
Results in Physics 31 (2021) 104950

A
2
(

Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

A new and general fractional Lagrangian approach: A capacitor microphone
case study
A. Jajarmi a, D. Baleanu b,c,d,∗, K. Zarghami Vahid e, H. Mohammadi Pirouz a, J.H. Asad f

a Department of Electrical Engineering, University of Bojnord, P.O. Box, 94531-1339, Bojnord, Iran
b Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey
c Institute of Space Sciences, P.O. Box, MG-23, R 76900, Magurele-Bucharest, Romania
d Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
e Islamic Azad University, Tehran Science and Research Branch, Tehran, Iran
f Department of Physics, College of Sciences, Palestine Technical University, Tulkarm, Palestine

A R T I C L E I N F O

Keywords:
Fractional calculus
Euler–Lagrange equations
General kernel function
Capacitor microphone system
Matrix approximation technique

A B S T R A C T

In this study, a new and general fractional formulation is presented to investigate the complex behaviors of
a capacitor microphone dynamical system. Initially, for both displacement and electrical charge, the classical
Euler–Lagrange equations are constructed by using the classical Lagrangian approach. Expanding this classical
scheme in a general fractional framework provides the new fractional Euler–Lagrange equations in which
non-integer order derivatives involve a general function as their kernel. Applying an appropriate matrix
approximation technique changes the latter fractional formulation into a nonlinear algebraic system. Finally,
the derived system is solved numerically with a discussion on its dynamical behaviors. According to the
obtained results, various features of the capacitor microphone under study are discovered due to the flexibility
in choosing the kernel, unlike the previous mathematical formalism.
Introduction

In order to demonstrate the dynamical behaviors of real-world
systems, there are two principal approaches [1]. The first one, a force-
based scheme, is the Newtonian method. Nevertheless, a number of
issues might happen in the first approach because it requires to adjust
all forces while they may not be clear. The next method applies
energies, which is known as Lagrangian technique and introduced by
the French Mathematician Joseph Louis Lagrange. Numerous signifi-
cant dynamical systems like coupled and spring pendulums, Atwood’s
machine, etc., are described by means of this energy-based approach.

Fractional calculus (FC) is the science of non-integer order integral
and differential operators together with their applications. In numerous
studies such as control, mechanics, finance, and biology, the benefits
of FC have been explored [2–9]. In addition, this calculus modifies
the classical mechanics in a new way; for instance, non-conservative
Lagrangian systems were investigated by a FC approach in the earlier
study [10]. In that work, the fractional-order derivatives defined the
conjugate momenta, and the Hamilton equations were formulated in
a fractional sense. To study the path of Lévy flights, a fractional path
integral technique was applied in [11]. Besides, the fractional quan-
tum mechanics was developed in [12]. Then several relevant articles

∗ Corresponding author at: Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey.
E-mail address: dumitru@cankaya.edu.tr (D. Baleanu).

were published by numerous scientists who followed the aforesaid
ideas [13,14]. Based on the mentioned investigations, the asymptotic
behavior of a mechanical system can be discovered by means of the
fractional Lagrangian approach. Then the new relations namely the
fractional Euler–Lagrange equations (FELEs) are achieved by means
of this technique. However, significant problems are required to be
studied in this regard such as the expansion of effective numerical
techniques to solve the FELEs; variational iteration method [15] and
Adams–Bashforth–Moulton technique [16] are a few examples of these
schemes.

Recently, a new type of fractional derivatives with a general kernel
function was defined in a new study by Luchko and Yamamoto [17].
In this approach, numerous applications are covered by means of the
flexibility in choosing the kernel function. In fact, changing the kernel
causes various asymptotic behaviors and shows the hidden aspects
of realistic phenomena in an appropriate, precise manner. Nonethe-
less, several practical cases should examine the benefits of this new
approach. Moreover, efficient numerical and analytical methods are
required to be expanded in order to find the solution of fractional
differential equations (FDEs) related to the new general fractional
operators. More to the point, the theoretical aspects of this general idea
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should be explored to find out whether or not they can be extended
and used in the other branches of sciences and engineering. These
points encourage us to study the behavior of a capacitor microphone
by utilizing its new general FELEs. The main contributions of present
study are highlighted as follows:

• In the new equations, the fractional-order displacement and elec-
trical charge are formulated in general sense. To the best of
our knowledge, this is the first time that one utilizes a general
fractional operator for the free motion of a capacitor microphone
case study.

• A theoretical study is provided to derive the corresponding FELEs
in general sense for the physical system under investigation.

• The derived equations are complicated to solve in practice since
they include the left and right general fractional derivatives si-
multaneously. To overcome this issue, a matrix approximation
scheme is prepared, which converts the general equations into a
nonlinear algebraic system.

• It is apparent, based on the simulation results, that we could see
various asymptotic behaviors for different kernel functions, a fact
which is not available in the standard FC modeling.

herefore, the general fractional Lagrangian approach provides a more
lexible model than the standard FC modeling due to the use of general
ernel function. This feature could help us to discover the hidden
spects of capacitor microphone under study better than the traditional
ractional formulations. Consequently, we believe that the FELEs in
eneral sense and their solution method presented in this paper are
ew and comprise quite different information than the corresponding
tandard fractional equations.

