
Received: 7 July 2020 Revised: 16 January 2021 Accepted: 15 February 2021 IET Renewable Power Generation

DOI: 10.1049/rpg2.12168

ORIGINAL RESEARCH PAPER

A new extension of hesitant fuzzy set: An application to an

offshore wind turbine technology selection process

Samayan Narayanamoorthy1 Lakshmanaraj Ramya1 Daekook Kang2

Dumitru Baleanu3,4 Joseph Varghese Kureethara5 Veerappan Annapoorani1

1 Department of Mathematics, Bharathiar
University, Coimbatore, India

2 Department of Industrial and Management
Engineering, Institute of Digital Anti-aging Health
Care, Inje University, Gimhae-si,
Gyeongsangnam-do, Republic of Korea

3 Department of Mathematics, Cankaya University,
Balgat, Ankara, Turkey

4 Institute of Space Sciences, Magurele-Bucharest,
Romania

5 CHRIST (Deemed to be University), Bangalore,
India

Correspondence

Daekook Kang, Department of Industrial and
Management Engineering, Inje University 197 Inje-
ro, Gimhae-si 50834, Gyeongsangnam-do, Republic
of Korea.
Email: dkkang@inje.ac.kr

Funding information

National Research Foundation of Korea; Korean
Government (MSIT), Grant/Award Number: NRF-
2019R1G1A1006073

Abstract

Wind energy is an energy source that is naturally clean, safe and cheap. It comes from a
variety of sources. The electric energy generated by a wind turbine manifests as kinetic
energy throughout the earth. The energy received from the wind is clean and is perma-
nently available and can be generated forever. Turbine characteristics also have an impact
on wind energy production. The turbine properties within a wind farm are important in
estimating the load on power generation and wind turbine energy. The amount of energy
released is calculated according to the type of the turbine model applied. In many situ-
ations, the choices of turbine model can incur various vague and complicated hesitation
situations. To manage this situation, a hesitant fuzzy set with the Multi Criteria Decision
Making (MCDM) is used. In the present research, the newly proposed Normal Wiggly Hes-
itant Fuzzy-Criteria Importance Through Intercriteria Correlation (NWHF-CRITIC) and
Normal Wiggly Hesitant Fuzzy-Multi Attribute Utility Theory (NWHF-MAUT) methods
were employed to rank turbine models based on quality, power level, voltage, and capac-
ity. As part of this process, the NWHF method was utilized to extract and gather deeper
information from the decision-makers.

1 INTRODUCTION

Energy is derived from the panchabhutas or the five classical ele-
ments (𝜎𝜏𝜔𝜄𝜒𝜖𝜄𝜔𝜈) that includes water, land, air, sky and fire.
However, wind is a perpetually available energy. Even though
the sun is the ultimate source of energy, in darkness, wind
will yet be available. Wind can drive wind turbines to correct
for power shortage situations. In most countries, the amount
of energy generated by wind turbines exceeds the amount
of energy that can be obtained from other renewable energy
sources. Wind energy is considered to be one of the best new
sources of renewable energy for control and mitigation of cli-
mate change and global warming. In Figure 1, the structure of a
wind turbine is shown.
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Wind power generation in India has increased many folds
in recent years. The installed wind capacity as of 31 March
2019 was 36.625 GW. India has the fourth largest wind power
installation in the world. The total wind power generation in
India reached 62.03TWh in 2018–2019. This is considered to
be 4.06% of the total power generation whereas in the world it
is 5.29%. Wind power installation is increasing at a rate of 10%
per year.

