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In this work, we investigate thin film flow of a third grade fluid down a inclined plane. The solution of a
nonlinear boundary value problem (BVP) is derived by using an effective well organized computational
scheme namely homotopy perturbation Elzaki transform method. Furthermore, this model is also
resolved by Elzaki decomposition technique. The outcomes achieved by these two approaches are consis-
tent with each other and because of that this technique may be regarded as an optional and effective
scheme for determining results of linear and nonlinear BVP. Moreover, the homotopy perturbation
Elzaki transform method leads over the Elzaki decomposition method since the nonlinear problems
are solved without utilization of Adomian polynomials.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction techniques were introduced and developed to examine fluid flow
Nonlinear differential equations (NDE) establish the non-linear
case that emerge in several regions of engineering and scientific
domains like solid state physics, fluid mechanics, biological mod-
els, plasma physics, financial models and social science models.
Many difficulties that arise in scientific and engineering processes,
mainly some fluid flow and heat transfer mathematical models are
nonlinear, so few of these obstacles are resolved by numeric
schemes and some are worked out by analytical perturbative
technique [1–3]. In recent years several analytical and numerical
problems [4–9]. In the analytical technique, accuracy and conver-
gence are studied to keep away the different and unsuitable out-
comes. For the scientific perturbation procedure, the small
parameter is applied in the mathematical model [10]. The draw-
back in this technique that it includes the calculation of the small
parameters (SP) and then use it into the mathematical model. The
perturbation scheme is one of the common techniques that were
considered by various investigators such as Bellman [11] and Cole
[12]. In fact, both researchers had noticed to the mathematical fea-
tures about the issue that incorporated a lack of physical inspec-
tion. This lack of physical inspection in this area was improved
by Nayfeh [13] and Van Dyke [14].

Latterly, for the solution of BVPs, the scientific schemes possess
ever amplifying the curiosity of the researchers, engineers and sci-
entists. These methods are influenced by the perturbation
approaches and have become demanding in natural challenges.
The perturbation techniques, similar to other analytical schemes
still have also their own drawbacks, such as all perturbation tech-
niques have to introduce a SP in the mathematical model and solu-
tion of the mathematical model are presented in the series
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involving this parameter. Special skill is required for the selection
of SP. That’s why an computational scheme is used which does not
need a SP in the mathematical model designing the problem.

As the drawbacks with this approach is that the condition of the
general perturbation approach upon the presence of SP, so devel-
oping the technique for various uses is very tough. So, several types
of new techniques are developed to remove the SP such as artificial
parameter technique developed by Liu [15], the homotopy analysis
technique [16–18], the variational iteration algorithm [19–23], the
homotopy perturbation technique [24–30], the Adomian decompo-
sition approach [31–33], the optimal homotopy asymptotic
scheme [34,35], the homotopy perturbation sumudu transform
methodology [36], the sumudu decomposition technique [37],
homotopy perturbation Elzaki transform method (HPETM) [38],
the Elzaki decomposition method (EDM) [39]. Recently, several
mathematicians working in the field of nonlinear mathematical
moelling have employed various techniques for handling physical
problems [40–45].

Furthermore, we are applying the HPETM and the EDM to
observe the solutions of nonlinear mathematical model controlling
the thin film flow (TFF) of a third grade fluid (TGF) down a inclined
plane, and numerical outcomes observed from these two methods
are shown on graphical representation. The novelty of this work is
that the HPETM and EDM are first time applied for examining the
TFF of a TGF down a inclined plane. HPETM contributes the results
in a quick convergent series which give rise to the results in a ter-
minating series. The preference of these techniques is that it
merges two powerful methods for achieving accurate and adjacent
results for nonlinear differential mathematical models.

2. Elzaki transform

There are a number of integral transforms and broadly used in
astronomy, engineering and also in physics. For solving differential
models, the integral transforms are broadly used and consequently
there are a number of works on the theory and use of integral
transforms like the Fourier, Laplace, Hankel and Mellin to a name
but a few. Successively, these transforms, in 2012, Elzaki et al.
[46] have given a novel integral transform termed as the Elzaki
transform (ET) and employed it to solve the various scientific prob-
lems. The ET is defined and expressed as [46]

E ½fðzÞ� ¼ u
Z 1

0
f ðzÞ e�z=u dz; z > 0: ð2:1Þ

The ET of the nth order derivative of a function f ðzÞ is expressed as
[46]:

