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Abstract A generalized version of fractional models is introduced for the COVID-19 pandemic,

including the effects of isolation and quarantine. First, the general structure of fractional derivatives

and integrals is discussed; then the generalized fractional model is defined from which the stability

results are derived. Meanwhile, a set of real clinical observations from China is considered to deter-

mine the parameters and compute the basic reproduction number, i.e., R0 � 6:6361. Additionally,

an efficient numerical technique is applied to simulate the new model and provide the associated

numerical results. Based on these simulations, some figures and tables are presented, and the data

of reported cases from China are compared with the numerical findings in both classical and frac-

tional frameworks. Our comparative study indicates that a particular case of general fractional for-

mula provides a better fit to the real data compared to the other classical and fractional models.

There are also some other key parameters to be examined that show the health of society when they

come to eliminate the disease.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Over the past few years, an unknown, deadly, and rapidly
spreading infection called coronavirus has made worldwide
fears. For the first time, coronavirus was associated with a
virus family that causes infection in mammals and birds.

Among humans, meanwhile, coronavirus can also cause the
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infection of respiratory tract. Generally, coronavirus causes
viral or bacterial pneumonia, respectively, either directly or
indirectly. The general belief is that the 2019 coronavirus

(COVID-19) is a bat-derived influenza virus; however, many
controversies exist about its origin. In this case, the first ques-
tion that should be asked is whether the bats are new all over

the world or not, and if they are, why has this virus not been
widespread earlier? Why has such a virus not been transmitted
to humans earlier? A theory suggests that Chinese people ate

uncooked bats, which led to the spread of this disease to peo-
ple. It would be nice to go back to several African villages,
where people consume fruits that were once bitten directly
by bats. If this hypothesis is correct, this disease can transmit

via bats. In regards to the fact that bats are the main part of
dietary habits for locals, there is a possibility that locals get
the virus from them. In 1981, several books were published,

among which The Eyes of Darkness shows what the breakout
of the disease would look like and how it would begin. Besides,
this book claims that the virus is a bio-weapon. The date of the

pandemic is also clearly stated in the book entitled The End of
the World Book.

Mathematical models can help public health interventions

by showing the likely outcome of an epidemic. In the book
[1], the authors covered the concept of mathematical models
in epidemiology for certain diseases such as HIV/AIDS,
influenza, dengue fever, Zika virus, etc. The paper [2] investi-

gated the impact of case-area targeted intervention and its
effect on reducing cholera transmission. The other study [3]
introduced vaccines to susceptible people in order to control

Ebola disease spread. In [4], the power series solutions of com-
partmental epidemiological models were used to create alter-
native approaches for solving their nonlinear differential

equation systems. The dynamics of COVID-19 have also been
investigated by several formulas [5,6]. In [7], the COVID-19
dynamics were analyzed by using three numerical schemes in

the frameworks of singular and nonsingular fractional opera-
tors. In [8], the authors developed a model that synthesized
the indicators extracted from the outbreak in Wuhan (China).
The COVID-19 dynamics in Italy were analyzed in [9] by the

concept of mathematical modelling. Based on Tennessee State
data in the United States, the study [10] presented a fractional
compartmental model for the spread of COVID-19. In [11], the

simulation of COVID-19 transmission in a northeastern state
of Brazil was investigated through a mathematical model.
The work [12] studied a new model of COVID-19 by not only

applying the real-world data from Pakistan but also using the
stability theory of differential equations. In [13], a new model
of COVID-19 was taken into account by using a fractional
operator with nonsingular kernel instead of classical deriva-

tives, and a modified Adams–Bashforth scheme was employed
to solve the model. According to the research in [14], the trans-
mission and death rates of COVID-19 could be reduced dra-

matically in Ghana through mathematical modelling.
Moreover, researchers used a fractional model with a lock-
down function to investigate the lock-down effect on the

COVID-19 transmission in Turkey [15]. In [16], the solution
of a fractional COVID-19 model was studied by using Hermite
wavelets, and the results were compared with those of Adams–

Bashforth-Moulton predictor–corrector method. In [17], the
COVID-19 was analyzed in India with fractional calculus by
using an SEIR model and a q-Homotopy analysis transform
technique; the existence and uniqueness of the results were also
determined based on the fixed point theory. In [18], to extend
the COVID-19 model, a set of real-world data was used by
taking into account the isolation and quarantine effects. In