The MCDM method is applied to determine the correct
solution to the problem of the best turbine selection and instal-
lation. The decision made by the MCDM method is subjected
to various tests. Although there are many different mathemat-
ical models, the solution adopted by the MCDM model has
a decisive role. Here, with the use of NWHF, the deeper and

2340 wileyonlinelibrary.com/iet-rpg IET Renew. Power Gener. 2021;15:2340–2355.

https://orcid.org/0000-0002-3782-4666
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0001-5030-3948
mailto:dkkang@inje.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-rpg


NARAYANAMOORTHY ET AL. 2341

FIGURE 1 The structure of the wind turbine model

hesitant ideas of the decision-makers can be recorded and
assessed. Specifically, the NWHF is used to express the vague-
ness and hesitation of decision-makers. In this paper, we
propose the NWHF-CRITIC method to determine the criteria
weights. The CRITIC method, in fact, is considered to be
the best weight finding method. In addition, the NWHF-
MAUT method is used to select the best of the alternative
among the turbine models that are sorted by rank based on
their characteristics.

With MCDM methods, some researchers have selected the
AHP methodology for choosing wind turbine design and sys-
tems (Sagbansua and Balo, 2017) [1]. Also, it is used to identify
suitable locations for wind farms (Ali et al., 2018) [2]. Indeed,
when selecting the wind system, the location is considered as a
very important factor. Wind farms in the west, particularly in
the United States, have chosen the GIS-based dispatch and the
AHP scale system to help the government to establish wind-
mills and explain their benefits. Further, the type-2 fuzzy set
theory with the AHP methodology has been employed to help
decision-makers deal with complex factors when selecting envi-
ronmental friendly wind turbine sites (Ayodele et al., 2018) [3].
Wind farm sites selected based on GPS systems typically are on
beaches in countries like Saudi Arabia. In a complex environ-
ment, MCDM proceeds by evaluating each of the criteria using
a variety of weight finding methods, such as entropy, and weight
sum (Rehman and Khan, 2017) [4] along with several ranking
methods such as, AHP, TOPSIS, VIKOR, MOORA, and others
(Baseer, et al., 2017) [5]. These site selection methods are based
not only on fuzzy MCDM, but also other accounting processes,
such as OWA. In small countries like Oman for example, histor-
ical sites have been analyzed using the above methods (Yahyai
et al., 2012) [6]. Thus, the overall capacity of a wind farm is
assessed through the AHP system along with social, economic,
location, and environmental factors. Some studies have empha-
sized islands as suitable locations for wind power installations.
Meanwhile, in many countries too, offshore sites are important
locations. Among the forms of renewable energy, wind is at the
forefront of new development. The study about wind technolo-
gies have been carried out in several countries, for example,
Iran, the use of MCDM with GPS technology search of new
wind energy is part of Western Iran’s 28% availability (Nooral-
lahiet al., 2016) [7]. Turkey’s wind energy and wind energy
projects have been explored and elaborated in this study (Dur-

sun et al., 2014) [8]. Wind turbine models in several technolo-
gies and structural infrastructures are essential for locating many
parts of the world depending on onshore and offshore. For
these, some researchers have analyzed and evaluated the selec-
tive compromise wind turbine model by the TOPSIS method
in their articles (Kolious et al., 2016) [9]. In developing coun-
tries such as China, low-cost wind power generation has been
studied. In summary, wind farm performance is ranked with
the AHP method (Lee et al., 2009) [10]; meanwhile, to remove
ambiguity in critical situations for decision-makers in their anal-
ysis of windmill alternatives, fuzzy set theory, Intuitionistic
fuzzy set theory, and Interval-valued intuitionistic fuzzy set the-
ory are used (Onar et al., 2015) [11] (Aikhude, 2018) [12].

