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Abstract: Convective �ow is a self-sustained �ow with the
e�ect of the temperature gradient. The density is non-
uniform due to the variation of temperature. The e�ect of
the magnetic �ux plays a major role in convective �ow.
The process of heat transfer is accompanied bymass trans-
fer process; for instance condensation, evaporation and
chemical process. Due to the applications of the heat and
mass transfer combined e�ects in di�erent �eld, the main
aim of this paper is to do comprehensive analysis of heat
and mass transfer of MHD unsteady Oldroyd-B �uid in the
presence of ramped conditions. The new governing equa-
tions of MHD Oldroyd-B �uid have been fractionalized by
means of singular and non-singular di�erentiable opera-
tors. In order to have an accurate physical signi�cance of
imposed conditions on the geometry of Oldroyd-B �uid,
the ramped temperature, concentration and velocity are
considered. The fractional solutions of temperature, con-
centration and velocity have been investigated by means
of integral transform and inversion algorithm. The in�u-
ence of physical parameters and �ow is analyzed graph-
ically via computational software (MATHCAD-15). The ve-
locity pro�le decreases by increasing the Prandtl number.
The existence of a Prandtl number may re�ect the control
of the thickness and enlargement of the thermal e�ect. The
classical calculus is assumed as the instant rate of change
of the output when the input level changes. Therefore it is
not able to include the previous state of the system called
thememory e�ect. Due to this reason,we applied themod-
ern de�nition of fractional derivatives. Obtained general-
ized results are very important due to their vast applica-
tions in the �eld of engineering and applied sciences.
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1 Introduction
Convective �ow is a self-sustained �ow that transfers heat
energy into or out of the body by actual movement of �u-
ids particles that move energy with its mass. Thermal ra-
diation and the e�ect of magnetic �ux plays an important
role in convective �ow. The di�erent industrial problems
and �uid �ow in the porous medium have achieved con-
sideration in recent years. In the literature, di�erent theo-
ries aremade to see the phenomenon of heat transfer anal-
ysis. The convection heat transform between two heated
cubes discusses by Mousazadeh et al. [1]. Sajad et al. [2]
investigate the heat transfer and magnetic e�ect on hy-
brid nano�uids. Nazish et al. [3] analyze the in�uence of
heat and mass transform with a magnetic �eld in the rate
type �uid model. The analysis of heat transfer mathemat-
ical model’s subject to the slip boundary condition for the
Maxwell �uid discussed by Han et al. [4]. They explored
the exact solutions using the e�ect of relaxation time of
the heat �ux. Literature shows more interest in developed
identical studies in [5–7].

Rampedheating plays a good role in real-life problems
such as diagnoses of prognosis, analysis of heart function,
and blood vessel system [8–10]. Moreover, Kundu [11] in-
vestigates the thermal therapy based on rampedheating to
destroy the cancer cells on the human structure. Initially,
convective viscous �uid with ramped heating over vertical
wall analyzes by Schertz [12] and Hayday [13]. The heat ab-
sorption ramped heating and thermal e�ect near a mov-
ing wall discussed by Seth et al. [14]. Further authors [15]
investigate the dynamical aspect of mass and heat trans-
formation with Darcy’s law, chemical reaction, and ther-
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mal conditions. Previously, there is less study which deals
the parallel use of ramped heating with ramped velocity.
It is complicated to apply these conditions, but they have
broad signi�cance as a physical aspect. Researchers in-
vestigated the ramped heating to investigate the �ows of
Newtonian and non-Newtonian [16–19]. In multiple sub-
divisions of emerging technologies, ramped wall velocity
has found broad applications. For instance, inmedical sci-
ences, diagnoses of cardiovascular infections by means of
treadmill testing (TT) or Ergo-meters is e�cient employ-
ment of ramped velocity. Ramped velocity is a signi�cant
tool to recognize, determine medication, anticipate prog-
nosis, and assess the working capability of blood vessels
and heart.