This paper is classified into the following sections. In Section ‘‘Sym-
ols and preliminaries’’, some preliminaries related to the general
ractional operators are presented. The capacitor microphone model
n both classical and fractional frameworks are described in Section
‘Dynamical behaviors’’. An effective and new approximation method
olves the derived FELEs in Section ‘‘Numerical method’’. Additionally,
he numerical results are presented in Section ‘‘Simulation results’’, and
he paper is closed by Section ‘‘Conclusions’’. Finally, the correctness
f the formulas is proved in Appendix ‘‘Derivation of FELE in general
ense’’.

ymbols and preliminaries

The general concept of fractional derivatives and integrals are in-
roduced in this section by means of some symbols and preliminaries.
ased on [17], the left-sided Riemann–Liouville (RL) and Caputo frac-
ional derivatives are described, respectively, by the following relations

𝒟 𝜌
𝑡 𝑦(𝑡) =

𝑑
𝑑𝑡 ∫

𝑡

0
𝑦(𝜔)𝒳𝐿(𝑡 − 𝜔)𝑑𝜔, (1)

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡) = ∫

𝑡

0
�̇�(𝜔)𝒳𝐿(𝑡 − 𝜔)𝑑𝜔, (2)

here 𝑦 ∈ R is an absolutely continuous function satisfying �̇� ∈
𝐿𝑙𝑜𝑐
1 (R+). Moreover, the nonnegative function 𝒳𝐿 > 0 is a locally

integrable kernel, and 𝜌 is the fractional order such that 0 < 𝜌 < 1.
ccording to [17], the following relation exists between the general
L and Caputo fractional derivatives (1) and (2)

𝒟 𝜌
𝑡 𝑦(𝑡) =

𝑑
𝑑𝑡 ∫

𝑡

0
𝑦(𝜔)𝒳𝐿(𝑡 − 𝜔)𝑑𝜔 −𝒳𝐿(𝑡)𝑦(0) = 0𝒟

𝜌
𝑡 𝑦(𝑡) −𝒳𝐿(𝑡)𝑦(0). (3)

Additionally, it is noticeable that the above operators are linear, i.e.,

0𝒟
𝜌
𝑡 (𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡)) = 𝑐1 0𝒟

𝜌
𝑡 𝑦1(𝑡) + 𝑐2 0𝒟

𝜌
𝑡 𝑦2(𝑡), (4)

𝐶𝒟 𝜌(𝑐 𝑦 (𝑡) + 𝑐 𝑦 (𝑡)) = 𝑐 𝐶𝒟 𝜌𝑦 (𝑡) + 𝑐 𝐶𝒟 𝜌𝑦 (𝑡). (5)
2

0 𝑡 1 1 2 2 1 0 𝑡 1 2 0 𝑡 2 p
In addition, if some appropriate conditions are satisfied by the kernel
function 𝒳𝐿 [17], an entirely monotone function 𝒵𝐿 can be defined
such that

𝒳𝐿(𝑡) ∗ 𝒵𝐿(𝑡) = ∫

∞

0
𝒳𝐿(𝑡 − 𝜔)𝒵𝐿(𝜔)𝑑𝜔 = 1, 𝑡 > 0. (6)

Then we can define the general RL fractional integral explained by

ℐ 𝜌
𝑡 𝑦(𝑡) = ∫

𝑡

0
𝑦(𝜔)𝒵𝐿(𝑡 − 𝜔)𝑑𝜔. (7)

dditionally, for 𝑦 ∈ 𝐿𝑙𝑜𝑐
1 (R+) we have

ℐ 𝜌
𝑡 [0𝒟

𝜌
𝑡 𝑦(𝑡)] = 𝑦(𝑡), (8)

ℐ 𝜌
𝑡 [

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡)] = 𝑦(𝑡) − 𝑦(0). (9)

imilarly, the next equations describe the right-sided fractional opera-
ors in general sense

𝒟 𝜌
𝑇 𝑦(𝑡) =

𝑑
𝑑𝑡 ∫

𝑇

𝑡
𝑦(𝜔)𝒳𝑅(𝜔 − 𝑡)𝑑𝜔, (10)

𝒟 𝜌
𝑇 𝑦(𝑡) = ∫

𝑇

𝑡
�̇�(𝜔)𝒳𝑅(𝜔 − 𝑡)𝑑𝜔, (11)

ℐ 𝜌
𝑇 𝑦(𝑡) = ∫

𝑇

𝑡
𝑦(𝜔)𝒵𝑅(𝜔 − 𝑡)𝑑𝜔. (12)

ased on [18], there is another generalization, which coincides with the
bove explanations; thus, according to the results of [18], the aforesaid
efinitions satisfy the integration by parts.

Here, some special cases are considered according to the above
ew definitions. First, the kernel 𝒳𝐿(𝑡) = 𝑡−𝜌

𝛤 (1−𝜌) , 0 < 𝜌 < 1, is

chosen, so 𝒵𝐿 becomes 𝒵𝐿(𝑡) = 𝑡𝜌−1

𝛤 (𝜌) . Therefore, the conventional
forms of RL and Caputo fractional derivatives as well as RL integral
are obtained from Eqs. (1), (2), and (7), respectively [19]. Next, we
can choose 𝒳𝐿(𝑡) = ∫ 1

0
𝑡−𝜌

𝛤 (1−𝜌)𝑑𝑚(𝜌), where 𝑚 is a Borel measure on
[0, 1], or 𝒳𝐿(𝑡) =

∑𝑛
𝑘=1 𝑎𝑘

𝑡−𝜌𝑘
𝛤 (1−𝜌𝑘)

, 0 < 𝜌1 < ⋯ < 𝜌𝑛 < 1. In these
cases, we recover the derivative of distributed order and the multi-term
derivatives, respectively [17].

Dynamical behaviors

This section discusses the capacitor microphone dynamical behav-
iors in both the frameworks of classical calculus and the new general
FC. In the system under consideration, the capacitance 𝐶 depends on
the displacement of the bottom (moving) plate. Here, the aforesaid
displacement is denoted by 𝑦(𝑡). In addition, a spring and a damper
with, respectively, 𝑘𝑠 > 0 and 𝑏𝑑 > 0 as their constants are attached to
the moving plate from below [20]. This plate is also under a mechanical
force 𝑓 (𝑡) modeling the air pressure created by sound. Further, the
external voltage source is presented by 𝑣(𝑡).

