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Abstract In this work, a novel mathematical model of Coronavirus (2019-nCov) with general pop-

ulation mask use with modified parameters. The proposed model consists of fourteen fractional-

order nonlinear differential equations. Grünwald-Letnikov approximation is used to approximate

the new hybrid fractional operator. Compact finite difference method of six order with a new hybrid

fractional operator is developed to study the proposed model. Stability analysis of the used methods

are given. Comparative studies with generalized fourth order Runge–Kutta method are given. It is

found that, the proposed model can be described well the real data of daily confirmed cases in

Egypt.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In present time the whole globe is facing a threatful outbreak

called COVID-19 which originated from Wuhan; a large city
in China. Since December 2019 to the 18th of July 2020, nearly
590,000 people died due to the mentioned disease and about

13.81 millions were all over the world. Also 7.718606 millions
infected people have recovered from the disease, this data was
recorded by WHO [1].

A novel coronavirus is a serious global issue and has a neg-
ative impact on the economy of Egypt. According to the pub-
licly reported data, the first case of the novel corona virus in

Egypt was reported on 14 February 2020. Total of 96753 cases
were recorded in Egypt from the beginning of the pandemic
until the eighteenth of August, where 96; 581 individuals were
Egyptians and 172 were foreigners. The total number of people

recovered reached 61; 562, or 63:6%, and the infection rate is
967 infectious per million of the population. The total number
of deaths recorded 5; 184 deaths, of which 5; 165 were Egyp-

tians, 19 were foreigners, and the death rate reached 5:3% of
the infected.
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To understand the spread different infectious diseases
including COVID-19 among plants, human or any other ani-
mals, mathematicians implement the concept of differentiation

and integration to model the dynamics of that disease in the
form of ODEs or PDEs that could be used to predict the trans-
mission of that disease within a specific population. For this

task, they divide the total population into different compart-
ments. The solution of these systems may deliver an indication
to health and other sectors that how severe the spread can be

and what parameter is needed to control the spread of virus or
disease under consideration.

Researchers around the world focus on the study the coro-
navirus infection in different scenarios. Some study the statis-

tical tools to understand the infected cases and to find some
relationships that can be used further to help the minimize
the spread of the infection. Some studying the virus biologi-

cally and to think of some vaccine developments. Besides this,
others develop mathematical models in terms to predict the
infection eradication stage. Mathematical models are consid-

ered fast for many infectious diseases and its outbreak. Like
corona infection, the authors used the theory of differential
equations to formulate mathematical models with different

characteristics and provided useful results for its eliminations.
Several mathematical models are considered in literature in
order to investigate and analyze the complex transmission pat-
tern of the novel ongoing COVID-19 pandemic, see ([3–5,23,6–

23,24–30,34]) and the references therein.
The fractional mathematical models that are generalized

model and considered useful for modeling purposes in epi-

demiology. Various benefits can be obtained from a fractional
order system in the sense of best data fitting, information
about its memory and to identify the best possible value of

the fractional order that can best describe the model for the
real cases. In addition, the hereditary properties make the
models constructed in fractional derivatives stronger and more

useful for describing the real phenomenon [31]. It is useful than
the ordinary order and with the benefit of crossover behaviors.
Different mathematical models with interesting results are pro-
posed in ([30] [13,17–20,21,22,35]–[36]) and the references

therein. Moreover, it can be analyzed complex phenomena
including disease models, see for example ([9,11,14–
17,20,32,33]). One of the most effective and reliable operators

is the hybrid fractional operator, it can be expressed as a linear
combination of the Riemann–Liouville fractional integral and
the Caputo fractional derivative. As in [5] this operator is gen-

eral than Caputo fractional operator.
The analytic solution of such fractional order differential

equations is difficult to be found. Hence, it is very important
to develop numerical techniques to approximate the solutions

of these models. High-order compact finite difference schemes
are becoming increasingly common because of their high pre-
cision and the advantages associated with compact cells for

more details see ([11,25]).
The aim of this work is to extend the model of COVID-19

with general population mask use which given as integer order

in [3] to hybrid fractional order model and modified parame-
ters. The boundedness, existence, uniqueness and the basic
reproduction number of the present model will be discussed.