[19], a stochastic COVID-19 model with Lévy noise was shown
and analyzed; in all model compartments, Lévy jump pertur-
bations and white noise were included, and the stochastic solu-

tion near the deterministic equilibrium model was used to
study the dynamical stochastic properties. Another study [20]
employed a fractional frequency flexible Fourier form to test

the COVID-19 predictability along with nonlinear trends and
fractional integration. To eradicate COVID-19, non-
pharmaceutical interventions based on mathematical mod-
elling were introduced in [21], and the threshold conditions

were studied for the disease-free steady-states. Based on para-
metric perturbations and transition probabilities, the authors
in [22] discussed the use of non-standard computations to

study the stochastic pandemic model of COVID-19. The paper
[23] also examined the bats-hosts-reservoir-people COVID-19
model and used a variational iteration method to derive its

corresponding approximate solution.
In the past decades, scientists have made it possible to

model real phenomena through fractional-order systems since

such systems inherently exhibit memory effects [24,25]. As
well, it was shown that fractional models are impressive in ana-
lyzing complex systems in different fields such as finance, biol-
ogy, and mechanics [26–28]. Some valuable studies in the

theoretical and practical aspects of fractional calculus are
briefly reviewed here. In [29], by using weak topology, the exis-
tence results were presented for the Caputo fractional neutral

inclusions without compactness in Banach space. Using
fixed-point theorem and fractional calculus approach, the
authors in [30] provided controllability results under sufficient

conditions. The paper [31] introduced integro-differential
equations based on Atangana-Baleanu fractional derivative
with a generalized Mittag–Leffler kernel and examined the

existence and uniqueness of the solutions in Banach space.
In [32], non-compactness procedures and Mönch’s fixed point
theorem were used to investigate fractional integro-differential
equations involving Hilfer fractional operators with non-local

conditions. In a nonsense region, Hilfer’s neutral fractional
derivative provided controllability results using Mönch’s
method, Banach’s contraction principle, fractional calculus,

and semi-group property [33].
Valuable works and discussions as above motivate us to

pursue further researches on the mathematical modelling of

COVID-19 by considering new fractional operators and taking
into account some other effective parameters like isolation and
quarantine effects. To this end, first, we present an integer-
order model from [18] including ordinary time derivatives;

then we generalize this model in a new framework by applying
the concept of general fractional operators introduced by
Luchko and Yamamoto [34]. From this generalization, the sta-

bility results are derived for R0 < 1. A new numerical method
is also proposed for solving the obtained general fractional dif-
ferential equations. In both classical and fractional frame-

works, the data of reported cases from China is compared
with the numerical findings of this article. Simulation results
show that the general fractional model for various fractional

orders and different kernel functions offers a degree of flexibil-
ity and allows us to model the complex biological system under
investigation in a more precise way than the other types of
fractional and classical equations. In addition, we examine
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some of the key parameters and their effects on the model
behavior, which could act as a control in eradicating the dis-
ease. In conclusion, this study is very useful and presents some

crucial information that can help to eradicate the disease from
communities as soon as possible.

This paper is classified in the following sections. The pre-

liminary notes are introduced in Section 2. A general fractional
COVID-19 model with isolation and quarantine effects is pre-
sented in Section 3. Section 4 proposes a new numerical

method to simulate the model. Then the results and discussions
are followed in Section 5. Finally, some concluding remarks in
Section 6 close the manuscript. .

2. Preliminary notes

In this part, some preliminaries are presented about the

recently introduced general fractional derivatives and inte-
grals. According to [34], the general form of left Caputo and
Riemann–Liouville fractional derivatives would, respectively,
be written by

0
CDa

t f tð Þ ¼
Z t

0

_f sð ÞKL t� sð Þds; ð1Þ

0D
a
t f tð Þ ¼

d

dt

Z t

0

f sð ÞKL t� sð Þds; ð2Þ

in which a 2 0; 1ð Þ is the order of fractional derivative,
f : 0;þ1½ Þ ! R is an absolutely continuous function with
_f 2 L1

loc 0;þ1ð Þ; 0 6 t 6 T < þ1, and KL is a general kernel

function that is non-negative and locally integrable on Rþ.
Notice that the above general operators are linear, so we have

0
CDa

t kf tð Þ þ lg tð Þð Þ ¼ k 0
CDa

t f tð Þ þ l 0
CDa

t g tð Þ; ð3Þ

0D
a
t kf tð Þ þ lg tð Þð Þ ¼ k 0D

a
t f tð Þ þ l 0D

a
t g tð Þ: ð4Þ

Also, under some conditions of the kernel function KL tð Þ, an
entirely monotone function ML tð Þ exists for all t > 0 such that

[34]

KL tð Þ �ML tð Þ ¼
Z 1

0

KL sð ÞML t� sð Þds ¼ 1: ð5Þ

Moreover, for f 2 L1
loc 0;þ1ð Þ, it can be written

0D
�a
t 0

CDa
t f tð Þ

� � ¼ f tð Þ � f 0ð Þ; ð6Þ
where 0D

�a
t represents the general form of Riemann–Liouville

fractional integral defined by

0D
�a
t f tð Þ ¼

Z t

0

f sð ÞML t� sð Þds: ð7Þ

Following the same concept as above, the right Caputo and

Riemann–Liouville fractional derivatives could be, respec-
tively, stated by

t
CDa

Tf tð Þ ¼
Z T

t

_f sð ÞKR s� tð Þds; ð8Þ

tD
a
Tf tð Þ ¼

d

dt

Z T

t

f sð ÞKR s� tð Þds; ð9Þ

and the right-sided Riemann–Liouville fractional integral
would be described as
tD
�a
T f tð Þ ¼