The technique of fractional calculus has been used to
formulate mathematical modeling in various technolog-
ical development, engineering applications, and indus-
trial sciences. Di�erent valuable work has been discussed
for modeling �uid dynamics, signal processing, viscoelas-
ticity, electrochemistry, and biological structure through
fractional time derivatives [20]. This fractional di�erential
operator found useful conclusions for experts to treat can-
cer cells with a suitable amount of heat source and have
compared the results to see the memory e�ect of tempera-
ture function. As compared to classical models, the mem-
ory e�ect ismuch stronger in fractional derivatives [21–25].
Over the last thirty years, Fractional derivative/calculus
(FDs/FC) has captivated the numerous researchers after
recognition of the fact that in comparison to the classi-
cal derivatives, FDs are more reliable operators to model
the real-world physical phenomena. In dynamical prob-
lems, Fractional order models/ modeling are receiving a
rapid popularity nowadays. The mathematical modeling
of many physical and engineering models based on the
idea of FC exhibits highly precise and accurate experimen-
tal results as compared to the models based on conven-
tional calculus. For example, the fractional results of rate
anddi�erential type’s �uidshaveagreat resemblancewith
the results obtained experimentally. Tan [26], studied the
generalized second grade �uid and learn the analytic solu-
tion of time dependent Couette �ow. Riaz et al. [27] investi-
gate the optimal solution of unsteady generalized second
grade �uid via FD.

Riaz et al. [28] learn the view of newly FD operators of
Maxwell �uid in heat and mass transfer study. They con-
sider the Maxwell �uid and investigate the heat and mass
transfer with the integer & non-integer order derivative.
Some further investigation of �uid �ows and their prop-
erties equipped with FD establish in [29–45]. Applications
of combined impact of heat andmass transfer in engineer-
ing, applied sciences and FC, since they are connected to

the historical data (memory e�ect). Memory e�ect in FC
means the occurrence of process depends not only in the
present state but also on the past history of the process. FC
has ability to remember prior e�ects of the input in order
to calculate the current value of the output motivate us to
investigate the time dependent natural convection �ow of
MHD Oldroyd-B �uid.

The intent of this manuscript is to explore the ana-
lytical solution of MHD OBM with simultaneous use of
ramped heating with ramped velocity. New de�nitions of
non-integer order derivatives C, CF and ABC implemented
using Laplace integral transformation is used to gain the
solution of velocity, temperature and concentration under
impact of simultaneous use of ramped conditions. In Sec-
tion (2), the dimensionless governing equations are devel-
oped. In Sections (3), (4) and (5), non-integer order deriva-
tives with Laplace integral transform is used to �nd the re-
quired solution of the concentration, temperature and ve-
locity �eld. In Section (6), the e�ect of physical parameters
is analyzed graphically. The concluding observation listed
at the end.

2 Problem statement
We discussed the unsteady generalized OBF �ow over
an in�nite plate. The �ow representation and governing
equations of OBF using geometry with appropriate condi-
tions are analyzed in Figure 1 [33]:(
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C(0, τ) =
{
C∞ + (Cw − C∞) ττ0

for 0 < τ ≤ τo;
Cw for τ > τo

, (4)

τ > 0, w(η, τ) → 0, T(η, τ) → T∞, C(η, τ) → C∞, as
η →∞

The dimensionless parameters are mentioned below:
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0
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0
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k ,
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0
, 1
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0
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(5)

Figure 1: Geometry of Oldroyd-B model

Applying (5) into (1) – (4), we get the set of dimension-
less governing equations with corresponding conditions,(
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V(ζ , t) → 0, θ(ζ , t) → 0, ϑ(ζ , t) → 0, for ζ →∞.

