−α1
a+ ξ

)
(c, µ), Ξ =

(
I1−α1
a+ ζ

)
(c, µ), Θ =

(
Dα1

a+ξ
)

(c, µ), Φ =
(
Dα1

a+ζ
)

(c, µ).

Since γ1 is a real number we obtain from (8)

(Λ + mΞ) cosγ1 + (Θ + mΦ) sinγ1 = 0. (9)

Therefore (8) and (9) give

[
Λ + mΞ Θ + mΦ

Λ + mΞ Θ + mΦ

] [
cosγ1
sinγ1

]
=

[
0
0

]
. (10)

Because sinγ1 and cosγ1 can not be zero at the same time for each γ1, (10) is satisfied if and only if

|m|2
(
ΞΦ −ΦΞ

)
+ m

(
ΞΘ −ΦΛ

)
+ m

(
ΛΦ −ΘΞ

)
+ ΛΘ −ΘΛ = 0, (11)

where

ΞΦ −ΦΞ = W[ζ, ζ](c),
ΞΘ −ΦΛ = W[ζ, ξ](c),
ΛΦ −ΘΞ = W[ξ, ζ](c),
ΛΘ −ΘΛ = W[ξ, ξ](c).
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On the other side the following equation

W[κ, κ](c) = 0 (12)

is also equal to (11).
Initial conditions given for ζ and (6) imply

W[ζ, ζ](c) = 2i
∫ b

a
(Imµ − q2) |ζ|2 dt. (13)

Moreover using the definition of κ and (6) we obtain

W[κ, κ](c) = 2i
∫ b

a
(Imµ − q2) |κ|2 dt − 2iImm. (14)

Consequently (11)-(14) implies that

Ω(c) =
W[κ, κ](c)

W[ζ, ζ](c)
= 0 (15)

denotes a circle equation in the complex m−plane under the condition Imµ − q2 , 0. The expression of its
radius becomes

rc =
1∣∣∣W[ζ, ζ](c)

∣∣∣ (16)

and the inside of it is Ω(c) < 0.

Theorem 3.1. Suppose either Imµ > 0 and q2 ≤ 0 or Imµ < 0 and q2 ≥ 0. Then the circles Ω(c) = 0 are nested
as c→ b.

Proof. Let Imµ > 0 and q2 ≤ 0 and Ω(c) = 0 be a circle in the m−plane. Then the points located on the
boundary or within the circle Ω(c) = 0 are written as Ω(c) ≤ 0 or from (13)-(15) as∫ c

a (Imµ − q2) |κ|2 dt − Imm∫ c

a (Imµ − q2) |ζ|2 dt
≤ 0. (17)

As a result the point m is on or inside Ω(c) = 0 if∫ c

a
(Imµ − q2) |κ|2 dt ≤ Imm. (18)

Now we analyse c̃ fulfilling a < c̃ < c. Then (18) implies that∫ c̃

a
(Imµ − q2) |κ|2 dt < Imm

and therefore m is located inside the circle generated by Ω(̃c) = 0.
For Imµ < 0 and q2 ≥ 0 one should reverse the inequality given in (18).
As a result we finished the proof.
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Corollary 3.2. As c→ b the circles Ω(c) = 0 may converge either to a circle Ω(b) = 0 or a point Ω(b) = 0.

Theorem 3.3. Let κ(t, µ) = ξ(t, µ) + mζ(t, µ) be a solution of (4). Then for Imµ > 0 and q2 ≤ 0 or Imµ < 0 and
q2 ≥ 0 the following inequality holds

−∞ <

∫ b

a
(Imµ − q2)

∣∣∣ξ(t, µ) + mζ(t, µ)
∣∣∣2 dt < ∞.

Proof. Firstly we shall consider the case Imµ > 0 and q2 ≤ 0.
We consider m as a point on the Ω(b) = 0. Then for a < c < b m must inside of Ω(c) = 0. Therefore the

following inequality must hold∫ c

a
(Imµ − q2) |ξ + mζ|2 dt < Imm. (19)

Taking into account that the right-hand side of the above equation is independent of c we consider c→ b to
obtain∫ b

a
(Imµ − q2) |ξ + mζ|2 dt < Imm

and this implies the assertion.
For the second case Imµ < 0 and q2 ≥ 0 we should reverse the inequality given in (19) and a similar

argument completes the proof.

If the circles Ω(c) = 0 converge to a point Ω(b) = 0 as c → b then the radius of the circles vanish and
therefore (13) and (16) imply that the integral

∫ b

a
(Imµ − q2) |ζ|2 dt

is divergent for Imµ > 0 and q2 ≤ 0 or Imµ < 0 and q2 ≥ 0. However, if the limiting circle Ω(b) = 0 is a circle
then one has

−∞ <

∫ b

a
(Imµ − q2) |ζ|2 dt < ∞

for Imµ > 0 and q2 ≤ 0 or Imµ < 0 and q2 ≥ 0. Consequently for the solutions of (4) we may conclude the
following main results of our work.

Theorem 3.4. Consider the equation (4) with Imµ > 0, q2 ≤ 0 or Imµ < 0, q2 ≥ 0. Then one of the following
two situations is possible:

(i) The limit-circle case: every solution f corresponding to (4) satisfies

−∞ <

∫ b

a
(Imµ − q2)

∣∣∣ f ∣∣∣2 dt < ∞. (20)

(ii) The limit-point case: one of two linearly independent solutions of (4) is not obeying (20).
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