Z T

t

f sð ÞMR s� tð Þds: ð10Þ

It could be noticeable that the above generalization coincides
with another one in [35]; hence, the integration by parts for-

mula, according to the consequences in [35], is also fulfilled
by the aforesaid fractional operators as followsZ T

0

f sð Þ0Da
s g sð Þds ¼

Z T

0

g sð ÞsCDa
Tf sð Þds; ð11Þ

Z T

0

f sð Þ0CDa
s g sð Þds ¼

Z T

0

g sð ÞsDa
Tf sð Þds: ð12Þ

Now, three particular cases are introduced here according to
the recent definitions. First, the general kernel KL tð Þ is set as
KL tð Þ ¼ t�a

C 1�að Þ; thus, the power function ML tð Þ ¼ ta�1

C að Þ consti-

tutes the associated kernel for the integral operator (7). Conse-

quently, the Eqs. (1) and (2) decrease to the conventional
Caputo and Reimann-Liouville derivatives, respectively, and
the Eq. (7) becomes the Riemann–Liouville integral [36]. Sec-

ond, the kernel KL tð Þ ¼ M að Þ
1�a Ea

�a
1�a t

a
� �

would be considered in

which Ea and M að Þ are, respectively, the Mittag–Leffler and
normalization functions such that M 0ð Þ ¼ M 1ð Þ ¼ 1. Then
by applying the Laplace transformation, we achieve the kernel
ML tð Þ as

ML tð Þ ¼ 1� a
M að Þ d tð Þ þ a

M að ÞC að Þ t
a�1: ð13Þ

Therefore, the Atangana-Baleanu (AB)-Caputo and AB-
Riemann–Liouville derivatives are, respectively, recovered
from the Eqs. (1) and (2), and the AB fractional integral is

acquired by [37]

0D
�a
t f tð Þ ¼ a

M að ÞC að Þ
Z t

0

t� sð Þa�1
f sð Þdsþ 1� a

M að Þ f tð Þ: ð14Þ

Finally, the Caputo-Fabrizio (CF) derivative is formulated by

setting KL tð Þ ¼ M að Þ
1�a exp �a

1�a t
� �

in which the kernel is an expo-

nential function. Furthermore, M að Þ would be the normaliza-
tion function satisfying M 0ð Þ ¼ M 1ð Þ ¼ 1 [38–40].

3. Mathematical modelling

In this section, the new model of COVID-19 with isolation and
quarantine effects is analyzed in both integer- and fractional-

order frameworks. As a part of this section, the non-
negativity of the solution is investigated. Then the feasible
region is presented, which is shown to be positively invariant.

Finally, by introducing the basic reproduction number, the
equilibrium points and their stability are explored.

3.1. Integer-order case

The threat posed by COVID-19 to millions of people world-
wide is becoming a real threat and a severe health risk. Isola-

tion and quarantine could be introduced as effective and
practical solutions to decline and eradicate the disease trans-
mission rate. Coronavirus can spread through people who
have clinical symptoms and are vulnerable to infection; thus,

they must be quarantined and isolated for a short period
because of their high-risk position. In addition, this issue also
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includes asymptomatic infected patients who play a role in the
infection cycle without displaying any symptoms, causing a
new disease possible. In the new model developed in this sec-

tion, the notation P tð Þ indicates the total number of popula-
tion with seven sub-categories, i.e., susceptible people S tð Þ,
vulnerable individuals V tð Þ who do not show the disease symp-

toms, clinically symptomatic infected people I tð Þ, asymp-
tomatic infected persons A tð Þ (with hardly any clinical signs),
quarantined people K tð Þ, under treatment individuals U tð Þ,
and people who are recuperated R tð Þ. The seafood market
M tð Þ is mainly responsible for this infection because people,
who visit the markets and purchase the food, get infected
and spread it throughout the environment. As a result, an ordi-

nary differential equations system, which describes the disease,
could be derived by applying the above assumptions as below
[18]

dS tð Þ
dt

¼ b� nS tð Þ � t tð ÞS tð Þ;
dV tð Þ
dt

¼ � 1� xð Þr1 þ xr2 þ nþ jvð ÞV tð Þ þ t tð ÞS tð Þ;
dI tð Þ
dt

¼ � qi þ nþ ni þ gið ÞI tð Þ þ 1� xð Þr1V tð Þ;
dA tð Þ
dt

¼ � qa þ nð ÞA tð Þ þ xr2V tð Þ;
dK tð Þ
dt

¼ � nþ qj þ gjð ÞK tð Þ þ jvV tð Þ;
dU tð Þ
dt

¼ � nþ qu þ nuð ÞU tð Þ þ giI tð Þ þ gjK tð Þ;
dR tð Þ
dt

¼ �nR tð Þ þ qiI tð Þ þ qaA tð Þ þ qjK tð Þ þ quU tð Þ;
dM tð Þ
dt

¼ �smM tð Þ þ saA tð Þ þ siI tð Þ;
ð15Þ

in which

t tð Þ ¼ h1 I tð Þ þ /A tð Þð Þ
P tð Þ þ h2M tð Þ: ð16Þ

The infected people with clinically symptomatic or without
clinical symptoms, as well as the infected individuals of sea-
food markets I tð Þ;A tð Þ;M tð Þð Þ can infect the susceptible peo-
ple to the disease, which is shown as t tð Þ. For susceptible