3 Solution of the temperature
pro�le

3.1 Caputo time derivatives

Fractional operators are quite �exible for describing the
behaviors of heat transfer of MHD Oldroyd-B model
through the characterization of governing equations of the
temperature (7) via Caputo-fractional operator (11)

CDετθ (ζ , τ) = 1
Pr
∂2θ (ζ , τ)
∂ζ 2 , (10)

where CDετ is called Caputo-Fractional operator [29] and its
inverse de�ned below:
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L{CDϵτM(ζ , τ)} = ~ϵL(M(ζ , τ)) − hϵ−1M(ζ , 0). (12)

Applying Eq. (12) to Eq. (10) with suitable condition on
temperature, we have,
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3.2 Caputo-Fabrizio time derivatives

Fractional operators are quite �exible for describing the
behaviors of heat transfer of MHD Oldroyd-B model
through the characterization of governing equations of
temperature (7) via CF-fractional operator (17) of order ε.

CFDϵτ(ζ , τ) = 1
Pr
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where CFDετ is called Caputo-Fabrizio fractional opera-
tor [32] and its inverse de�ned below:

CFDετM (ζ , τ) = 1
1 − ε
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(1 − ϵ)~ + ϵ . (18)

Applying Eq. (18) to Eq. (16) with suitable condition on
temperature, we have,
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3.3 Atangana-Baleanu time derivatives

Fractional operators are quite �exible for describing the
behaviors of heat transfer of MHD Oldroyd-B model
through the characterization of governing equations of
temperature (7) via ABC-fractional operator (23) of order
ε.
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4 Solution of the concentration
pro�le

4.1 Caputo time derivatives

Fractional operators are quite �exible for describing the
behaviors of heat transfer of MHD Oldroyd-B model
through the characterization of governing equations of
concentration (8) via Caputo-fractional operator,

∂2_

ϑ (ζ , ~)
∂ζ 2 −

(
Sc~ε

)_

ϑ (ζ , ~) = 0. (28)

The required solution of Eq. (28) is written as:
_

ϑ (ζ , ~) = c1e−ζ
√
Sc~ε + c2eζ

√
Sc~ε . (29)

We �nd the unknown using (9)
_

ϑ (ζ , ~) =
(

1 − e−~
~2

)
e−ζ

√
Sc~ε . (30)

4.2 Caputo-Fabrizio time derivatives

Fractional operators are quite �exible for describing the
behaviors of heat transfer of MHD Oldroyd-B model
through the characterization of governing equations of
concentration (8) via CF-fractional operator

∂2_

ϑ (ζ , ~)
∂ζ 2 −

(
Sc

~
(1 − ε) ~ + ε

)
_

ϑ (ζ , ~) = 0. (31)

The required solution of Eq. (31) is written as:
_

ϑ (ζ , ~) = c1e
−ζ
√
Sc ~

(1−ε)~+ε + c2e
ζ
√
Sc ~

(1−ε)~+ε . (32)

We �nd the unknown using (9)
_

ϑ (ζ , ~) =
(

1 − e−~
~

)
e−ζ
√
Sc ~

(1−ε)~+ε . (33)

4.3 Atangana-Baleanu time derivatives

Fractional operators are quite �exible for describing the
behaviors of heat transfer of MHD Oldroyd-B model
through the characterization of governing equations of
concentration (8) via ABC-fractional operator

∂2_

ϑ (ζ , ~)
∂ζ 2 −

(
Sc

~ε

(1 − ε) ~ε + ε

)
_

ϑ (ζ , ~) = 0. (34)

The required solution of Eq. (34) is written as:
_

ϑ (ζ , ~) = c1e
−ζ
√
Sc ~ε

(1−ε)~ε+ε + c2e
ζ
√
Sc ~ε

(1−ε)~ε+ε . (35)

We �nd the unknown using (9)
_

ϑ (ζ , ~) =
(

1 − e−~
~

)
e−ζ
√
Sc ~ε

(1−ε)~ε+ε . (36)



Syed Tauseef Saeed et al., A fractional study of generalized Oldroyd-B fluid | 181

5 Solution of the velocity pro�le

5.1 Caputo time derivatives

We apply Eq. (12) for the solutions of the Eq. (6),(
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The general solution can be given as

_

V (ζ , ~) = c1e
ζ

√(
(1+=~ε)(~+M)