Classical equations

Based on the physical system under study, the following relation
results in the potential energy

𝑈 (𝑡) = 1
2
𝑘𝑠𝑦

2(𝑡) + 1
2𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝑡))𝑞2𝑐 (𝑡), (13)

hereas the kinetic energy is calculated by

(𝑡) = 1
2
𝑚𝑝�̇�

2(𝑡) + 1
2
𝑙𝑖�̇�

2
𝑐 (𝑡), (14)

here 𝑙𝑖 is the inductance, 𝑚𝑝 is the mass of moving plate, 𝐴𝑝 denotes
he area of each plate, 𝑦𝑑 − 𝑦(𝑡) represents the distance between two
lates, 𝑞 (𝑡) is the charge of capacitor, and 𝜖 is the air dielectric
𝑐
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constant. As the half of dissipated energy, the power function 𝑃 (𝑡) is
lso derived by

(𝑡) = 1
2
𝑏𝑑 �̇�

2(𝑡) + 1
2
𝑟𝑒�̇�

2
𝑐 (𝑡), (15)

in which the resistance is denoted by 𝑟𝑒. Now, we can formulate the
classical Lagrangian according to the following relation

𝐶𝐿(𝑡) = 𝐾(𝑡)−𝑈 (𝑡) = 1
2
𝑚𝑝�̇�

2(𝑡)+ 1
2
𝑙𝑖�̇�

2
𝑐 (𝑡)−

1
2
𝑘𝑠𝑦

2(𝑡)− 1
2𝜖𝐴𝑝

(𝑦𝑑 −𝑦(𝑡))𝑞2𝑐 (𝑡),

(16)

pecifying the equilibrium among no dissipative energy. The
agrangian function (16) is a quantity that characterizes the state of
apacitor microphone dynamical system in terms of the state variables
𝑐 (𝑡) and 𝑦(𝑡) and their time derivatives. A justification for introducing
he Lagrangian in the form above becomes apparent when the classical
uler–Lagrange equations (CELEs) describing the dynamical behaviors
re determined by minimizing the time integral of the Lagrangian.
iven that the variables 𝑞𝑐 (𝑡) and 𝑦(𝑡) are the two degrees of freedom

n the capacitor microphone system, we attain

𝑑
𝑑𝑡

(

𝜕𝐶𝐿(𝑡)
𝜕�̇�𝑐 (𝑡)

)

−
𝜕𝐶𝐿(𝑡)
𝜕𝑞𝑐 (𝑡)

+
𝜕𝑃 (𝑡)
𝜕𝑞𝑐 (𝑡)

= 𝑣(𝑡), (17)

𝑑
𝑑𝑡

(

𝜕𝐶𝐿(𝑡)
𝜕�̇�(𝑡)

)

−
𝜕𝐶𝐿(𝑡)
𝜕𝑦(𝑡)

+
𝜕𝑃 (𝑡)
𝜕�̇�(𝑡)

= 𝑓 (𝑡), (18)

which correspond to the CELEs. By means of replacing 𝑃 (𝑡) and 𝐶𝐿(𝑡)
rom (15)–(16) into (17)–(18), we then obtain

𝑖𝑞𝑐 (𝑡) + 𝑟𝑒�̇�𝑐 (𝑡) +
1

𝜖𝐴𝑝
(𝑦𝑑 − 𝑦(𝑡))𝑞𝑐 (𝑡) = 𝑣(𝑡), (19)

𝑚𝑝�̈�(𝑡) + 𝑏𝑑 �̇�(𝑡) + 𝑘𝑠𝑦(𝑡) −
𝑞2𝑐 (𝑡)
2𝜖𝐴𝑝

= 𝑓 (𝑡). (20)

Fractional equations

According to the study [21], although numerous nature laws can
be obtained from the calculus of variations theory, there are some
exceptions such as nonconservative dynamical systems, which could
not be described by means of conventional energy approach [10,22].
From the other point of view, various aspects of complex systems could
be presented by fractional modeling, which possesses the effects of
memory. In this regard, some valuable efforts such as the studies in [23,
24] have been done to revise and discuss the fractional formulation
of dynamics in nonconservative systems. Inspired by these statements,
here we develop a general fractional Lagrangian approach through
the generalization introduced in Section ‘‘Symbols and preliminaries’’.
More specifically, the classical Lagrangian (16) is expanded into a gen-
eral fractional Lagrangian by replacing the ordinary time derivatives
with the general fractional operators described in Section ‘‘Symbols
and preliminaries’’; as a result, the CELEs (19)–(20) are then modified
into a general fractional framework, namely the general FELEs. In the
Appendix ‘‘Derivation of FELE in general sense’’, the correctness of the
following formulas is also proved and investigated. To present the new
idea, first we define the new general fractional Lagrangian through
fractionalizing the relation (16) as follows

𝐹𝐿(𝑡) =
1
2
𝑚𝑝(𝐶0𝒟

𝜌
𝑡 𝑦(𝑡))

2 + 1
2
𝑙𝑖(𝐶0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡))

2 − 1
2
𝑘𝑠𝑦

2(𝑡) − 1
2𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝑡))𝑞2𝑐 (𝑡),

(21)

in which the ordinary time derivatives in (16) have been replaced
by the general Caputo fractional derivative (2). Following the same
procedure for 𝑃 (𝑡), we derive

𝑃 (𝑡) = 1 𝑏 (𝐶𝒟 𝜌𝑦(𝑡))2 + 1 𝑟 (𝐶𝒟 𝜌𝑞 (𝑡))2. (22)
3

2 𝑑 0 𝑡 2 𝑒 0 𝑡 𝑐
Then the FELEs are gained by

− 𝑡𝒟
𝜌
𝑇

𝜕𝐹𝐿(𝑡)
𝜕𝐶0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡)

−
𝜕𝐹𝐿(𝑡)
𝜕𝑞𝑐 (𝑡)

+
𝜕𝑃 (𝑡)

𝜕𝐶0𝒟
𝜌
𝑡 𝑞𝑐 (𝑡)

= 𝑣(𝑡), (23)

− 𝑡𝒟
𝜌
𝑇

𝜕𝐹𝐿(𝑡)
𝜕𝐶0𝒟

𝜌
𝑡 𝑦(𝑡)

−
𝜕𝐹𝐿(𝑡)
𝜕𝑦(𝑡)

+
𝜕𝑃 (𝑡)

𝜕𝐶0𝒟
𝜌
𝑡 𝑦(𝑡)

= 𝑓 (𝑡). (24)

By means of the relations (21)–(24), we attain

− 𝑙𝑖 𝑡𝒟
𝜌
𝑇 [

𝐶
0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡)] + 𝑟𝑒

𝐶
0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡) +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝑡))𝑞𝑐 (𝑡) = 𝑣(𝑡), (25)

− 𝑚𝑝 𝑡𝒟
𝜌
𝑇 [

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡)] + 𝑏𝑑

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡) + 𝑘𝑠𝑦(𝑡) −

1
2𝜖𝐴𝑝

𝑞2𝑐 (𝑡) = 𝑓 (𝑡). (26)

With regard to the formulas (25)–(26) it is apparent that the FE-
Es (25)–(26) are reduced to the CELEs (19)–(20) as the fractional order
→ 1.