individuals, the corresponding birth rate is b, and the human
mortality rate can be measured by n. Healthy people would
become infectious after exposure to the infected and asymp-

tomatically infected individuals at the rate h1, whereas the
transmissibility factor is denoted by /. The number of people
who are affected as a result of visiting seafood markets is

increased by h2. The parameter x generates the asymptomatic
infection. The periods of incubation are represented by r1 and
r2. The parameter jv represents the number of individuals who

have been exposed to the infection and are being quarantined.
The parameters qa and qi refer to the percentage recuperation
of asymptomatic infection and infection, respectively. Also,
the parameters qu and qj are, respectively, the recuperation

of hospitalized and quarantined people. The disease-related
death rates of hospitalized and infected people are represented
by nu and ni, respectively. In addition, the hospitalization rate

for the infected and quarantine individuals has been calculated
with gi and gj, respectively. Not only are the parameters si and
sa, respectively, shown the infections came from the infected

and asymptomatically infected people at seafood markets,
but also the parameter sm represents the removed infected indi-
viduals from the markets.

3.2. Non-negativity of the solution

Lemma 3.1. Let D tð Þ be the state vector of the model (15), i.e.,
D tð Þ ¼ S tð Þ;V tð Þ; I tð Þ;A tð Þ;K tð Þ;U tð Þ;R tð Þ;M tð Þð Þ;
and D 0ð Þ ¼ S0;V0; I0;A0;K0;U0;R0;M0ð Þ P 0 be the non-

negative initial state vector. Then the model (15) has a non-
negative solution for any time t > 0. Moreover, we have

limt!1P tð Þ 6 b
n where P tð Þ would be the total population com-

puted by P tð Þ ¼ S tð Þ þ V tð Þ þ I tð Þ þ A tð Þ þ K tð Þ þU tð ÞþR tð Þ.

Proof. Let us take into account

tsup ¼ sup t > 0 : D tð Þ > 0f g:
Thus, tsup > 0. The first equation of the model (15) leads to the

following relation

dS tð Þ
dt

¼ b� nS tð Þ � t tð ÞS tð Þ ¼ b� S tð Þ nþ t tð Þð Þ; ð17Þ

where t tð Þ ¼ h1 I tð Þþ/A tð Þð Þ
P tð Þ þ h2M tð Þ. Thus, the Eq. (17) can be

written as

d

dt
S tð Þ exp ntþ

Z tsup

0

t sð Þds
� �� 	

¼ b exp ntþ
Z tsup

0

t sð Þds
� �

: ð18Þ

Therefore,

S tsup
� �

exp ntsup þ
Z tsup

0

t sð Þds
� �

� S 0ð Þ

¼
Z tsup

0

b exp nyþ
Z y

0

t fð Þdf
� �

dy; ð19Þ

such that

S tsup
� � ¼ S 0ð Þ exp � ntsup þ

R tsup
0

t sð Þds� �
 �
þ exp � ntsup þ

R tsup
0

t sð Þds� �
 �
� R tsup

0
b exp nyþ R y

0
t fð Þdf� �

dy > 0:

ð20Þ

We can follow a similar strategy for the remaining equations in
the system (15) to prove D tð Þ > 0 for all t > 0. For further
assertion, consider that the initial conditions satisfy

0 < S0;V0; I0;A0;K0;U0;R0 6 P tð Þ. In the system (15), all the
equations except the last one are added together; thus, we
obtain

dP tð Þ
dt

¼ b� nP tð Þ � niI tð Þ � nuU tð Þ 6 b� nP tð Þ:

Consequently, we have

lim
t!1

P tð Þ 6 b
n
:

h
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In the following, we present an invariant region for the sys-
tem (15). Let the feasible region Z be specified by

Z ¼ S;V; I;A;K;U;Rð Þ 2 R7
þ : P tð Þ 6 b

n
; M 2 Rþ : M tð Þ 6 b

n
si þ sa
sm

� 	
:

ð21Þ

Lemma 3.2. Consider nonnegative initial conditions for the
system (15); then the region Z is positively invariant.
Proof. Again, all the equations in (15) except the last one are
added together; thus, we get

dP tð Þ
dt

¼ b� nP tð Þ � niI tð Þ � nuU tð Þ 6 b� nP tð Þ:

If P 0ð Þ 6 b
n, then dP tð Þ

dt
6 0. Therefore, P tð Þ 6 P 0ð Þe�ntþ

b
n 1� e�ntð Þ. Hence, the region Z is positively invariant.