1+=r~ϖ

)
+ 1
K

+ c2e
−ζ

√(
(1+=~ε)(~+M)

1+=r~ϖ

)
+ 1
K
− <1e−ζ

√
Pr~ε − <2e−ζ

√
Sc~ε ,

(39)

_

V (ζ , ~) =
(

1 − e−~
~2

)
e
−ζ

√(
(1+=~ε)(~+M)

1+=r~ϖ

)
+ 1
K

+ <1

e
−ζ

√(
(1+=~ε)(~+M)

1+=r~ϖ

)
+ 1
K
− e−ζ

√
Pr~ε


+ <2

e
−ζ

√(
(1+=~ε)(~+M)

1+=r~ϖ

)
+ 1
K
− e−ζ

√
Sc~ε

 . (40)

Where

<1 = GrK(1−e−~)(1+=r~ϖ)(1+=~ε)
~2[(PrK~ε(1+=r~ϖ))−K(1+=~ε)(~+M)−(1+=r~ϖ)] ,
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~2[(ScK~ε(1+=r~ϖ))−K(1+=~ε)(~+M)−(1+=r~ϖ)] .

5.2 Caputo-Fabrizio time derivatives

We apply Eq.(18) for the solutions of the Eq.(6),(
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The general solution can be given as
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~2[<4ScK~−K<3((1−ε)~+ε)(~+M)−<4((1−ε)~+ε)] .

5.3 Atangana-Baleanu time derivatives

We apply Eq.(18) for the solutions of the Eq.(6),
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The complementary solution of (44) is:
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The general solution can be given as
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Where
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<8 = (1−ϖ+=r)~ϖ+ϖ
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<9 = <7<8GrK(1−e−~)((1−ε)~ε+ε)
~2[<8PrK~−K<7((1−ε)~ε+ε)(~+M)−<8((1−ε)~ε+ε)] ,

<10 = <7<8GmK(1−e−~)((1−ε)~ε+ε)
~2[<8PrK~−K<7((1−ε)~ε+ε)(~+M)−<8((1−ε)~ε+ε)] .

The numerical and computational techniques are
used to evaluate the Laplace inverse via Stehfest’s and
Tzou’s algorithms [46]. As Gm = 0 and (ε, ϖ) → 1, the
required velocity equations (41), (45) and (49) we get the
result discussed in [33]. Further if = = 0 and =r = 0 then
required results same as [16]. Moreover as Gm = 0 then re-
quired results same as [19].

v(ζ , t) = ln(2)
t

2k∑
s=1
ds v̄

(
ζ , s ln(2)

t

)
, with

ds = (−1)s+k
min(s,k)∑
j=[ s+1

2 ]
jn(2j)!

(k−j)!j!(j−1)!(s−1)!(2j−s)! .
(47)

6 Validations of results
a) If we neglect Gm = 0 and (ε, ϖ) → 1, then the required
results are identical which obtained by [33].
b) If we neglect Gm = 0, then the required results are iden-
tical which obtained by [19].
c) If we neglect= = 0 and=r = 0, then required results are
identical which obtained by [16].

Figure 2: Comparison of velocity for integer & non-integer derivative

7 Results and discussion
This part is devoted for physical interpretation of heat and
mass transfer is executed on themotion of Oldroyd-B �uid
near a porous surface. The impact of thermal radiation,
magnetic �eld, and ramped conditions are also analyzed
via Fractional derivative to obtain a solution via inver-
sion algorithm. The impact of physical parameters such
as Pr,M, Gm, Gr,K,ε,ϖ, = and =r on energy, concentra-
tion and velocity pro�le are discussed using graphs. The
time e�ect on all fractional derivative operators and clas-
sical model analyzed in �gure (2). It is clearly show that

Figure 3: Velocity pro�le for FD’s with variation of Pr and Gr = 5,
Gm = 2, ε = 0.4