MCDM is essential to Operations Research and the reso-
lution of problems in critical decision-making situations. For
use with the MCDM method (Bhole and Deshmukh, 2018)
[13] have proposed several methods, including MAUT/MAVT,
TOPSIS, ELECTRE, PROMOTHEE, AHP, and GP. Degir-
menci et al., (2018) [14] have identified geographic informa-
tion systems using the MCDM method. Diemuodeke et al.
(2018) [15] illustrated by MCDM an energy system map for
home energy storage and backup diesel generators. Farhadinia
et al. (2018) [16] introduced the concept of entropy measure of
interval-transformed Hesitant Fuzzy Linguistics. (Freitas et al.,
2013) [17] considered the MAUT method as an extension of
the AHP method. Garg et al. (2015) [18] identified an entropy
based weight finding method using the MCDM approach. Goc-
men et al. (2016) [19] derived an IT estimator approach for an
individual turbine. The main features and wind power genera-
tion strategies of wind farms are described by Gocmen et al.
(2016) [20]. Haghighat Mamaghani et al. (2016) [21] described
the use of photovoltaic panels, wind turbines and diesel gen-
erators in a unique power generation system for rural electrifi-
cation. Kinzel et al., (2012) [22] analyzed the characteristics of
vertical-axis wind turbines. Lee et al. (2012) [23] evaluated the
wind turbine model means of MCDM. Mahdy and Bahaj (2018)
[24] proposed some offshore wind turbine models. Mollerstrom
et al. (2019) [25] summarized and introduced an all vertical axis
wind turbine project of 100 KW capacity. Grid code technical
requirements for linking wind farms to electric power systems
have been published by Tsili and Papathanassiou in 2009 [26].

A probabilistic fuzzy technique was defined by Liu and Li
(2005) [27]. In this MAUT method, the evaluation of criteria
is carried out by importance of criteria (Velasquez and Hester,
2013) [28]. An improvised MAUT theory was introduced by
Dyer et al. (1992) [29]. The popular weight finding method
known as Criteria Importance Through Inter-Criteria Corre-
lation (CRITIC) was introduced by Diakoulaki et al. (1995)
[30]. This method provides the compact structure of a selected
problem. Many researchers have used this CRITIC method in
real life applications. For example, Madic and Radovanovic used
it when calculating the weights of criteria (2015) [31]. Kazan
and Ozdemir (2014) [32] used the CRITIC method to calculate
stock trading. Narayanamoorthy et al. (2019) [33]utilized the
MCDM approach to select reclaimed water. Narayanamoorthy
et al. (2019) [34] employed the VIKOR method for indus-
trial robot selection. Ren et al. (2017) [35] introduced a new
extension of the hesitant fuzzy sets, namely, the dual hesitant
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fuzzy set. Ren et al. (2018) [36] introduced as the extension of
the hesitant fuzzy set, the NWHFs. Rodriguez et al. (2012) [37]
applied the linguistic hesitant fuzzy term to decision making.
Torra (2010) [38] introduced the hesitant fuzzy set and adapted
it for decision making (Torra and Narukawa, 2009) [39]. Ye
(2014) [40] addressed a new approach entailing the use of a
correlation coefficient with dual hesitant fuzzy set. Haaren, R.V.
Fthenakis, V (2011) discussed about wind farm selection using
SMCA [41]. Tegou, L. I et al.(2010) analysed the environmental
management framework for wind farm siting [42].

In the present study, we attempt to fill the evident research
gap by investigating the process of the selection of the best
offshore wind turbine model. Many researchers have expressed
their opinion on onshore wind turbine models. The key factors
leading to our research are the following.

∙ MCDM can be used as a mathematical logical method of
solving problems characterized by hesitations of decision-
makers in choosing the best alternative from among a given
set. Most of the MCDM problems in the ranking process are
based on criteria evaluation. Generally, many complex factors
and hesitations may be involved in examining and choosing
wind turbine attributes.

∙ The MCDM approach has not yet been applied as a math-
ematical model for offshore wind turbine model selection.
This technique can be used to select the most suitable model
for offshore wind farms; also, it can provide a solution for
the selected application after it has been subjected to differ-
ent classifications.

∙ A lot of research has been done on the fuzzy set, intuitionistic
fuzzy set and the hesitant fuzzy set. Here, we chose an off-
shore wind turbine model with NWHFs. Also, we used both
CRITIC and MAUT in NWHFs. The CRITIC method uses
the standard deviation and correlation coefficient to deter-
mine the weights of the criteria. MAUT is also one of the
best outranking methods among the MCDM techniques.

∙ Offshore wind turbine models are generally capable of pro-
ducing large amounts of electricity. Therefore, we chose this
type of wind turbine model for our application in the present
research.