Furthermore, either P tð Þ tends asymptomatically toward b
n or

the solution enters Z in a finite time if we have P 0ð Þ < b
n and

M 0ð Þ < b
n

siþsa
sm

. This means that all the solutions in R7
þ are

attracted by the region given by Z. h
3.3. Fractional-order case

In this section, a general fractional derivative, which is pre-
sented in Section 2, would be applied to modify the COVID-

19 model dynamics (15). Thus, the following new and general
fractional model is available

1

r1�a 0
CDa

t S tð Þ ¼ b� nS tð Þ � t tð ÞS tð Þ;

1

r1�a 0
CDa

t V tð Þ ¼ � 1� xð Þr1 þ xr2 þ nþ jvð ÞV tð Þ þ t tð ÞS tð Þ;

1

r1�a 0
CDa

t I tð Þ ¼ � qi þ nþ ni þ gið ÞI tð Þ þ 1� xð Þr1V tð Þ;

1

r1�a 0
CDa

t A tð Þ ¼ � qa þ nð ÞA tð Þ þ xr2V tð Þ;

1

r1�a 0
CDa

t K tð Þ ¼ � nþ qj þ gjð ÞK tð Þ þ jvV tð Þ;

1

r1�a 0
CDa

t U tð Þ ¼ � nþ qu þ nuð ÞU tð Þ þ giI tð Þ þ gjK tð Þ;

1

r1�a 0
CDa

t R tð Þ ¼ �nR tð Þ þ qiI tð Þ þ qaA tð Þ þ qjK tð Þ þ quU tð Þ;

1

r1�a 0
CDa

tM tð Þ ¼ �smM tð Þ þ siI tð Þ þ saA tð Þ;
ð22Þ

in which

t tð Þ ¼ h1 I tð Þ þ /A tð Þð Þ
P tð Þ þ h2M tð Þ; ð23Þ

together with nonnegative initial conditions. According to the

formula (1), the expression 0
CDa

t represents the general left

Caputo fractional derivative, and a shows the fractional order.
Also, to ensure that the above-mentioned fractional equations

are dimensionally matched on both sides, the coefficient 1
r1�a,

including the auxiliary parameter r, is considered [41].
3.3.1. Equilibrium points and stability

Let P0 denote the disease-free equilibrium point by means of

the model (22). Then we have

P0 ¼ S 0ð Þ; 0; 0; 0; 0; 0; 0; 0f g ¼ b
n
; 0; 0; 0; 0; 0; 0; 0

� 	
:

The basic reproduction number of the model (22) could be
obtained by means of a next-generation matrix [42] as follows

F ¼ r1�a

0 h1 /h1 0 0 bh2
n

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
;

V ¼ r1�a

q1 0 0 0 0 0

x� 1ð Þr1 q2 0 0 0 0

�xr2 0 q3 0 0 0

�jv 0 0 q4 0 0

0 �gi 0 �gj q5 0

0 �si �sa 0 0 sm

2
666666664

3
777777775
;

R0 ¼ q FV�1
� �

¼ xq2r2 h2bsa þ h1nsm/ð Þ þ 1� xð Þq3r1 h2bsi þ h1nsmð Þ
q1q2q3nsm

� �

¼ h2xbr2sa
q1q3nsm|fflfflfflfflfflffl{zfflfflfflfflfflffl}

R1

þ h1xr2/
q1q3|fflfflfflffl{zfflfflfflffl}
R2

þ h2 1� xð Þbsir1

q1q2nsm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
R3

þ h1 1� xð Þr1

q1q2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
R4

;

where

q1 ¼ jv þ xr2 þ 1� xð Þr1 þ n;

q2 ¼ gi þ nþ ni þ qi;

q3 ¼ nþ qa;

q4 ¼ gj þ nþ qj;

q5 ¼ nþ nu þ qu:

The next step is to show that the model (22) is stable locally.

Theorem 3.1. If R0 < 1 at the equilibrium point P0, then the

system (15) would be locally asymptotically stable.
Proof. First, we would calculate a Jacobian matrix of the

model (22) at P0

JP0
¼ r1�a

�n 0 �h1 �/h1 0 0 0 � bh2
n

0 �q1 h1 /h1 0 0 0 bh2
n

0 1� xð Þr1 �q2 0 0 0 0 0

0 xr2 0 �q3 0 0 0 0

0 jv 0 0 �q4 0 0 0

0 0 gi 0 gj �q5 0 0

0 0 qi qa qj qu �n 0

0 0 si sa 0 0 0 �sm

2
666666666666664

3
777777777777775

;

ð24Þ
whose eigenvalues �l;�l;�q4, and �q5 have negative real
parts. Four other eigenvalues could also be found based on
the equation



Table 1 Fitted and estimated values for the parameters in the

model (22) [18].