Two high accuracy numerical methods are given to study the
proposed model numerically. These methods are the compact
finite difference of six order method with the Caputo propor-
tional constant hybrid operator (CPC-CFD6M) and General-
ized fourth order Runge–kutta method (GRK4M). Stability
analysis of the used methods are given. Comparison between
two methods will be given. We show that our COVID-19

model describes well the real data of daily confirmed cases in
Egypt from 9 March to 13 June, 2020 [2].

To the best of our knowledge, the numerical studies using

the high accuracy of compact finite difference of six order
method for a hybrid fractional Coronavirus (2019-nCov)
model with general population mask use and modified param-

eters have never been explored.
The rest of this paper is structured as follows: Preliminaries

and notations are introduced in Section 2. The hybrid frac-
tional order models are given and some properties of the pro-

posed model such as the boundedness, existence, uniqueness
and the basic reproduction number of the proposed model
are proved in Section 3. Section 4, Numerical methods for

solving the proposed model are presented. In Section 5, we dis-
cuss the numerical simulations. The conclusions are given in
Section 6.

2. Background materials

In the following, some mathematical tools used in this work

are introduced:

� We can define Caputo fractional order derivative as follows

[4]:

C
0D

a
t yðtÞ ¼

1

Cð1� aÞ
Z t

0

y0ðsÞðt� sÞ�a
ds; 0 < a < 1; ð1Þ

where C is the Euler gamma function.
� The Riemann–Liouville integral can be defined as follows
[4]:

RL
0I

a
t yðtÞ ¼

Z t

0

yðsÞðt� sÞa�1
ds

� �
1

CðaÞ ; ð2Þ

where, 0 < a < 1 and yðtÞ is an integrable function.
� The hybrid fractional operator is defined as follows [5]:

CP
0D

a
t yðtÞ ¼

1

CðaÞ
Z t

0

ðyðsÞK1ða; sÞ þ y0ðsÞK0ða; sÞÞðt� sÞ�a
ds

� �
;

ð3Þ
where, K0ða; tÞ ¼ atð1�aÞ, K1ða; tÞ ¼ ð1� aÞta, 0 < a < 1.
Definition 2.1. [5] The Caputo proportional hybrid operator
(CP) given in (3) is defined either as general way:
CP
0D

a
t yðtÞ ¼

R t

0
ðyðsÞK1ðs; aÞ þ y0ðsÞK0ðs; aÞÞðt� sÞ�a

ds
� �

1
CðaÞ ;

¼ ðK1ðt; aÞyðtÞ þ K0ðt; aÞy0ðtÞÞ ta

Cð1�aÞ

� �
:

ð4Þ
Or as the Caputo proportional constant hybrid operator
(CPC) [5]:

CPC
0D

a
t yðtÞ ¼

R t

0
ðt� sÞ�aðyðsÞK1ðaÞ þ y0ðsÞK0ðaÞÞds

� �
1

CðaÞ

¼ K1ðaÞRL0I
1�a
t yðtÞ þ K0ðaÞC0D

a
t yðtÞ;

ð5Þ

where, K0ðaÞ ¼ aQð1�aÞ, K1ðaÞ ¼ ð1� aÞQa;Q is a constant.
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Definition 2.2. The inverse operators to the fractional CPC

derivatives is given by[5]:
CPC
0I

a
t yðtÞ ¼

Z t

0

exp
K1ðaÞ
K0ðaÞ ðt� sÞ
� �

RL
0D

1�a
t yðsÞds

� 	
1

K0ðaÞ : ð6Þ
3. Mathematical models of a hybrid fractional order

In the following, two Coronavirus spreading models with and
without mask use which presented in [3] will be developed. We

extended these models using a new hybrid fractional deriva-
tives [5], moreover, the parameters dimensions will be adapted
([20,23]). These models given as follows:

3.1. A hybrid fractional order COVID-19 model without mask

use

The hybrid fractional COVID-19 model without any mask use
is given:

CPC
0D

a
t S ¼ �baðIþ gAÞ S

N
;

CPC
0D

a
t E ¼ baðIþ gAÞ S

N
� raE;

CPC
0D

a
t I ¼ a1raE� /I� caI I;

CPC
0D

a
t A ¼ ð1� a1ÞraE� caAA;

CPC
0D

a
t H ¼ /aI� daH� caHH;

CPC
0D

a
t R ¼ caI Iþ caAAþ caHH;

CPC
0D

a
t D ¼ daH:

ð7Þ

Rþ Eþ Iþ Sþ A ¼ N;

where, ðEÞ denotes the exposed class, ðIÞ denotes the symp-
tomatic infectious class, ðSÞ denotes the class of susceptible,
Table 1 The variables of system (8) and their definitions [3].

The

abbreviation

Definition

RU Recovery class wears mask with uniform inward

efficiency.

HU Hospitalized class wear masks with uniform inward

efficiency.

EU Exposed class wear masks with uniform inward

efficiency.

IU Infectious and symptomatic class wear masks with

uniform inward efficiency.

SU Susceptible class wear masks with uniform inward

efficiency.

DU Fatality class wear masks with uniform inward

efficiency.

AU Infectious but asymptomatic class wear masks with

uniform inward efficiency.

RM Recovery class wear general face mask.

HM Hospitalized class wear general face mask.

EM Exposed class wear general face mask.

IM Symptomatic and infectious class wear general face

mask.

SM Susceptible class wear general face mask.

DM Fatality class wear general face mask.

AM Infectious but asymptomatic class wear general face

mask.
ðHÞ denotes the hospitalized class, ðAÞ denotes the hospitalized
asymptomatic infectious class, ðRÞdenotes the recovered class
and ðDÞ denotes the cumulative deaths. Moreover, we assume
that some fraction of symptomatic infectious individuals pro-

gress to the hospitalized class H are unable to pass the disease
to the general public [3].

3.2. A hybrid fractional COVID-19 model with general
population mask use

In the following, we extended the COVID-19 model with gen-
eral population mask use which given in [3] to a hybrid frac-

tional order model with modified parameters. We consider
the fractions of the general population wears masks outward
efficiency and uniform inward. Let us consider U and M rep-

resent all population variables that typically do and do not
wear masks, respectively. Both the variables and parameters
of proposed models are given in Tables 1, 2 respectively. The
hybrid COVID-19 multi-group fractional order model given

as follows:

CPC
0D

a
t SU ¼ �baðIU þ gAUÞ SU

N
� baðIUð1� e0Þ þ ð1� e0ÞgAUÞ SU

N
;

CPC
0D

a
t EU ¼ baðIU þ gAUÞ SU

N
þ baðIUð1� e0Þ þ ð1� e0ÞgAUÞ SU

N
� raEU;

CPC
0D

a
t IU ¼ a1raEU � /IU � caI IU;

CPC
0D

a
t AU ¼ ð1� a1ÞraEU � caAAU;

CPC
0D

a
t HU ¼ /aIU � daHU � caHHU;

CPC
0D

a
t RU ¼ caI IU þ caAAU þ caHHU;

CPC
0D

a
t DU ¼ daHU;

CPC
0D

a
t SM ¼ �bað1� eiÞðIU þ gAUÞ SM

N
� bað1� eiÞðIMð1� e0Þ þ ð1� e0ÞgAMÞ SM

N
;

CPC
0D

a
t EM ¼ bað1� eiÞðIU þ gAUÞ SM

N
þ bað1� eiÞðIMð1� e0Þ þ ð1� e0ÞgAMÞ SM

N
� raEM;

CPC
0D

a
t IM ¼ a1raEM � /aIM � caI IM;

CPC
0D

a
t AM ¼ ð1� a1ÞraEM � caAAM;

CPC
0D

a
t HM ¼ /aIM � daHM � caHHM;

CPC
0D

a
t RM ¼ caI IM þ caAAM þ caHHM;

CPC
0D

a
t DM ¼ daHM;

ð8Þ

EU þ IU þ SU þ RU þ AU þ RM þ EM þ SM þ AM þ IM ¼ N:
Table 2 All parameters of systems (7) and (8) and their

definitions.