E½f ðnÞðzÞ� ¼ u�n�f ðuÞ �
Xn�1

k¼0

u2�nþkf ðkÞð0Þ: ð2:2Þ
3. Mathematical model

The mathematical model of thin film flow of a TGF down an
inclined plane of inclination a – 0 is expressed as [47,48]:

d2w

dz2
þ 6ðb2 þ b3Þ

l
dw
dz

� �2 d2w

dz2
þ qg sina

l ¼ 0; ð3:1Þ

wð0Þ ¼ 0;
dw
dz

¼ 0 at z ¼ k : ð3:2Þ

Establishing the parameters

y ¼ ky� ; w ¼ k2qg sina
l

w�;
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b� ¼ 3k2q2g2 sin2 a
l3 ðb2 þ b3Þ: ð3:3Þ

After excluding asterisks, Eqs. (3.1) and (3.2) takes the following
form

d2w

dz2
þ 6b

dw
dz

� �2 d2w

dz2
þ 1 ¼ 0; ð3:4Þ

wð0Þ ¼ 0;
dw
dz

¼ 0 at z ¼ 1: ð3:5Þ

In Eqs. (3.1)–(3.5), l represents dynamic viscosity, g indicates the
gravity, q denotes fluid density, b2;b3 indicate material constants
and b > 0 gives material constant of a TGF. We observe that math-
ematical model (3.4) denotes an inhomogeneous and nonlinear dif-
ferential mathematical model of second order with two boundary
conditions (BCs). So, it is a well-defined problem.

On integrating Eq. (3.4), we find

dw
dz

þ 2b
dw
dz

� �3

þ z ¼ C1: ð3:6Þ

In Eq. (3.6) C1 represents a constant. Applying the second BC of (3.5)
in mathematical model (3.6), we get C1 ¼ 1. Therefore, Eqs. 3.4,3.5
can be represented as

dw
dz

þ 2b
dw
dz

� �3

þ ðz� 1Þ ¼ 0; ð3:7Þ

wð0Þ ¼ 0: ð3:8Þ
For b ¼ 0, Eq. (3.8) relative to that of Newtonian fluid. The solution
of Eq. (3.7) under the BCs (3.8) for b ¼ 0 is expressed as below

wðzÞ ¼ �1
2

ðz� 1Þ2 � 1
h i

: ð3:9Þ

In the next section, we derive the solution of the nonlinear model
3.7,3.8 with the aid of the HPETM and the EDM.

4. Solution by HPETM

4.1. Basic idea of HPETM

The HPETM is a joint form of HPM [24–30] and ET algorithm. To
represent the fundamental plan of the HPETM, we take a nonlinear
non-homogenous partial differential equation (NNHPDE) as shown
below:

LwðzÞ þ RwðzÞ þ NwðzÞ ¼ gðzÞ: ð4:1Þ
Here L represents linear differential operator (LDO) of highest order,
R stands for the LDO of less order than L, N denotes nonlinear
differential operator (NDO) and gðzÞ indicates the term because of
source.

Now using the ET on Eq. (4.1) and simplifying the resulting
equation, we get

E ½wðzÞ� ¼ un
Xn�1

k¼0

u2�nþkwðkÞð0Þ þ unE½gðzÞ�

� unE RwðzÞ þ NwðzÞ½ �: ð4:2Þ
Now, using the inverse ET on (4.2), we have

wðzÞ ¼ GðzÞ � E�1 un E ½RwðzÞ þ NwðzÞ�½ �: ð4:3Þ
Here GðzÞ indicates the term generated from the source term and
the associated initial conditions (ICs).

Next, on making use of the HPM
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wðzÞ ¼
X1
m¼0

pmwmðzÞ ð4:4Þ

and the nonlinear term can be expressed as

NwðzÞ ¼
X1
m¼0

pmHmðwÞ; ð4:5Þ

for some He’s polynomials (HPs) [49,50] that are written as

Hmðw0;w1; . . . ;wmÞ ¼ 1
m!

@m

@pm
N
X1
i¼0

piwi

 !" #
p¼0

;m ¼ 0;1; . . . :

ð4:6Þ
The substitution of values from Eqs. (4.4) and (4.5) in Eq. (4.3), gives

X1
m¼0

pmwmðzÞ ¼ GðzÞ

� p E�1 un E R
X1
m¼0

pmwmðzÞ þ
X1
m¼0

pmHmðwÞ
" #" # !

;

ð4:7Þ
which is the combined form of the ET and the HPM with the aid of
HPs. Equating the coefficient of similar powers of p, we have

p0 : w0ðzÞ ¼ GðzÞ;

p1 : w1ðzÞ ¼ �E�1 unE½Rw0ðzÞ þ H0ðwÞ�½ �;

p2 : w2ðzÞ ¼ �E�1 unE½Rw1ðzÞ þ H1ðwÞ�½ �; ð4:8Þ

p3 : w3ðzÞ ¼ �E�1 unE½Rw2ðzÞ þ H2ðwÞ�½ �;

..