Parameters Values

b n� P 0ð Þ
n 1

76:79�365

ni 0:0002

nu 0:01

h1 0:003

h2 0:00000034002

/ 0:004

x 0:21003

r1 0:00001111

r2 0:0180322

qi 0:00023

qa 0:19

qj 0:1

qu 0:2

si 0:00101

sa 0:0214

sm 0:23008

jv 0:1223

gi 0:0005

gj 0:06
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k4 þ a3k
3 þ a2k

2 þ a1kþ a0 ¼ 0; ð25Þ
where

a0 ¼ q1q2q3sm 1� R0ð Þ;
a1 ¼ q1q2q3 1� R4ð Þ þ q1q3sm 1� R1ð Þ þ q1q2sm 1� R3ð Þ

þq2q3sm � h1 xq2r2/þ sm xr2/þ 1� xð Þr1ð Þð Þ;
a2 ¼ q1q3 1� R2ð Þ þ q1q2 1� R4ð Þ þ q1 þ q2 þ q3ð Þsm þ q2q3;

a3 ¼ q1 þ q2 þ q3 þ sm:

ð26Þ
It is easy to show that the coefficients ai; i ¼ 1; 2; 3, are non-

negative, and a0 is non-negative when R0 < 1. Moreover, the

Rough-Hurtwiz criterion a1a2a3 � a23a0 � a21 > 0 is satisfied.

Also, the Rough-Hurtwiz conditions hold if R0 < 1, so the sys-
tem (22) could be asymptotically stable at the disease-free

steady-state P0 if R0 < 1. h

At the endemic point, the equilibrium is then obtained by

S� ¼ b�
tþn ;

V� ¼ t�S�
q1

;

I� ¼ 1�xð Þr1V�
q2

;

A� ¼ xr2V
�

q3
;

K� ¼ jvV�
q4

;

U� ¼ giI
�þgjK

�
q5

;

R� ¼ qaA
�þquU

�þqiI
�þqjK

�
n ;

M� ¼ saA�þsiI�
sm

:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð27Þ

The above result can be inserted into

t tð Þ ¼ h1 I tð Þ þ /A tð Þð Þ
P tð Þ þ h2M tð Þ:

Then

F k�ð Þ ¼ b2 k�ð Þ2 þ b1k
� þ b0;

in which

b0 ¼ q21q
2
2q

2
3q4q5n

2sm 1� R0ð Þ;
b1 ¼ q1q2q3nsm q3 jvq2 gj nþ quð Þ þ q5 nþ qjð Þð Þ þ q4q8ð Þð

þxq2q4q5r2 �h/þ nþ qað ÞÞ
þh2q7b 1� xð Þq3sir1 � xq2r2sað Þ þ q21q

2
2q4q5q

2
3nsm;

b2 ¼ q1q2q3sm q3 jvq2 gj nþ quð Þ þ q5 nþ qjð Þð Þq4q6ð Þð
þxq2q4q5r2 nþ qað ÞÞ;

and

q6 ¼ gi 1� xð Þr1 nþ quð Þ þ q5 1� xð Þr1 nþ qið Þ þ q2nð Þ;
q7 ¼ q3 �jvq2 gj nþ quð Þ þ q5 nþ qjð Þð Þ � q4q6ð Þ � xq2q4q5r2 nþ qað Þ;
q8 ¼ gi 1� xð Þr1 nþ quð Þ þ q5 1� xð Þr1 �h1 þ nþ qið Þ þ q2nð Þ:

In this case, b2 > 0; b0 is negative if R0 > 1, and it is positive

when R0 < 1. Therefore, the sign of b0 depends on the value
of R0. The above discussion is summarized in the sequel:

Theorem 3.2. The following information describes the system
(22):

1. A unique endemic equilibrium exists when b0 < 0 and R0 > 1.
2. A unique endemic equilibrium occurs if b1 < 0 and b0 ¼ 0.
3. It follows that there exist two endemic equilibria if

b1 < 0; b0 > 0, and their discriminant is positive.
4. Otherwise, there are no possible equilibria.

From item 1 of Theorem 3.2, it is obvious that a unique
positive endemic equilibrium exists for R0 > 1. When R0 < 1,

item 3 of Theorem 3.2 provides backward bifurcation
possibility.

4. Numerical method

This section proposes an efficient method for solving the sys-
tem of general fractional Eq. (22) numerically. To this aim,

the time interval 0;T½ � is partitioned into N equal sub-
intervals by tk ¼ kh; 0 6 k 6 N, as the mesh points, where

the step size is h ¼ T
N
, and N is a non-negative integer. We con-

sider the notations Skþ1;Vkþ1; Ikþ1;Akþ1;Kkþ1;Ukþ1;Rkþ1, and

Mkþ1 to estimate the approximate values of
S tkð Þ;V tkð Þ; I tkð Þ;A tkð Þ;K tkð Þ;U tkð Þ;R tkð Þ, and M tkð Þ, respec-
tively. Then a predictor–corrector method is utilized to solve
the equations in (22) forward-in-time.