Deriving the general fractional Hamilton equations (FHEs) is our
ext aim in this section; then we compare them with the FELEs (25)–
26). To do so, the fractional Hamiltonian function is written by

𝐻 (𝑡) = ℒ𝑞𝑐 (𝑡)
𝐶
0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡) +ℒ𝑦(𝑡) 𝐶0𝒟

𝜌
𝑡 𝑦(𝑡) − 𝐹𝐿(𝑡), (27)

here

𝑞𝑐 (𝑡) =
𝜕𝐹𝐿(𝑡)

𝜕𝐶0𝒟
𝜌
𝑡 𝑞𝑐 (𝑡)

= 𝑙𝑖
𝐶
0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡), ℒ𝑦(𝑡) =

𝜕𝐹𝐿(𝑡)
𝜕𝐶0𝒟

𝜌
𝑡 𝑦(𝑡)

= 𝑚𝑝
𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡), (28)

are the generalized momenta. Within the use of Eqs. (21) and (28), we
can compute

𝐹𝐻 (𝑡) = 𝑙𝑖(𝐶0𝒟
𝜌
𝑡 𝑞𝑐 (𝑡))

2 + 𝑚𝑝(𝐶0𝒟
𝜌
𝑡 𝑦(𝑡))

2 − 1
2
𝑚𝑝(𝐶0𝒟

𝜌
𝑡 𝑦(𝑡))

2

− 1
2
𝑙𝑖(𝐶0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡))

2 + 1
2
𝑘𝑠𝑦

2(𝑡) + 1
2𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝑡))𝑞2𝑐 (𝑡). (29)

hen the FHEs are obtained from
𝜕𝐹𝐻 (𝑡)
𝜕𝑞𝑐 (𝑡)

− 𝑡𝒟
𝜌
𝑇ℒ𝑞𝑐 (𝑡) +

𝜕𝑃 (𝑡)
𝜕𝐶0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡)

= 𝑣(𝑡), (30)

𝜕𝐹𝐻 (𝑡)
𝜕𝑦(𝑡)

− 𝑡𝒟
𝜌
𝑇ℒ𝑦(𝑡) +

𝜕𝑃 (𝑡)
𝜕𝐶0𝒟

𝜌
𝑡 𝑦(𝑡)

= 𝑓 (𝑡), (31)

hich result

− 𝑙𝑖 𝑡𝒟
𝜌
𝑇 [

𝐶
0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡)] + 𝑟𝑒

𝐶
0𝒟

𝜌
𝑡 𝑞𝑐 (𝑡) +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝑡))𝑞𝑐 (𝑡) = 𝑣(𝑡), (32)

− 𝑚𝑝 𝑡𝒟
𝜌
𝑇 [

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡)] + 𝑏𝑑

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡) + 𝑘𝑠𝑦(𝑡) −

1
2𝜖𝐴𝑝

𝑞2𝑐 (𝑡) = 𝑓 (𝑡). (33)

t is obvious that the FHEs (32)–(33) give the same results as the
ELEs (25)–(26). Further, the CELEs (19)–(20) are recovered by the
HEs (32)–(33) when 𝜌 → 1.

umerical method

The FELEs (25)–(26) or the FHEs (32)–(33) are solved numerically
n this part by a suitable matrix approximation approach. To do so,
irst the changes of variables 𝑥(𝑡) = 𝐶

0𝒟
𝑞
𝑡 𝑞𝑐 (𝑡) and 𝑧(𝑡) = 𝐶

0𝒟
𝑞
𝑡 𝑦(𝑡) define

he new states 𝑥(𝑡) and 𝑧(𝑡), respectively. Following this procedure, we
onvert Eqs. (25)–(26) into

𝒟 𝜌
𝑡 𝑞𝑐 (𝑡) = 𝑥(𝑡), (34)

𝒟 𝜌
𝑇 𝑥(𝑡) =

1
𝑙𝑖
(𝑟𝑒𝑥(𝑡) +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝑡))𝑞𝑐 (𝑡) − 𝑣(𝑡)), (35)

𝐶
0𝒟

𝜌
𝑡 𝑦(𝑡) = 𝑧(𝑡), (36)

𝒟 𝜌
𝑇 𝑧(𝑡) =

1
𝑚𝑝

(𝑏𝑑𝑧(𝑡) + 𝑘𝑠𝑦(𝑡) −
1

2𝜖𝐴𝑝
𝑞2𝑐 (𝑡) − 𝑓 (𝑡)). (37)

hen the integral operators (7) and (12) are applied to the Eqs. (34)–
37) in order to change the above-mentioned relations into the frac-
ional integral equations

𝑐 (𝑡) = 𝑞𝑐 (0) +
𝑡
𝑥(𝜏)𝒵𝐿(𝑡 − 𝜔)𝑑𝜔, (38)
∫0
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i
0
t

N

𝐇

a

𝑄

𝑄

𝐹

𝐹

t

R

w
c

𝑥(𝑡) = 1
𝑙𝑖 ∫

𝑇

𝑡
(𝑟𝑒𝑥(𝜔) +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝜔))𝑞𝑐 (𝜔) − 𝑣(𝜔))𝒵𝑅(𝜔 − 𝑡)𝑑𝜔, (39)

𝑦(𝑡) = 𝑦(0) + ∫

𝑡

0
𝑧(𝜏)𝒵𝐿(𝑡 − 𝜔)𝑑𝜔, (40)

𝑧(𝑡) = 1
𝑚𝑝 ∫

𝑇

𝑡
(𝑏𝑑𝑧(𝜔) + 𝑘𝑠𝑦(𝜔) −

1
2𝜖𝐴𝑝

𝑞2𝑐 (𝜔) − 𝑓 (𝜔))𝒵𝑅(𝜔 − 𝑡)𝑑𝜔.