.

pm : wmðzÞ ¼ �E�1 unE½Rwm�1ðzÞ þ Hm�1ðwÞ�½ ��:
Finally, The HPETM solution wðzÞ is expressed as

wðzÞ ¼ Lim
N!1

XN
m¼0

wmðzÞ: ð4:9Þ

The above series solutions normally converge very speedily in a few
terms. The convergence analysis of such kind of series is studied by
Abbaoui and Cherruault [51].

4.2. HPETM solution of the model

E w½ � ¼ u3 � u4 � 2buE
dw
dz

� �3
" #

: ð4:10Þ

Applying the inverse ET, we have

w ¼ z� z2

2
� 2bS�1 uE

dw
dz

� �3
" #" #

: ð4:11Þ

Now on using the HPM, it gives

X1
m¼0

pmwmðwÞ ¼ z� z2

2
� 2bp E�1 uE

X1
m¼0

pmHmðwÞ
" #" # !

:

In the above expression HmðwÞ indicate HPs. The first some compo-
nents of HPs are given below

H0 ¼ dw0

dz

� �3

;
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H1 ¼ 3
dw0

dz

� �2 dw1

dz
;

H2 ¼ 3
dw0

dz
dw1

dz

� �2

þ 3
dw0

dz

� �2 dw2

dz
; ð4:12Þ

H3 ¼ dw1

dz

� �3

þ 6
dw0

dz
dw1

dz
dw2

dz
þ 3

dw0

dz

� �2 dw3

dz
;

..

.

The comparison of the coefficients of equal powers of p, enables us
to get

p0 : w0ðzÞ ¼ z� z2

2
;

p1 : w1ðzÞ ¼ b
2

ðz� 1Þ4 � 1
h i

;

p2 : w2ðzÞ ¼ �2b2 ðz� 1Þ6 � 1
h i

; ð4:13Þ

p3 : w3ðzÞ ¼ 12b3 ðz� 1Þ8 � 1
h i

;

p4 : w4ðzÞ ¼ �88b4 ðz� 1Þ10 � 1
h i

;

p5 : w5ðzÞ ¼ 632b5 ðz� 1Þ12 � 1
h i

;

..

.

Thus, the HPETM solution is presented as

wðzÞ ¼ z� z2

2
þ b
2

ðz� 1Þ4 � 1
h i

� 2b2 ðz� 1Þ6 � 1
h i

þ 12b3 ðz� 1Þ8 � 1
h i

� 88b4 ðz� 1Þ10 � 1
h i

þ 632b5 ðz� 1Þ12 � 1
h i

þ . . . ð4:14Þ

In Eq. (4.14) the terms which include the terms of b provide the
input of the non-Newtonian fluid. It is very important to see that
by putting b ¼ 0 in the expression (4.14), we get the solution of
the Newtonian fluid problem. Therefore the first iteration of the
nonlinear model 3.7,3.8 derived with the aid of the HPETM is sim-
ilar to the exact solutions of the linear mathematical model. This
reveals that the HPETM can be similarly used in handling linear
models. The influence of the non-Newtonian parameter b on the
velocity profile presented in Eq. (4.14) is demonstrated in Fig. 1. It
can be seen that as we reduce the value of b the velocity profile
enhances and converges to the Newtonian case.

5. Solution by EDM

5.1. Basic idea of EDM

The Elzaki decomposition method (EDM) is a combination of
the ET and ADM. Let us consider a NNHPDE:

LwðzÞ þ RwðzÞ þ NwðzÞ ¼ gðzÞ; ð5:1Þ
On applying the ET on Eq. (5.1), we have

E ½wðzÞ� ¼ un
Xn�1

k¼0

u2�nþkwðkÞð0Þ þ unE½gðzÞ�

� unE RwðzÞ þ NwðzÞ½ �: ð5:2Þ



Fig. 1. Plots of velocity profile with respect to z for distinct values of b.
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Now, using the inverse ET on Eq. (5.2), we get

UðzÞ ¼ GðzÞ � E�1 un E ½RwðzÞ þ NwðzÞ�½ �; ð5:3Þ
here GðzÞ comprises the term which arise from the source term and
the associated ICs.

The second step in EDM is that we express result as an infinite
series presented as

wðzÞ ¼
X1
m¼0

wmðzÞ; ð5:4Þ

and the nonlinear term can be break down as

NwðzÞ ¼
X1
m¼0

Am; ð5:5Þ

where Am are Adomian’s polynomials (APs) [52] of
w0;w1;w2; . . . ;wm and it can be determined by using the below
given formula

Am ¼ 1
n!

dm

dkm
N
X1
i¼0

kiwi

 !" #
k¼0

; m ¼ 0;1;2; . . . ð5:6Þ

Using Eqs. (5.4) and (5.5) in Eq. (5.3), we get

X1
m¼0

wmðzÞ ¼ GðzÞ � E�1 un E R
X1
m¼0

wmðzÞ þ
X1
m¼0

Am

" #" #
: ð5:7Þ

On equating both sides of the Eq. (5.7), we have

w0ðzÞ ¼ GðzÞ; ð5:8Þ

w1ðzÞ ¼ �E�1 unE½Rw0ðzÞ þ A0�½ �; ð5:9Þ

w2ðzÞ ¼ �E�1 unE½Rw1ðzÞ þ A1�½ �: ð5:10Þ
In general, the recursive formula is stated below

wmþ1ðzÞ ¼ �E�1 unE½RwmðzÞ þ Am�½ �; m P 1: ð5:11Þ
Now by solving Eq. (5.11), we get the values of w1;w2; . . . ;wm.