4.1. Description of the method

In the following, a Volterra integral equation is expressed by

applying the general fractional integral (7) to each side of the
first equation in (22)

S tð Þ ¼ S0 þ
Z t

0

F S sð Þð ÞML t� sð Þds; ð28Þ

where F S tð Þð Þ :¼ r1�a b� nS tð Þ � t tð ÞS tð Þð Þ. The next equation
is the result of replacing t by tkþ1 in the Eq. (28)

Skþ1 ¼ S0 þ
Z tkþ1

0

F S sð Þð ÞML tkþ1 � sð Þds: ð29Þ
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Then the trapezoidal quadrature formula can be used to

approximate the integration part in (29)Z tkþ1

0

F S sð Þð ÞML tkþ1 � sð Þds �
Z tkþ1

0

bFkþ1 sð ÞML tkþ1 � sð Þds;
ð30Þ

where the interpolation polynomial bF Skþ1 sð Þð Þ is piecewise lin-
ear and calculated from
Fig. 1 The dynamics of the mode
bFkþ1 sð Þ




s2 tj ;tjþ1½ � �

tjþ1 � s

tjþ1 � tj
F Sj

� �þ s� tj
tjþ1 � tj

F Sjþ1

� �
; 0 6 j 6 k:

ð31Þ
By applying the Eq. (31) in (30), we obtainZ tkþ1

0

F S sð Þð ÞML tkþ1 � sð Þds

�
Xk

j¼0

F Sj

� �
akþ1;j þ F Sjþ1

� �
bkþ1;j ¼

Xkþ1

j¼0

ckþ1;jF Sj

� �
; ð32Þ
l (22) with a power law kernel.
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in which

akþ1;j ¼ 1
h

R tjþ1

tj
tjþ1 � s
� �

ML tkþ1 � sð Þds;
bkþ1;j ¼ 1

h

R tjþ1

tj
s� tj
� �

ML tkþ1 � sð Þds;

ckþ1;j ¼
akþ1;0; j ¼ 0;

akþ1;j þ bkþ1;j�1; 1 6 j 6 k;

bkþ1;k; j ¼ kþ 1:

8><
>:

ð33Þ

Consequently, the corrector formula for the first equation of
(22) is introduced as follows
Fig. 2 The dynamics of the model
Skþ1 ¼ S0 þ ckþ1;kþ1F Sp
kþ1

� �þXk

j¼0

ckþ1;jF Sj

� �
; ð34Þ

where from the predictor equation, Sp
kþ1 is known and com-

puted hereinafter. For this purpose, instead of Eq. (31), the

approximation bFkþ1 sð Þ




s2 tj ;tjþ1½ � � F Sj

� �
(as defined by the pro-

duct rectangle rule) is employed for the integration parts in
(29) and (30). Thus, the following result is obtained, instead

of Eq. (32), by using this approximation
(22) with a Mittag–Leffler kernel.
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Z tkþ1

0

F S sð Þð ÞML tkþ1 � sð Þds �
Xk

j¼0

dkþ1;jF Sj

� �
; ð35Þ

where dkþ1;j ¼
R tjþ1

tj
ML tkþ1 � sð Þds. The predictor formula is

then derived as the following equation

Sp
kþ1 ¼ S0 þ

Xk

j¼0

dkþ1;jF Sj

� �
: ð36Þ

Finally, this method is repeated for the remaining equations in
(22).
Fig. 3 The dynamics of the model
5. Results and discussion

Here, the general fractional model (22) is analyzed and inves-
tigated by applying the numerical method previously studied in

Section 4. According to the COVID-19 real data from Wuhan
(China), the values of parameters were extracted from [18] with
respect to the following data-fitting analysis. The WHO

reported that the total number of daily patients was 83249
by 3344 deaths between January 11; 2020, and April 19; 2020
[43,44]. Regarding this information and in order to parameter-
(22) with an exponential kernel.



Table 2 Absolute and relative errors for the model (22) with a

power law kernel.

Fractional-order Absolute error Relative error

0:95 5:7984� 104 0:0866

0:96 5:0338� 104 0:0752

0:97 4:4278� 104 0:0662

0:98 4:0401� 104 0:0604

0:99 3:9253� 104 0:0587

1 4:0988� 104 0:0612

Table 3 Absolute and relative errors for the model (22) with a

Mittag–Leffler kernel.

Fractional-order Absolute error Relative error

0:95 7:5418� 104 0:1127

0:96 6:2881� 104 0:0940

0:97 5:2074� 104 0:0778

0:98 4:3978� 104 0:0657

0:99 3:9966� 104 0:0597

1 4:0988� 104 0:0612

Table 4 Absolute and relative errors for the model (22) with

an exponential kernel.