∙ The new extension of Hesitant Fuzzy Set, NWHF, is used
to resolve the hesitation thoughts and confusion of decision-
makers. Here, the NWHF helps to rectify the decision-
makers’ deep and complex hesitations. For this scenario, we
selected five wind turbine models, their selected criteria, and
also the amounts of power generated.

The main motivation of this research:

∙ Our main motivation for the present research is to choose the
best high power generation model for an offshore wind farm
and also to introduce the outranking system to NWHFs that
helps to resolve the deep hesitation of decision-makers when
selecting the best offshore wind turbine model.

∙ We also describe the offshore wind turbine models and their
characteristics according to voltage, hub height and rotor
blade details.

∙ Several criteria have been used to evaluate the accuracy of
offshore wind turbines and characterize the analytical results.

We introduced new mathematical logic systems, namely, the
NWHF-CRITIC and the NWHF-MAUT methods, to select
the most suitable wind turbine model.

∙ We also introduce a new, modified score function for
NWHFs. This function is used to calculate the average val-
ues of our elements in NWHFs.

∙ Our sensitivity analysis of the wind turbine selection process
shows how the results change according to a change in the
weight values.

∙ The solution is analyzed based on the operation and main-
tenance cost, cost factor, reliability, and technical characteris-
tics. These criteria are addressed by NWHFs, an extension of
the HFMCDM system. The NWHFs make the best decision
by clarifying the deep and hesitant thoughts of the decision-
makers.

The paper is organized as follows. In Section 2, the prelimi-
naries of mathematical modeling and basic operations are given.
In Section 3, the theorem and proof of the proposed method is
provided. In addition to these, the technologies of the various
wind turbine models and their properties are presented. In Sec-
tion 4, new methods of mathematical logic, the NWHF-CRITIC
and the NWHF-MAUT methods, are introduced. In Section 5,
those methods are evaluated by numerical analysis. In Section 6,
the selected methods are discussed. In Section 7, the entropy
weighted and methods are compared. In Section 8, a sensitivity
analysis on the selected application is performed. Finally, Sec-
tion 9 draws conclusions.

2 PRELIMINARIES

In this section, we discuss some preliminaries of the proposed
NWHF-critic and the NWHF-MAUT method.

Definition 2.1. Let 𝜗 be a finite hesitant fuzzy reference set of
[0, 1]. The form of a hesitant fuzzy set is as follows.

H =
{
< 𝜂, hH (𝜂)∕𝜂 ∈ 𝜗

}
,

where hH (𝜗) is a set of numbers from [0,1]. The possible mem-
bership degrees of the element 𝜂 ∈ 𝜗 to the set H and hH (𝜂)
are called the hesitant fuzzy elements [38].

Definition 2.2. An NWTHF, Ã on z is in terms of a function
fÃ(z ) will return various HWTFNs as [36]:

ÃNW =
{⟨

z, fÃ(z )
⟩

z ∈ Z
}
,

where fÃ(z ) is called an HTFE and it will give various numer-
able NWTHFNs. Further,

fÃ(z )=
{
𝛿i =

(
𝛿L

i , 𝛿
M
i , 𝛿U

i

)
∕𝛿i ∈ fÃ(z ), i=1, 2, … , # fÃ(z )

}
,

where 𝛿i are triangular NWHFs and 𝛿L
i
≤ 𝛿M

i
≤ 𝛿U

i
. # fÃ(z )

is the number of triangular NWHFNs. Then, NWTHFs
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satisfy the condition of membership function, 𝜑𝛿 ∶ R → [0, 1]
given by:

𝜑𝛿̃ (z ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

z − 𝛿L

𝛿M − 𝛿L
s ∈ [𝛿L, 𝜃M]

z − 𝛿U

𝛿M − 𝛿U
s ∈ [𝛿M, 𝛿U]

0 otherwise

,

where, 𝛿L , 𝛿M and 𝛿U represent the lower, middle, upper value
of NWTHFs, respectively.