(41)

Considering the time step size ℎ = 𝑇−0
𝑀 with an arbitrary positive

nteger 𝑀 , now we define a uniform partition on [0, 𝑇 ] in which 𝑡𝑘 =
+ 𝑘ℎ (0 ≤ 𝑘 ≤ 𝑀) displays the time at node 𝑘, and 𝑞𝑐,𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘 show

he numerical approximations of 𝑞𝑐 (𝑡𝑘), 𝑥(𝑡𝑘), 𝑦(𝑡𝑘), 𝑧(𝑡𝑘), respectively.
Therefore, based on Eqs. (38)–(41) we have

𝑞𝑐,𝑘+1 = 𝑞𝑐,0 + ∫

𝑡𝑘+1

0
𝑥(𝜔)𝒵𝐿(𝑡𝑘+1 − 𝜔)𝑑𝜔

= 𝑞𝑐,0 +
𝑘
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
𝑥(𝜔)𝒵𝐿(𝑡𝑘+1 − 𝜔)𝑑𝜔

≈ 𝑞𝑐,0 +
𝑘
∑

𝑗=0
𝑥𝑗 ∫

𝑡𝑗+1

𝑡𝑗
𝒵𝐿(𝑡𝑘+1 − 𝜔)𝑑𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑘+1,𝑗

≈ 𝑞𝑐,0 +
𝑘
∑

𝑗=0
𝑎𝑘+1,𝑗𝑥𝑗 , 𝑘 = 0, 1,… ,𝑀 − 1,

(42)

𝑥𝑘−1 =
1
𝑙𝑖 ∫

𝑇

𝑡𝑘−1
(𝑟𝑒𝑥(𝜔) +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝜔))𝑞𝑐 (𝜔) − 𝑣(𝜔))𝒵𝑅(𝜔 − 𝑡𝑘−1)𝑑𝜔

= 1
𝑙𝑖

𝑀
∑

𝑗=𝑘
∫

𝑡𝑗

𝑡𝑗−1
(𝑟𝑒𝑥(𝜔) +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦(𝜔))𝑞𝑐 (𝜔) − 𝑣(𝜔))𝒵𝑅(𝜔 − 𝑡𝑘−1)𝑑𝜔

≈ 1
𝑙𝑖

𝑀
∑

𝑗=𝑘
𝑏𝑘−1,𝑗 (𝑟𝑒𝑥𝑗 +

1
𝜖𝐴𝑝

(𝑦𝑑 − 𝑦𝑗 )𝑞𝑐,𝑗 − 𝑣(𝑡𝑗 )), 𝑘 = 1,… ,𝑀 − 1,𝑀,

(43)

𝑦𝑘+1 = 𝑦0 + ∫

𝑡𝑘+1

0
𝑧(𝜔)𝒵𝐿(𝑡𝑘+1 − 𝜔)𝑑𝜔

= 𝑦0 +
𝑘
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
𝑧(𝜔)𝒵𝐿(𝑡𝑘+1 − 𝜔)𝑑𝜔

≈ 𝑦0 +
𝑘
∑

𝑗=0
𝑧𝑗 ∫

𝑡𝑗+1

𝑡𝑗
𝒵𝐿(𝑡𝑘+1 − 𝜔)𝑑𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑘+1,𝑗

≈ 𝑦0 +
𝑘
∑

𝑗=0
𝑎𝑘+1,𝑗𝑧𝑗 , 𝑘 = 0, 1,… ,𝑀 − 1,

(44)

𝑧𝑘−1 =
1
𝑚𝑝 ∫

𝑇

𝑡𝑘−1
(𝑏𝑑𝑧(𝜔) + 𝑘𝑠𝑦(𝜔) −

1
2𝜖𝐴𝑝

𝑞2𝑐 (𝜔) − 𝑓 (𝜔))𝒵𝑅(𝜔 − 𝑡𝑘−1)𝑑𝜔

= 1
𝑚𝑝

𝑀
∑

𝑗=𝑘
∫

𝑡𝑗

𝑡𝑗−1
(𝑏𝑑𝑧(𝜔) + 𝑘𝑠𝑦(𝜔)

− 1
2𝜖𝐴𝑝

𝑞2𝑐 (𝜔) − 𝑓 (𝜔))𝒵𝑅(𝜔 − 𝑡𝑘−1)𝑑𝜔

≈ 1
𝑚𝑝

𝑀
∑

𝑗=𝑘
𝑏𝑘−1,𝑗 (𝑏𝑑𝑧𝑗 + 𝑘𝑠𝑦𝑗

− 1
2𝜖𝐴𝑝

𝑞2𝑐,𝑗 − 𝑓 (𝑡𝑗 )), 𝑘 = 1,… ,𝑀 − 1,𝑀,

(45)

in which

𝑏𝑘−1,𝑗 =
𝑡𝑗
𝒵𝑅(𝜔 − 𝑡𝑘−1)𝑑𝜔. (46)
4

∫𝑡𝑗−1
By defining the matrices

𝐇𝐌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1,0 0 … 0
𝑎2,0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

𝑎𝑀,0 … 𝑎𝑀,𝑀−2 𝑎𝑀,𝑀−1

⎤

⎥

⎥

⎥

⎥

⎦

, (47)

𝐅𝐌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑏0,1 𝑏0,2 … 𝑏0,𝑀
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝑏𝑀−2,𝑀
0 … 0 𝑏𝑀−1,𝑀