5.2. Solution of the problem

On applying the ET on Eq. (3.7), we have
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E w½ � ¼ u3 � u4 � 2buE
dw
dz

� �3
" #

: ð5:12Þ

The inverse Elzaki transform implies that

w ¼ z� z2

2
� 2bE�1 uE

dw
dz

� �3
" #" #

: ð5:13Þ

On using the scheme (ADM), if we suppose a solution expressed in
the form of Eq. (5.4), we get

X1
m¼0

wmðzÞ ¼ z� z2

2
� 2bE�1 uE

X1
m¼0

AmðwÞ
" #" #

; ð5:14Þ

where AmðwÞ are APs. The first few components of APs are as follows

A0 ¼ dw0

dz

� �3

;

A1 ¼ 3
dw0

dz

� �2 dw1

dz
;

A2 ¼ 3
dw0

dz
dw1

dz

� �2

þ 3
dw0

dz

� �2 dw2

dz
; ð5:15Þ

A3 ¼ dw1

dz

� �3

þ 6
dw0

dz
dw1

dz
dw2

dz
þ 3

dw0

dz

� �2 dw3

dz
;

..

.

The recursive relation is given below

w0ðzÞ ¼ z� z2

2
;

w1ðzÞ ¼ �2bE�1 uE½A0ðwÞ�½ �; ð5:16Þ

wmþ1ðzÞ ¼ �2bE�1 uE½AmðwÞ�½ �:
The rest of terms of the EDM solution can be computed with the aid
of above iterative scheme as follows

w1ðzÞ ¼ b
2

ðz� 1Þ4 � 1
h i

;

w2ðzÞ ¼ �2b2 ðz� 1Þ6 � 1
h i

;

w3ðzÞ ¼ 12b3 ðz� 1Þ8 � 1
h i

; ð5:17Þ

w4ðzÞ ¼ �88b4 ðz� 1Þ10 � 1
h i

;

w5ðzÞ ¼ 632b5 ðz� 1Þ12 � 1
h i

;

..

.

Adding all above terms, we can present the solution as follows

wðzÞ ¼ z� z2

2
þ b
2

ðz� 1Þ4 � 1
h i

� 2b2 ðz� 1Þ6 � 1
h i

þ 12b3 ðz� 1Þ8 � 1
h i

� 88b4 ðz� 1Þ10 � 1
h i

þ 632b5 ðz� 1Þ12 � 1
h i

þ . . . ð5:18Þ

which is the same solution as derived with the aid of HPETM. As
earlier by taking b ¼ 0 in Eq. (5.18), we can get the exact solution



Table 1
Comparison of solutions using HPETM and EDM for b ¼ 0:04.

z HPETM EDM

0:0 0:0000000000 0:0000000000
0:2 0:1655347200 0:1655347200
0:4 0:2999347200 0:2999347200
0:6 0:3978547200 0:3978547200
0:8 0:4573747200 0:4573747200
1:0 0:4773427200 0:4773427200

Fig. 2. Plots of the HPETM and the EDM solutions at b = 0.04.
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for the Newtonian fluid model. In Table 1, a comparative analysis
between HPETM and EDM is presented. It can be noticed a the out-
comes of both of the schemes are in a great agreement.

6. Conclusions

In this work, we have investigated the thin flow problem with a
TGF and achieved its results by utilizing the homotopy perturba-
tion Elzaki transform technique and the Elzaki decomposition
technique. The comparison among the fifth order iterative solution
of the HPETM and the six terms of the EDM is demonstrated in the
form of Fig. 2. It is noticed that for b ¼ 0:04, that two suggested
computational techniques are in good agreement with each other.
That’s why, both approaches are very powerful and well organized
algorithms for handling linear and nonlinear mathematical models
which arise in distinct domains of science, finance and engineering.
Moreover, the HPETM is advantageous over the EDM is that the
nonlinear problems are solved without making use of the APs in
this technique. To conclude, the HPETM and EDM can be consid-
ered as a great improvement in existing numerical schemes and
find the vast range of utilities in handling nonlinear mathematical
models.
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