Definition 2.3. Some preliminary operations in NWTHFEs
are defined [36]. Here, we choose two NWTHFEs as f ∗

Ã
and

f ∗1
Ã

. Then,

(1) f ∗
Ã
⊕ f ∗1

Ã
= {(𝛿L

1 + 𝛿L
2

− 𝛿L
1 𝛿

L
1 , 𝛿

M
1 + 𝛿M

2 − 𝛿M
1 𝛿M

1 , 𝛿U
1 + 𝛿U

2 − 𝛿U
1 𝛿U

2 )∕𝛿1 ∈

f ∗
Ã
, 𝛿2 ∈ f ∗1

Ã
}

(2) f ∗
Ã
⊗ f ∗1

Ã
= {𝛿L

1 𝛿
L
2 , 𝛿

M
1 𝛿M

2 , 𝛿U
1 𝛿U

2 ∕𝛿1 ∈ f ∗
Ã
, 𝛿2 ∈ f ∗1

Ã
}

(3) ( f ∗
Ã

)𝜆 = {((𝛿L
1 )𝜆, (𝛿M

1 )𝜆, (𝛿U
1 )𝜆 )∕𝛿1 ∈ f ∗

Ã
} 𝜆 > 0.

(4) 𝜆 f ∗
Ã
= {(1 − (1 − 𝛿L

1 )𝜆,

1 − (1 − 𝛿M
1 )𝜆, 1 − (1 − 𝛿U

1 )𝜆 )∕𝛿1 ∈ f ∗
Ã
} 𝜆 > 0.

Definition 2.4. Let h = 𝛼1, 𝛼2 … , 𝛼#h be the NWHFE [36].
Then the mean value is

h̄ =
1
#h

#h∑
i=1

𝛼i .

Definition 2.5. Let h = 𝛼1, 𝛼2 … , 𝛼#h be the NWHFE. By the
mean value definition, we find the standard deviation of h as
[36],

𝜎h =

√√√√ 1
#h

#h∑
i=1

(𝛼i − h̄)2.

Here, f̃ ∶ h → [0, 𝜎h] satisfies 𝛼i = 𝜎h ∈
(𝛼i−h̄)2

2𝜎2
h

. The interval

range of 𝛼i is [𝛼i − f̃ (𝛼i ), 𝛼i + f̃ (𝛼i )]

Definition 2.6. The degree of real preference h is [36],

r pd
(
h̃
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

#h̃∑
i=1

𝛼i

(
#h̃ − i

#h̃ − 1

)
if h < 0.5

1 −
#h̃∑
i=1

𝛼i

(
#h̃ − i

#h̃ − 1

)
if h > 0.5

0.5 if h = 0.5

. (1)

Definition 2.7. Let D = {(s, h(s))∕s ∈ S } be a hesitant fuzzy
set on the reference set S [36]. Then, D can be denoted as:

DNWHF = {⟨s, h(s), 𝜑(h(s))⟩s ∈ S }, (2)

where h(s) is the hesitant fuzzy element in the hesitant fuzzy set
D. Here, h(s) represents the membership value of NWHFs.

𝜑(h(s)) = {𝛿1, 𝛿2 … , 𝛿̃#h(s)}, 𝛿1 = {𝛿L
i
, 𝛿M

i
, 𝛿U

i
}

= {max(𝛿i − f̃ (𝛿i ), 0), (2r pd (h̃(s)) − 1) f̃ (𝛿i ) + 𝛿i ,

min(𝛿i + ̃f (𝛿i ), 1)},

𝛿i is the value of h(s). In the above equation, 𝛿i is the wiggly
element in f̃ (𝛿i ). Here, real preference degree of h(s) is denoted
by r pd (h̃(s)).

Definition 2.8. For NWHFE, let ⟨h, 𝜑(h)⟩ be the membership
mean value denoted as h̄ and 𝜎h representing the standard devi-
ation of NWHFs [36].

SNWHF (⟨h, 𝜑(h)⟩)=

[
𝛼(h̄ − 𝜎h) + (1 − 𝛼)

(
1
#h

#h∑
i=1

̃̄
i𝛿 − 𝜎𝛿̄i

)]
,

where,

̃̄
i𝛿 =

𝛿L
i + 𝛿M

i + 𝛿U
i

3
,

𝜎 ̃̄
i𝛿
=

√
(𝛿L

i )2+(𝛿M
i )2+(𝛿U

i )2−(𝛿L
i 𝛿

M
i )−(𝛿L

i 𝛿
U
i )−(𝛿M

i 𝛿U
i ).