⎤

⎥

⎥

⎥

⎥

⎦

, (48)

we can rewrite Eqs. (42)–(45) in the matrix form

⎡

⎢

⎢

⎣

𝑞𝑐,1
⋮

𝑞𝑐,𝑀

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑞𝑐,0
⋮
𝑞𝑐,0

⎤

⎥

⎥

⎦

+𝐇𝐌

⎡

⎢

⎢

⎣

𝑥0
⋮

𝑥𝑀−1

⎤

⎥

⎥

⎦

, (49)

⎡

⎢

⎢

⎣

𝑥0
⋮

𝑥𝑀−1

⎤

⎥

⎥

⎦

= 1
𝑙𝑖
𝐅𝐌

⎛

⎜

⎜

⎝

𝑟𝑒
⎡

⎢

⎢

⎣

𝑥1
⋮
𝑥𝑀

⎤

⎥

⎥

⎦

+ 1
𝜖𝐴𝑝

⎡

⎢

⎢

⎣

(𝑦𝑑 − 𝑦1)𝑞𝑐,1
⋮

(𝑦𝑑 − 𝑦𝑀 )𝑞𝑐,𝑀

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑣(𝑡1)
⋮

𝑣(𝑡𝑀 )

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

, (50)

⎡

⎢

⎢

⎣

𝑦1
⋮
𝑦𝑀

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑦0
⋮
𝑦0

⎤

⎥

⎥

⎦

+𝐇𝐌

⎡

⎢

⎢

⎣

𝑧0
⋮

𝑧𝑀−1

⎤

⎥

⎥

⎦

, (51)

⎡

⎢

⎢

⎣

𝑧0
⋮

𝑧𝑀−1

⎤

⎥

⎥

⎦

= 1
𝑚𝑝

𝐅𝐌

⎛

⎜

⎜

⎜

⎝

𝑏𝑑
⎡

⎢

⎢

⎣

𝑧1
⋮
𝑧𝑀

⎤

⎥

⎥

⎦

+ 𝑘𝑠
⎡

⎢

⎢

⎣

𝑦1
⋮
𝑦𝑀

⎤

⎥

⎥

⎦

− 1
𝜖𝐴𝑝

⎡

⎢

⎢

⎢

⎣

𝑞2𝑐,1
⋮

𝑞2𝑐,𝑀

⎤

⎥

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑓 (𝑡1)
⋮

𝑓 (𝑡𝑀 )

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

. (52)

ow we employ the augmented matrices

�̄� =
[

0 0
𝐇𝐌 0

]

, ̄𝐅𝐌 =
[

0 𝐅𝐌
0 0

]

, (53)

nd the vectors

𝑐 =
⎡

⎢

⎢

⎣

𝑞𝑐,0
⋮

𝑞𝑐,𝑀

⎤

⎥

⎥

⎦

, 𝑋 =
⎡

⎢

⎢

⎣

𝑥0
⋮
𝑥𝑀

⎤

⎥

⎥

⎦

, 𝑌 =
⎡

⎢

⎢

⎣

𝑦0
⋮
𝑦𝑀

⎤

⎥

⎥

⎦

, 𝑍 =
⎡

⎢

⎢

⎣

𝑧0
⋮
𝑧𝑀

⎤

⎥

⎥

⎦

, (54)

𝑐,0 =
⎡

⎢

⎢

⎣

𝑞𝑐,0
⋮
𝑞𝑐,0

⎤

⎥

⎥

⎦

, 𝑌0 =
⎡

⎢

⎢

⎣

𝑦0
⋮
𝑦0

⎤

⎥

⎥

⎦

, 𝑉 =
⎡

⎢

⎢

⎣

𝑣(𝑡0)
⋮

𝑣(𝑡𝑀 )

⎤

⎥

⎥

⎦

, 𝐹 =
⎡

⎢

⎢

⎣

𝑓 (𝑡0)
⋮

𝑓 (𝑡𝑀 )

⎤

⎥

⎥

⎦

, (55)

𝑋 (𝑌 ,𝑄𝑐 , 𝑉 ) = 1
𝜖𝐴𝑝

⎡

⎢

⎢

⎣

(𝑦𝑑 − 𝑦0)𝑞𝑐,0
⋮

(𝑦𝑑 − 𝑦𝑀 )𝑞𝑐,𝑀

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑣(𝑡0)
⋮

𝑣(𝑡𝑀 )

⎤

⎥

⎥

⎦

, (56)

𝑍 (𝑄𝑐 , 𝐹 ) = − 1
𝜖𝐴𝑝

⎡

⎢

⎢

⎢

⎣

𝑞2𝑐,0
⋮

𝑞2𝑐,𝑀

⎤

⎥

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑓 (𝑡0)
⋮

𝑓 (𝑡𝑀 )

⎤

⎥

⎥

⎦

, (57)

o compact the relations (49)–(52) as below

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄𝑐 = 𝑄𝑐,0 +𝐇𝐌𝑋,
𝑋 = 1

𝑙𝑖
̄𝐅𝐌(𝑟𝑒𝑋 + 𝐹𝑋 (𝑌 ,𝑄𝑐 , 𝑉 )),

𝑌 = 𝑌0 +𝐇𝐌𝑍,
𝑍 = 1

𝑚𝑝
̄𝐅𝐌(𝑏𝑑𝑍 + 𝑘𝑠𝑌 + 𝐹𝑍 (𝑄𝑐 , 𝐹 )).