Name Definition Value (per

day�a)

Refrance

ba Infectious contact rate 2:5a Fitting

ra Transition exposed to

infectious
ð1=1:5Þa [3]

g Coefficient transmission due to

super-spreaders

1:9

dimensionless

Fitting

a1 A part of infections that will be

symptomatic

0:5

dimensionless

[3]

/ Rate of hospitalization 0:0025a [3]

ca Recovery rate ð1=7Þa [3]

caA Recovery rate, Asymptomatic ð1=7Þa [3]

caI Recovery rate, symptomatic ð1=7Þa [3]

caH Recovery rate, hospitalized ð1=14Þa [3]

da Rate of disease induced death

of infected class

0:015a [3]
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We can defined the feasible region for model (8) as follows:

X¼ ðEU;SU;AU;RU; IU;RM;EM;SM;AM; IMÞ 2R10;EU þ IU



þSUþRUþAUþRMþEMþSMþAMþ IM ¼N; HM;HU;DM;

DU 2 Rþg.
Boundedness of the proposed model solution can be veri-

fied by adding all equations of system (8) as follows:

Da
t
CPC
0 NgðtÞ ¼ 0; Ngð0Þ ¼ A � 0; ð9Þ

where, A is a constant, Ng is total summation of population in

system (8). The solution of (9) is given as follows [5]:

NgðtÞ � Ae
ð�K1ðaÞ

K0ðaÞ
tÞ
; ð10Þ

It can be clearly seen from (10) at t�!1, then NgðtÞ P 0.

Hence the solutions of the system (8) are bounded.

3.3. Existence and Uniqueness

In the following, we will use the fixed point theory. Let us
rewrite (8)as follows:

CPC
0D

a
t yðtÞ ¼ gðyðtÞ; tÞ; yð0Þ ¼ y0 P 0: ð11Þ

The vector yðtÞ ¼ EU;HU;DU;SU;AU;RU; IU;RM;EM;HM;ð
DM;SM;AM; IMÞT, represents the state variables and b is a con-
tinuous vector function such that:
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g13

g14

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

�baðIU þ gAUÞ SU
N
� baðIUð1� e0Þ þ ð1� e0ÞgAUÞ SU

N
;

baðIU þ gAUÞ SU
N
þ baðIUð1� e0Þ þ ð1� e0ÞgAUÞ SU

N
� raEU

baðIU þ gAUÞ SU
N
þ baðIUð1� e0Þ þ ð1� e0ÞgAUÞ SU

N
� raEU;

a1raEU � /IU � caI IU
ð1� a1ÞraEU � caAAU

/aIU � daHU � caHHU

caI IU þ caAAU þ caHHU

daHU

�bað1� eiÞðIU þ gAUÞ SM
N
� bað1� eiÞðIMð1� e0Þ þ ð1� e0ÞgAMÞ SM

N

bað1� eiÞðIU þ gAUÞ SM
N
þ bað1� eiÞðIMð1� e0Þ þ ð1� e0ÞgAMÞ SM

N
� raEM

a1raEM � /aIM � caI IM
ð1� a1ÞraEM � caAAM

/aIM � daHM � caHHM

caI IM þ caAAM þ caHHM

daHM

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

with initial condition y0 Moreover, the Lipschitz condition is

satisfied by g, where g is a quadratic vector function i.e. there

exists M0 2 R, such that [26]:

kgðy1ðtÞ; tÞ � gðy2ðtÞ; tÞk ¼ M0ky1ðtÞ � y2ðtÞk: ð12Þ

Theorem 3.1. The fractional proposed model (8) has unique
solution if below condition holds:

M0� a
maxX

a
max

Cða� 1ÞK0ðaÞ 6 1: ð13Þ
Proof. We apply the definition (5) on (11), we get:

yðtÞ¼ yðt0Þþ 1

K0ðaÞ
Z t

0

expð�K1ðaÞ
K0ðaÞðt� sÞÞRL0D

1�a
t gðyðsÞ;sÞds:

ð14Þ
Let K ¼ ð0;TÞ and the operator

B : CðK;R14Þ�!CðK;R14Þsuch that:

B½yðtÞ�¼yðt0Þþ 1

K0ðaÞ
Z t

0

expð�K1ðaÞ
K0ðaÞðt�sÞÞRL0D

1�a
t gðyðsÞ;sÞds:

ð15Þ
It gives:

B½yðtÞ� ¼ yðtÞ:
Let k:kK denotes the supremum norm on K. Thus

kyðtÞkK ¼ sup
t2K

kyðtÞk; yðtÞ 2 CðK;R14Þ:

So, CðK;R14Þ with k:kK is a Banach space. Moreover, the fol-

lowing relation holds:

k
Z t

0

uðs; tÞyðsÞdsk 6 Kkuðs; tÞkKkyðsÞkK;

with yðtÞ 2 CðK;R14Þ, uðs; tÞ 2 CðK2;R14Þsuch that:
kuðs; tÞkK ¼ supt;s2Kjuðs; tÞj.Thus (15) can be written as:
kB½y1ðtÞ� � B½y2ðtÞ�kK
6 k 1

K0ðaÞ
R t

0
expð� K1ðaÞ

K0ðaÞ ðt� sÞÞðRL0D
1�a
t gðy1ðsÞ; sÞ � RL

0D
1�a
t gðy2ðsÞ; sÞÞdskK:

6 � a
max

Cða�1ÞK0ðaÞ k
R t

0
ðt� sÞa�2ðgðy1ðsÞ; sÞ � gðy2ðsÞ; sÞÞdskK;
6 � a

maxX
a
max

Cða�1ÞK0ðaÞ kgðy1ðtÞ; tÞ � gðy2ðtÞ; tÞkK;
6 M0� a

maxX
a
max

Cða�1ÞK0ðaÞ ky1ðtÞ � y2ðtÞkK:
ð16Þ

Finally, we obtain:

kB½y1ðtÞ� � B½y2ðtÞ�kK 6 Lky1ðtÞ � y2ðtÞkK; ð17Þ
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where

L ¼ M0� a
maxX

a
max

Cða� 1ÞK0ðaÞ :

If L 6 1, then the operator B is called a contraction. Hence,
the fractional system (8) possesses a unique solution.
3.4. Basic reproduction number

We use the next generation method [6] to find the basic repro-
duction number. Consider the following matrices F and V,
where F represents the new infection terms, V represents the

remaining transfer terms [6]:
F ¼

0 ba
0
SUð0Þ
Nð0Þ ba

0g
SUð0Þ
Nð0Þ 0 ba

0ð1� �0Þ SUð0Þ
Nð0Þ ba

0gð1� �0Þ SUð0Þ
Nð0Þ

0 0 0 0 0 0

0 0 0 0 0 0

0 ba
0ð1� �iÞ SMð0Þ

Nð0Þ ba
0gð1� �iÞ SMð0Þ

Nð0Þ 0 ba
0ð1� �0Þð1� �iÞ SMð0Þ

Nð0Þ ba
0gð1� �0Þð1� �iÞ SMð0Þ

Nð0Þ
0 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

V ¼

ra 0 0 0 0 0

�a1ra ð/a þ caI Þ 0 0 0 0

�rað1� a1Þ 0 caA 0 0 0

0 0 0 ra 0 0

0 0 0 �a1ra ð/a þ caI Þ 0

0 0 0 �rað1� a1Þ 0 caA

0
BBBBBBBB@

1
CCCCCCCCA
:

Then,

R0 ¼ qðFV�1Þ

¼ ba
0

SUð0Þ
Nð0Þ þ SMð0Þ

Nð0Þ ð1� e0Þð1� eiÞ
� �

a1
/a þ caI

þ gð1� a1Þ
caA

� 	
;

ð18Þ
where, R0 is the basic reproduction number of the model, and

q indicates the spectral radius of FV�1.