Here, 𝛼 ∈ (0, 1).

In the next theorem, we derive the properties of some oper-
ations in NWHFs. We follow the operation of the NWHFEs
as:

⟨h1, 𝜑(h1)⟩⊕̂⟨h2, 𝜑(h2)⟩⊕̂⟨h3, 𝜑(h3)⟩⊕̂⟨h4, 𝜑(h4)⟩
= {

(
∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3,𝜈4∈h4

𝜈1 + (𝜈2 + 𝜈3 + 𝜈4 − 𝜈2𝜈3𝜈4)

− 𝜈1(𝜈2 + 𝜈3 + 𝜈4 − 𝜈2𝜈3𝜈4),
)

(
∪𝜈1∈𝜑(h1 ),𝜈2∈𝜑(h2 ),𝜈3∈𝜑(h3 )𝜈1 ⊕ 𝜈2 ⊕ 𝜈3 ⊕ 𝜈4

)
}

= {
(
∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3,𝜈4∈h4

((𝜈1 + 𝜈2 + 𝜈3 − 𝜈1𝜈4)

+ 𝜈4 − (𝜈1 + 𝜈2 + 𝜈3 − 𝜈1𝜈4)𝜈4)
)

(
∪𝜈1∈𝜑(h1 ),𝜈2∈𝜑(h2 ),𝜈3∈𝜑(h3 ),𝜈4∈𝜑(h4 )

)
𝜈1 ⊕ 𝜈2 ⊕ 𝜈3 ⊕ 𝜈4}

= ⟨h1, 𝜑(h1)⟩⊕̂⟨h2, 𝜑(h2)⟩⊕̂⟨h3, 𝜑(h3)⟩⊕̂⟨h4, 𝜑(h4)⟩.



2344 NARAYANAMOORTHY ET AL.

Theorem 2.1. Let ⟨h1, 𝜑(h1)⟩, ⟨h2, 𝜑(h2)⟩, ⟨h3, 𝜑(h3)⟩and ⟨h4, 𝜑(h4)⟩
be four NWHFEs. Then,

1. 𝜆
(⟨h1, 𝜑(h1)⟩⊕̂⟨h2, 𝜒(h2)⟩⊕̂⟨h3, 𝜒(h3)⟩)
= 𝜆⟨h1, 𝜑(h1)⟩⊕̂𝜆⟨h2, 𝜑(h2)⟩⊕̂𝜆⟨h3, 𝜑(h3)⟩.

2. (⟨h1, 𝜑(h1)⟩⊗̂⟨h2, 𝜒(h2)⟩⊗̂⟨h3, 𝜑(h3)⟩)𝜆

= (⟨h1, 𝜑(h1)⟩)𝜆⊗̂(⟨h2, 𝜑(h2)⟩)𝜆⊗̂(⟨h3, 𝜑(h3)⟩)𝜆.

3. ((⟨h1, 𝜑(h1)⟩)𝜆1 )𝜆2 = (⟨h1, 𝜑(h1)⟩)𝜆1𝜆2 , 𝜆1 > 0, 𝜆2 > 0.

Proof.

(1) ⇒ 𝜆(⟨h1, 𝜑(h1)⟩⊕̂⟨h2, 𝜑(h2)⟩⊕̂⟨h3, 𝜑(h3)⟩)

=
(
∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3

, 1 −
(
1 − (𝜈1 + 𝜈2 + 𝜈3 − 𝜈1𝜈4)

+ 𝜈4 − (𝜈1 + 𝜈2 + 𝜈3 − 𝜈1𝜈2𝜈3)
)𝜆)

,(
∪𝜈̃1∈𝜑(h1 )𝜈̃2∈𝜑(h2 )𝜈̃3∈𝜑(h3 )𝜆(𝜈1 ⊕ 𝜈2 ⊕ 𝜈3)