(58)

earranging Eq. (58), we get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄𝑐 −𝐇𝐌𝑋 = 𝑄𝑐,0,
(𝐈 − 1

𝑙𝑖
̄𝐅𝐌𝑟𝑒)𝑋 = 1

𝑙𝑖
̄𝐅𝐌𝐹𝑋 (𝑌 ,𝑄𝑐 , 𝑉 ),

𝑌 −𝐇𝐌𝑍 = 𝑌0,
− 1

𝑚𝑝
̄𝐅𝐌𝑘𝑠𝑌 + (𝐈 − 1

𝑚𝑝
̄𝐅𝐌𝑏𝑑 )𝑍 = 1

𝑚𝑝
̄𝐅𝐌𝐹𝑍 (𝑄𝑐 , 𝐹 ),

(59)

here 𝐈 denotes an (𝑀 + 1) × (𝑀 + 1) identity matrix. Eventually, we
an write

⎡

⎢

⎢

⎢

⎢

𝐈 −𝐇𝐌 0 0
0 𝐈 − 1

𝑙𝑖
̄𝐅𝐌𝑟𝑒 0 0

0 0 𝐈 −𝐇𝐌
0 0 − 1 ̄𝐅 𝑘 𝐈 − 1 ̄𝐅 𝑏

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

𝑄𝑐
𝑋
𝑌
𝑍

⎤

⎥

⎥

⎥

⎥

⎣ 𝑚𝑝
𝐌 𝑠 𝑚𝑝

𝐌 𝑑⎦ ⎣ ⎦
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U
F

Fig. 1. The charge of capacitor and the displacement of moving plate under a sinusoidal mechanical force (integer-order model).
Fig. 2. The charge of capacitor under a sinusoidal mechanical force (fractional-order model with a power-law kernel).
a
t
b
m

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑄𝑐,0
1
𝑙𝑖

̄𝐅𝐌𝐹𝑋 (𝑌 ,𝑄𝑐 , 𝑉 )
𝑌0

1
𝑚𝑝

̄𝐅𝐌𝐹𝑍 (𝑄𝑐 , 𝐹 )

⎤

⎥

⎥

⎥

⎥

⎦

, (60)

which is a nonlinear system of algebraic equations.

Simulation results

The FELEs (25)–(26) are simulated in this part, which is according
to the forced capacitor microphone under study by considering the
special case of general fractional operators with a power-law kernel
as introduced in Section ‘‘Symbols and preliminaries’’. Moreover, two
cases are considered here in which 𝑓 (𝑡) = 0.01 sin(20𝑡) (periodic me-
chanical excitation) and 𝑓 (𝑡) = 0.01 (constant mechanical excitation).
The relation 𝑞𝑐 (0) = 𝑦(0) = 0 defines the initial setting; also, the other
parameters are considered to be 𝑟𝑒 = 2 × 106 Ω, 𝑣 = 1 V, 𝑙𝑖 = 2 × 108 H,
𝑏𝑑 = 5 N s

m , 𝑘𝑠 = 10 N
m , 𝑚𝑝 = 0.01 kg, 𝐴𝑝 = 10−2 m2, 𝜖 = 8.854 × 10−12 F

m ,
𝑦𝑑 = 0.005 m, and 𝜌 = 0.91, 0.93, 0.95, 0.97, 0.99, 1. Figs. 1–6 illustrate
the simulation results. In Fig. 1, we show the charge of capacitor
and the displacement of moving plate as the solutions of the CELEs
(19)–(20) with the sinusoidal mechanical force 𝑓 (𝑡) = 0.01 sin(20𝑡).

nder the same mechanical force, the corresponding responses of the
5

ELEs (25)–(26) with a power-law kernel and different fractional orders
re also depicted in Figs. 2 and 3 for the charge of capacitor and
he displacement of moving plate, respectively. Fig. 4 displays the
ehaviors of electrical and mechanical variables for the integer-order
odel with the constant mechanical force 𝑓 (𝑡) = 0.01, while Figs. 5–6

show the corresponding variables for the fractional-order model with
a power-law kernel and different fractional orders under the same
constant mechanical force. According to the presented figures, we
can come to the conclusion that the general relations (25)–(26) show
various behaviors, i.e., the characteristics of the responses like damped
frequency, overshoot, rise time, settling time, etc., are entirely different.
In addition, the numerical solution of FELEs goes to that of CELEs as
𝜌 goes to 1. Consequently, a new valid system, which could exhibit
various features of capacitor microphone dynamics, is prepared by
means of the general fractional derivatives. Notice that these features
are not available when we work with classic integer-order models.
Additionally, with regard to the fact that the new general fractional op-
erators prepare more flexible models, we achieve a remarkable benefit
in better comprehension of complex dynamical systems.

Conclusions

In this research, a new and general fractional Lagrangian approach
was investigated in order to estimate the complex behaviors of a

capacitor microphone case study. The classical Lagrangian was first
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Fig. 3. The displacement of moving plate under a sinusoidal mechanical force (fractional-order model with a power-law kernel).
Fig. 4. The charge of capacitor and the displacement of moving plate under a constant mechanical force (integer-order model).
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et up, and then the general fractional Lagrangian was introduced by
sing the newly developed general fractional derivatives instead of
nteger-order ones. Afterwards, the FELEs were formulated containing
general kernel function for the fractional operators. As the numerical
art, an effective matrix approximation scheme was presented changing
he latter general equations into a nonlinear algebraic system. Figs. 1–

showed the simulation results, which indicated that the fractional
ynamical behaviors in our case rely on the kernel function; in other
ords, changing the kernel function leads to various asymptotic behav-

ors. This approves the benefit of generalized fractional model to extract
he hidden aspects of the system under study, whereas this feature is
ot accessible with classical fractional modeling. Eventually, there is
n open problem if the general relations, derived in this paper, could
e solved through other approximation techniques, an issue which can
e taken as a clue to future works. Additionally, one can extend the
dea of general FC for the other types of problems such as control,
athematical modeling, etc. [25–27]
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ppendix (Derivation of FELE in general sense)

Let ℱ (𝐶0𝒟
𝜌
𝑡 𝜔(𝑡),

𝐶
𝑡𝒟

𝜌
𝑇𝜔(𝑡), 𝜔(𝑡), 𝑡) be a scalar function having continu-

us first and second partial derivatives with respect to all its argument.
ollowing the concept of calculus of variations in fractional sense [21],
e consider ℱ (𝐶0𝒟

𝜌
𝑡 𝜔(𝑡),

𝐶
𝑡𝒟

𝜌
𝑇𝜔(𝑡), 𝜔(𝑡), 𝑡) as the general fractional La-

rangian function, including the left and right general Caputo fractional
erivatives described in the Eqs. (2) and (11), respectively. Next, we
onstruct the action function [𝜔(𝑡)] in the classical field as follows