Figure 4: Velocity pro�le for FD’s with variation of M and Pr = 0.7,
Gm = 2, ε = 0.5

for altered time the behavior of velocity pro�le are same.
The resultant velocity of ABC model is huge with respect
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Figure 5: Velocity pro�le for FD’s with variation of Gr and Pr = 0.7,
M = 2, ε = 0.4

Figure 6: Velocity pro�le for FD’s with variation of Gm and Pr = 0.7,
= = 0.8, ε = 0.6

Figure 7: Velocity pro�le for FD’s with variation of ϖ and Gr = 5,
Gm = 2, Pr = 0.4

Figure 8: Velocity pro�le for FD’s with variation of ε and Gr = 2,
Gm = 8, ε = 0.4
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Figure 9: Velocity pro�le for FD’s with variation of= and Pr = 2,
M = 0.5, ε = 0.4

Figure 10: Velocity pro�le for FD’s with variation of=r and Gr = 5,
Gm = 2, M = 0.4

to other fractional models as well as classical model. Fig-
ure (3) analyzes the behavior depends on Speci�c heat and
conductivity of Pr . The velocity decreases as increase in
the value of Pr . The lower Pr enhance the thermal con-
ductivity and increase the boundary layer. Figure (4) inves-
tigate the domination of M on velocity components. The
magnetic �eld increases as the velocity decreases. By en-
hancing the value of M, the Lorentz force also increases.
Due to this force the �uid �ow on the boundary layer is
slow down. It is perceive that the behavior of �uid pro�le
for ABC model is e�ective as compared to other models.
Thermal and isothermal conditions represent the domina-
tion of Gr shown in �gures (5). Physically, Gr shows the
relation between thermal forces to viscous force. For vari-
ation of time, the behavior of velocities is unique. The in-
�uence of Gm is illustrated in �gure (6). It is notice that re-
sultant velocity increase with enhance of in all fractional
operators. It is also show that velocity increase with in-
crease of time. The velocity �eld of ABC is huge as com-
pared to Caputo and Caputo-Fabrizio. C, CF and ABCmod-
els analyzed the in�uence of fractional parameters ε andϑ
on velocity via graphs as shown in �gures (7) and (8). With
large value of, the velocity pro�le also enhances. The be-
havior of velocity �eld is same for variation of time. Further
memory e�ect of ABC is good as compared to other oper-
ators. Figure (8) represent the behavior of velocity pro�le
for another fractional parameterε. The behavior of ε is re-
verse toϑ. With increase inε, velocity �eld reduce for vari-
ation of time. Di�erent physical properties are more e�ec-
tive to discuss in ABC model due to its non-local kernel.
The in�uence of= is illustrated in�gure (9). It is notice that
resultant velocity decrease with enhance of = in all frac-
tional operators due to thickness of boundary layer. It is
also show that velocity increase with increase of time. Fig-
ures (10) show the e�ect of retardation time=r. The behav-
ior of= and=r are reversible. Enhance=r, the resultant ve-
locity enhance with variation of time. The in�uence of all
physical parameters on velocity pro�le using ABC model
is more e�ective as compared to other models.

8 Conclusions
The comprehensive analysis of the time fractional Analy-
sis and heat transfer of a Oldroyd-B �uid in the presence of
magnetic �eld with ramped conditions via has been inves-
tigated. To obtained the solution by using Laplace trans-
formation, to compare the results between C, CF and ABC.
To demonstrated in several graphs to analyze the e�ects of
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all parameters. The following major �ndings of this study
are given below:

i) It is observed that the behaviors of �uid velocity for
relaxation and retardation pro�les are opposite to each
other.

ii) Velocity behaves as a decreasing function forM and
Pr.

iii) Increasing the worth of Gr and Gm, the velocity
pro�le also enhances.

iv) Velocity �eld for the ABC fractional operator is
higher than the CF and Caputo fractional operator.

v) As the fractional parameter approaches to 1, then
fractional models convert into classical model.

vi) Ramping of the enclosing wall is a salient tech-
nique to control the temperature and velocity of the �uid.
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