4. Numerical Methods

4.1. CPC-CFD6M

Let us consider the following fractional order differential
equation:

CPC
0D

a
t yðtÞ ¼ fðt; yðtÞÞ; 0 < a 6 1; yð0Þ ¼ y0: ð19Þ

The first derivative approximation using the compact finite dif-
ference of six order method (CFD6M) is given as follows [10]:

y0ðtjÞ¼ 1

s
�1

60
yj�3þ

9

60
yj�2�

45

60
yj�1þ

45

60
yjþ1�

9

60
yjþ2þ

1

60
yjþ3

� 	
þOðs6Þ:

ð20Þ
Now, we can discretize (19) using (20) and definition (5) with

Grünwald-Letnikov approximation as follows:

K1ðaÞ
ðsÞa�1 yjþ1 þ

Xjþ1

i¼1

xiyjþ1�i

 !
þ K0ðaÞ

ðsÞa
Xjþ1

i¼0

li
�1
60
yj�i�3 þ 9

60
yj�i�2 � 45

60
yj�i�1

�

þ 45
60
yj�iþ1 � 9

60
yj�iþ2 þ 1

60
yj�iþ3 � qiyð0Þ

� ¼ fðtj; yjÞ;

ð21Þ

where, tj ¼ js; s ¼ Tf

Nj
, Nj 2N, li ¼ ð�1Þi�1 a

i

� 	
, l1 ¼ a,

qi ¼ ia

Cð1�aÞ and i¼ 1;2; . . . ;nþ 1. x0 ¼ 1;xi ¼ ð1� a
i
Þxi�1.

Additionally, consider [23]:
0 < liþ1 < li < . . . < l1 ¼ a < 1;

0 < qiþ1 < qi < . . . < q1 ¼
1

Cð1� aÞ :

Put C ¼ K1ðaÞ
sa�1 , B ¼ K0ðaÞ

sa in (21). Then, we have:

yjþ1 ¼ 1
ð45B60 þCÞ fðtj; yjÞ þ 1

60
yj�3 � 9

60
yj�2 þ 45

60
yj�1 þ 9

60
yjþ2 � 1

60
yjþ3

� ��

�B
Xjþ1

i¼1

li
�1
60
yj�i�3 þ 9

60
yj�i�2 � 45

60
yj�i�1 þ 45

60
yj�iþ1 � 9

60
yj�iþ2 þ 1
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ð22Þ

Remark 1. If K1ðaÞ ¼ 0 and K0ðaÞ ¼ 1 in (21), then we have
the discretization of CFD6M with Caputo operator (C-

CFD6M).
4.2. Stability of CPC-CFD6M

In order to investigate the stability of the proposed method 22
consider the test problem of linear fractional differential equa-

tion [24]:

CPC
0D

a
t yðtÞ ¼ t yðtÞ; t 2 ½0;T�; a 2 ð0; 1�; t < 0; ð23Þ

yð0Þ ¼ y0,
Using the approximation of CPC-CFD6M (22) we can dis-

cretize (23) as follows:



Fig. 1 Real data verses model (7) fitting at different a.
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yjþ1 ¼ 1
ð45B60 þCÞ tyðtiÞ þ 1
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yj�3 � 9
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yj�2 þ 45
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60
yj�iþ3

�

þqiyð0Þ� � C
Xnþ1

i¼1

xiynþ1�i

!
:

ð24Þ

Then from boundness theorem [23] we have:

jyjþ1j ¼ 1
ð45B60 þCÞ j tyðtiÞ þ 1

60
yj�3 � 9

60
yj�2 þ 45

60
yj�1 þ 9

60
yjþ2 � 1

60
yjþ3

� ��
�B
Xjþ1

i¼1

li
�1
60
yj�i�3 þ 9

60
yj�i�2 � 45

60
yj�i�1 þ 45

60
yj�iþ1 � 9
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yj�iþ2 þ 1

60
yj�iþ3

�

þqiyð0Þ� � C
Xnþ1

i¼1

xiynþ1�i

!
j:

ð25Þ

Since, ð45B
60

þ CÞ > 1, then we have: jy1j < jy0j and

jy0j P jy1j P . . . P jyn�1j P jynj P jynþ1j. this means that,

the proposed scheme is stable.
Fig. 2 Simulations of model (7) using at different val
4.3. GRK4M

Consider the following FODE:

C
0D

a
t yðtÞ ¼ fðt; yðtÞÞ; 0 < a � 1; 0 < t 6 T; ð26Þ

yð0Þ ¼ yo.
Then the approximate solution of (26) using GRK4M [7] is

given as follows:

ynþ1 ¼ yn þ
1

6
ðK1 þ 2K2 þ 2K3 þ K4Þ; ð27Þ

K1 ¼ jfðtn; ynÞ;

K2 ¼ jfðtn þ 1

2
j; yn þ

1

2
K1Þ;

K3 ¼ jfðtn þ 1

2
j; yn þ

1

2
K2Þ;

K4 ¼ jfðtn þ j; yn þ K3Þ;
where j ¼ sa

Cðaþ1Þ.
ues of a and b ¼ 2:5 g ¼ 1:9 using CPC-CFD6M.
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4.4. Stability of GRK4M

In order to study the stability of GRK4M. Consider for sim-
plicity the following test problem:

C
0D

a
t yðtÞ ¼ t yðtÞ; 0 < t 6 T; 0 < a � 1; t < 0; ð28Þ

yð0Þ ¼ yo,
Using GRK4M [7], Eq. (28) can be written as follows:

yðtjþ1Þ ¼ yðtjÞ þ 1

6

sat
Cðaþ 1Þ yðtjÞ; j ¼ 0; 1; . . . ; n� 1: ð29Þ
Fig. 3 Numerical simulations of EU; IU;AU and HU with and with

CFD6M.

Fig. 4 Numerical simulations of S and D with and w
The stability analysis of GRK4M is similar to the GEM

method [8], when the terms are regrouped, the following equa-
tion is achieved:

yðtjþ1Þ ¼ ð1þ 1

6

sat
Cðaþ 1ÞÞ

j

y0; j ¼ 0; 1; . . . ; n� 1: ð30Þ

Then the stability condition [8] is given as follows:

� 1 < ð1þ 1

6

sat
Cðaþ 1ÞÞ < 1:
out mask use at a ¼ 1, b ¼ 0:5 g ¼ 0:5 using ode45 and CPC-

ithout mask use at a ¼ 0:85 using CPC-CFD6M.
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5. Numerical experiments

In this section, CPC-NSFDM and GRK4M are constructed to
obtain the numerical results of hybrid fractional models (7)

and (8). For data fitting of model (7) we have taken some
parameters values from the literature and the remaining values
are fitted for the data collected for Egypt. We have fitted our

model solutions with the real data collected from WHO for
Egypt from 9th March 2020 to 13 June 2020 [2]. According
to the publically reported data, the total population of Egypt
for the year 2020 is 100500159. For the initial values we have

considered Sð0Þ ¼ ð100500159
27193

Þ � 10; Ið0Þ ¼ 2;Eð0Þ ¼ 0;Að0Þ ¼ 5;
Fig. 5 Numerical simulations of SU and SM with mask use at diffe
Hð0Þ ¼ 3;Rð0Þ ¼ 0 and Dð0Þ ¼ 0. We get different parameter
values as shown in Table 2. This section provides graphical
results of the given study. Fig. 1, shows the comparison

between real data from WHO verses present considered model
using CPC-CFD6M. It can be noted from this figure that the
proposed model shows a strong agreement with real data col-

lected by WHO. Fig. 2, depicts the influence of different values
of parameter aon the dynamics and transmission of COVID-
19 for different subclasses of the total population. In Figs. 3–

10, simulations the model (8) at different values of the frac-
tional order derivative, a, in the interval ð0; 1�. The parameter
values used in the simulations can be found in Table 2 and we
put b ¼ 0:5; g ¼ 0:5 as given in [3]. The initial conditions are
rent a using CPC-CFD6M in (a) and by using GRK4M in (b).