Fractional-order Absolute error Relative error

0:95 4:3620� 104 0:0652

0:96 4:2339� 104 0:0633

0:97 4:1430� 104 0:0619

0:98 4:0904� 104 0:0611

0:99 4:0760� 104 0:0609

1 4:0988� 104 0:0612
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ize the model (22), the fractional-order was fixed as a ¼ 1, and
the model was simulated by applying the least-squares fitting

technique. Table 1 shows the results that were determined real-
istically. According to the total China population, we also set
P 0ð Þ ¼ 1; 300; 000; 000. Moreover, based on the number of

cumulative cases, the infected individuals had an initial value
of I 0ð Þ ¼ 4, while the possible exposed cases were initialized
Fig. 4 Comparison of the three special fractional cases
at V 0ð Þ ¼ 20; 000. The value of S 0ð Þ ¼ 1; 299; 979; 959 was also
estimated to be the susceptible population in the COVID-19

absence, whereas M 0ð Þ was selected as M 0ð Þ ¼ 44; 000 from
data fitting; the remaining compartments of the model were
assumed to be zero at t ¼ 0. According to these estimates,

the mortality rate (per day) was obtained as n ¼ 1
76:79

, while

the birth rate (per day) was computed by b ¼ 46; 381. For
the given time duration of infected cases, R0 � 6:6361 was also

estimated as the basic reproduction number. The time was
measured in the unit of days, and the system (22) was simu-
lated applying the power-law, Mittag–Leffler, and exponential
kernels in Figs. 1–3, respectively. As a result, the general frac-

tional derivative would present a flexible system, a fact which
allows researchers to derive different aspects from the under-
investigated system accurately. Tables 2–4 show the absolute

and relative errors via using the power-law, Mittag–Leffler,
and exponential kernels for different fractional orders, respec-
tively. According to these results, one can see that the best

fractional order is 0:99 for all three cases. Fig. 4 displays the
fractional simulations by considering the (a) power-law, (b)
Mittag–Leffler, and (c) exponential kernels versus the real
reported cases of COVID-19 in China. The results illustrate
versus the real reported infected numbers in China.
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the improvement which is made by applying the new general
fractional model to follow the real data better than the classi-
cal integer-order model. Table 5 compares the absolute and

relative errors for the integer-order model (15) and the three
particular cases of fractional formula (22). This table indicates
Table 5 Comparison of the three special fractional cases and

the integer-order model.

Model Fractional-

order

Absolute

error

Relative

error

Fractional with a

power law kernel

0:99 3:9253� 104 0:0587

Fractional with a

Mittag–Leffler kernel

0:99 3:9966� 104 0:0597

Fractional with an

exponential kernel

0:99 4:0760� 104 0:0609

Integer-order 1 4:0988� 104 0:0612

Fig. 5 The effect of parameters h2;x;r2;jv, and sm on the number of

power-law kernel and a ¼ 0:99.
that the best solution is associated with the power-law kernel
with the fractional order a ¼ 0:99, absolute error

3:9253� 104, and relative error 0:0587. More to the point,

the fractional results in all cases are better than the integer-
order counterpart. Considering the most realistic case, i.e.,
the fractional model (22) with a power-law kernel and

a ¼ 0:99, we will examine the effect of some parameters on
the system dynamics hereinafter. The amount of infected peo-
ple for certain values is illustrated by h2. This amount declines
very quickly when the infection rate in the seafood market

decreases, as illustrated in Fig. 5a. Consequently, closing the
seafood market could be a vital act by the Chinese government
in order to prevent the infection from spreading further.

Fig. 5b shows the proportion of the asymptomatic infection
parameter x graphically. The number of infected individuals
decreases by a reduction in the value of x. Thus, the asymp-

tomatic infection plays a vital role in the infection develop-
ment, so it is necessary to educate people about how to
avoid contact with such individuals. Figs. 5c–e depict the effect
infected individuals via the use of the fractional model (22) with a
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of parameters r2; jv, and sm, respectively. It could be obvious
that the number of infected people decreases by the reduction
of these parameters. Consequently, the quarantine class would

be extremely crucial for the COVID-19 modelling.

6. Conclusions

This paper investigated a new fractional model of COVID-19
by considering the effects of isolation and quarantine. The
model was first developed through ordinary time-derivatives

and then modified by applying the general structure of frac-
tional operators. The model stability was discussed, and the
parameters were estimated based on a realistic situation in

China, so the basic reproduction number was calculated as
R0 � 6:6361. Simulation results were obtained through an effi-
cient numerical method used to solve the associated general

fractional differential equations. As a result, some graphs
and tables were provided for various fractional orders and dif-
ferent kernel functions. It was shown that a particular case of
fractional model fits the reality more accurately than the other

classical and fractional cases. Graphically, some other param-
eters with their effects on the model behavior were examined,
which could act as the control for the disease eradication.

Therefore, this study provides several important data that
can help to eradicate the disease from communities as soon
as possible. As a future study, other control methodologies

such as those discussed in [45,46] could be examined in order
to find out whether or not they can provide any positive
impact on the control of COVID-19 pandemic.
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