[𝜔(𝑡)] =
𝑇
ℱ (𝐶𝒟 𝜌𝜔(𝑡), 0𝐶𝒟

𝜌𝜔(𝑡), 𝜔(𝑡), 𝑡)𝑑𝑡. (61)
∫0 𝑡 𝑇 𝑡
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Fig. 5. The charge of capacitor under a constant mechanical force (fractional-order model with a power-law kernel).
Fig. 6. The displacement of moving plate under a constant mechanical force (fractional-order model with a power-law kernel).
‘
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By gaining the extreme point of [𝜔(𝑡)] as well as using integration
by parts formulations in fractional framework, we can obtain the FELE
based on the fractional Lagrangian mechanics [21]. For this purpose,
let 𝜔(𝑡) fulfill the condition (𝜔(0), 𝜔(𝑇 )) = (𝜔0, 𝜔𝑇 ) and 𝐶

0𝒟
𝜌
𝑡 𝜔(𝑡),

𝐶
𝑡𝒟

𝜌
𝑇𝜔(𝑡)

be continuous for all 0 ≤ 𝑡 ≤ 𝑇 . Then the following category of curves
is built to discover the extreme point 𝜔∗(𝑡) of [𝜔(𝑡)]

𝜔(𝑡) = 𝜔∗(𝑡) + 𝛿𝜅(𝑡), (62)

where 𝜅(0) = 𝜅(𝑇 ) = 0, and 𝛿 ∈ R is an arbitrary real number. Since the
general derivatives 𝐶𝒟 𝜌𝜔(𝑡) and 𝐶𝒟 𝜌𝜔(𝑡) are linear operators (Section
7

𝑡 𝑇 0 𝑡
‘Symbols and preliminaries’’), we have

𝒟 𝜌
𝑡 𝜔(𝑡) =

𝐶
0𝒟

𝜌
𝑡 𝜔

∗(𝑡) + 𝛿 𝐶
0𝒟

𝜌
𝑡 𝜅(𝑡), (63)

𝒟 𝜌
𝑇𝜔(𝑡) =

𝐶
𝑡𝒟

𝜌
𝑇𝜔

∗(𝑡) + 𝛿 𝐶
𝑡𝒟

𝜌
𝑇 𝜅(𝑡). (64)

ow, the relations (62)–(64) are substituted into the action function
[𝜔(𝑡)]; thus, for every 𝜅(𝑡) we obtain

= (𝛿) = ∫

𝑇

0
ℱ (𝐶0𝒟

𝜌
𝑡 𝜔

∗(𝑡) + 𝛿 𝐶
0𝒟

𝜌
𝑡 𝜅(𝑡),

𝐶
𝑡𝒟

𝜌
𝑇𝜔

∗(𝑡) + 𝛿 𝐶
𝑡𝒟

𝜌
𝑇 𝜅(𝑡), 𝜔

∗(𝑡) + 𝛿𝜅(𝑡), 𝑡)𝑑𝑡. (65)
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d

f
p
𝜅

The necessary condition to attain the extreme point 𝜔∗(𝑡) of (𝛿) is
erived by

𝑑
𝑑𝛿

= ∫

𝑇

0

[

𝜕ℱ
𝜕𝜔(𝑡)

𝜅(𝑡) + 𝜕ℱ
𝜕𝐶0𝒟

𝜌
𝑡 𝜔(𝑡)

𝐶
0𝒟

𝜌
𝑡 𝜅(𝑡) +

𝜕ℱ
𝜕𝐶𝑡𝒟

𝜌
𝑇𝜔(𝑡)

𝐶
𝑡𝒟

𝜌
𝑇 𝜅(𝑡)

]

𝑑𝑡 = 0,

(66)

or all admissible 𝜅(𝑡). The formulas of the fractional integration by
arts are now applied by considering the boundary conditions 𝜅(0) =
(𝑇 ) = 0

∫

𝑇

0

𝜕ℱ
𝜕𝐶0𝒟

𝜌
𝑡 𝜔(𝑡)

𝐶
0𝒟

𝜌
𝑡 𝜅(𝑡)𝑑𝑡 = ∫

𝑇

0
[𝑡𝒟

𝜌
𝑇

𝜕ℱ
𝜕𝐶0𝒟

𝜌
𝑡 𝜔(𝑡)

]𝜅(𝑡)𝑑𝑡, (67)

∫

𝑇

0

𝜕ℱ
𝜕𝐶𝑡𝒟

𝜌
𝑇𝜔(𝑡)

𝐶
𝑡𝒟

𝜌
𝑇 𝜅(𝑡)𝑑𝑡 = ∫

𝑇

0
[0𝒟

𝜌
𝑡

𝜕ℱ
𝜕𝐶𝑡𝒟

𝜌
𝑇𝜔(𝑡)

]𝜅(𝑡)𝑑𝑡. (68)

Substituting Eqs. (67)–(68) into (66), we prepare

𝑑
𝑑𝛿

= ∫

𝑇

0

[

𝜕ℱ
𝜕𝜔(𝑡)

+ 𝑡𝒟
𝜌
𝑇

𝜕ℱ
𝜕𝐶0𝒟

𝜌
𝑡 𝜔(𝑡)

+ 0𝒟
𝜌
𝑡

𝜕ℱ
𝜕𝐶𝑡𝒟

𝜌
𝑇𝜔(𝑡)

]

𝜅(𝑡)𝑑𝑡 = 0. (69)

Eventually, the FELE is obtained from
𝜕ℱ
𝜕𝜔(𝑡)

+ 𝑡𝒟
𝜌
𝑇

𝜕ℱ
𝜕𝐶0𝒟

𝜌
𝑡 𝜔(𝑡)

+ 0𝒟
𝜌
𝑡

𝜕ℱ
𝜕𝐶𝑡𝒟

𝜌
𝑇𝜔(𝑡)

= 0, (70)

by taking into account the concept of calculus of variations and paying
attention to the point that the function 𝜅(𝑡) is arbitrary.
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