Fig. 6 Simulations of model (8) using GRK4 at different values of a.
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set to ð3000; 0; 600; 100; 300; 0; 0; 3000; 0; 600; 100; 300; 0; 0Þ.
Fig. 3, shows the numerical solution of the model (8) using
the Matlab solver ode45 and CPC-CFD6M at a ¼ 1, where
the time levels are chosen in days. Fig. 4, illustrates the behav-

ior of D and S with and without mask use at a ¼ 0:96 using
CPC-CFD6M. We noted that, the number of susceptible indi-
viduals who use a mask is more than the number of susceptible

individuals who do not use a mask. Also, the number of D who
use a mask is less than the number of D who do not use a
mask. Fig. 5, shows the numerical simulation of susceptible
individuals who use a mask using CPC-CFD6M and GRK4M

at differen values of a.
Fig. 6, shows the variables behavior of the model (8) at dif-

ferent value of a using GRK4M. Variables behavior of (8) are

shown in Fig. 7, it changes with different values of a using
CPC-CFD6M. Moreover, IU;RU and IM;RM behaviors are
shown in Fig. 8, it changes when we use CPC-CFD6M and

GRK4M. We noted that the number of IU; IM when we use
CPC-CFD6M are less than the number of IU when we use
GRK4M. Also the number of RU;RM when we use CPC-



Fig. 7 Simulations of model (8) using CPC-CFD6M at different values of a.
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CFD6M are more than the number of RU;RM when we use

GRK4M. We can conclude that, CPC operator is preferable
to simulate the biological models than the Caputo operator.
We can obtain the Caputo operator as a spatial case from

the new operator CPC when we put K0ðaÞ ¼ 1 and
K1ðaÞ ¼ 0. Fig. 9, shows the numerical simulations of IU and
RU at a ¼ 0:9 using C-CFD6M and GRK4M. We noted that
results which obtain by C-CFD6M are better than the results

which obtained by GRK4M. Also Fig. 10 shows how the
behavior of IU;AU;HU and IM;AM;HM are changed with dif-
ferent values of a when we use C-CFD6M. Table 3 shows

the CPU time for CPC-CFD6M and GRK4M. We noted that
at a ¼ 1, the Matlab solver ode 45 is the fastest one, and for
0:8 < a < 1, GRK4M is faster than CPC-CFD6M.



Fig. 8 Numerical simulations of IM;AM;HM and RM at a ¼ 0:9 using CPC-CFD6M and GRK4M.

Fig. 9 Numerical simulations of IU and RU at a ¼ 0:9 using C-CFD6M and GRK4M.
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Fig. 10 Simulations of model (8) using C-CFD6M at different values of a.

Table 3 CPU time in seconds (CPUT) or the used methods at

Tf ¼ 1000.

a CPUT of CPC-

NSFDM

CPUT of

GRK4M

CPUT of

ode45

1 4.262203 2.701963 1.127760

0.98 4.166234 2.667243 –

0.90 4.157134 2.672843 –

0.80 4.233840 2.658462 –

A hybrid fractional COVID-19 model with general population mask use 3231
6. Conclusions

In this article a novel hybrid fractional COVID-19 model with

general population mask use and modified parameters is pre-
sented. This fractional model can be described the phenomena
with memory than the integer order model. Also, the model in

[3] can be obtained as a special case from the proposed model
when a ¼ 1. We can conclude from the obtained results in this
work that, the proposed COVID-19 model describes well the
real data collected by WHO [1] of daily confirmed cases in
Egypt. Existence, uniqueness and boundedness of the solutions
are proved, moreover, the basic reproduction number is dis-
cussed. Two highly accurate numerical methods are used to

study the presented model. These methods are GRK4M and
CPC-CFD6M. Mathematical analysis for GRK4M and
CPC-CFD6M are introduced. Comparative studies are done

and we can conclude from Table 3 and the graphical results
that the CPC-CFD6M is prefable to describe the biological
results than the GRK4M, but GRK4M is faster than the

CPC-CFD6M. Moreover, Caputo operator can be obtained
as a special case from the new hyprid operator CPC.
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