)
= {

(
∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3

1 − (1 − 𝜈1)𝜆 (1 − 𝜈2)𝜆 (1 − 𝜈3)𝜆
)
,(

∪𝜈̃1∈𝜑(h1 )𝜈̃2∈𝜑(h2 )𝜈̃3∈𝜑(h3 )𝜆𝜈1 ⊕ 𝜆𝜈2 ⊕ 𝜆𝜈3
)
}

= {(∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3
1 − (1 − 𝜈1)𝜆

+ 1 − (1 − 𝜈2)𝜆 + 1 − (1 − 𝜈3)𝜆 )

− ((1 − (1 − 𝜈1)𝜆 )(1 − (1 − 𝜈2)𝜆 )

× (1 − (1 − 𝜈3)𝜆 ), 𝜆𝜈1 ⊕ 𝜆𝜈2 ⊕ 𝜆𝜈3)}

= 𝜆⟨h1, 𝜑(h1)⟩⊕̂𝜆⟨h2, 𝜑(h2)⟩⊕̂𝜆⟨h3, 𝜑(h3)⟩.
(2)

⇒
(⟨h1, 𝜑(h1)⟩⊗̂⟨h2, 𝜑(h2)⟩⊗̂⟨h3, 𝜑(h3)⟩)𝜆

=

{(
∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3

(𝜈1𝜈2𝜈3)𝜆
)
,

(
∪𝜈̃1∈𝜑(h1 )𝜈̃2∈𝜑(h2 )𝜈̃3∈𝜑(h3 )(𝜈1 ⊗ 𝜈2 ⊗ 𝜈3)

)}
= {

(
∪𝜈1∈h1,𝜈2∈h2,𝜈3∈h3

𝜈𝜆1𝜈
𝜆
2𝜈

𝜆
3

)
,(

∪𝜈̃1∈𝜑(h1 )𝜈̃2∈𝜑(h2 )𝜈̃3∈𝜑(h3 )𝜈1
𝜆𝜈2

𝜆𝜈3
𝜆
)
}

= (⟨h1, 𝜑(h1)⟩)𝜆⊗̂(⟨h2, 𝜑(h2)⟩)𝜆⊗̂(⟨h3, 𝜑(h3)⟩)𝜆.

(3) ⇒ ((⟨h1, 𝜑(h1)⟩)𝜆1 )𝜆2

= {
(
∪𝜈1∈(h1 )(𝜈

𝜆1
1 )𝜆2

)
,
(
∪𝜈1∈𝜑(h1 )(𝜈1

𝜆1 )𝜆2

)
}

= {
(
∪𝜈1∈(h1 )𝜈

𝜆1𝜆2
1

)
,
(
∪𝜈1∈𝜑(h1 )𝜈1

𝜆1𝜆2

)
}

= (⟨h1, 𝜑(h1)⟩)𝜆1𝜆2 where 𝜆1, 𝜆2 > 0.

□

FIGURE 2 Procedure of the NWHF-CRITIC method

TABLE 1 NWHF decision matrix

P1 P2 ⋯ Pn

Q1 ⟨h11, 𝜂(h11 )⟩ ⟨h12, 𝜂(h12 )⟩ ⋯ ⟨h1n, 𝜂(h1n )⟩
Q2 ⟨h21, 𝜂(h21 )⟩ ⟨h22, 𝜂(h22 )⟩ ⋯ ⟨h2n, 𝜂(h2n ), ⟩
⋮ ⋮ ⋮ ⋮ ⋮

Qm ⟨hm1, 𝜂(hm1 )⟩ ⟨hm2, 𝜂(hm2 )⟩ ⋯ ⟨hmn, 𝜂(hmn )⟩
3 PROBLEM DESCRIPTION

3.1 Algorithm for the proposed weight
finding method (NWHF-CRITIC)

We propose a new outranking method and weight find-
ing method for NWHFs. Here, we develop the NWHFs
with the MCDM problem. Let Q = {Q1,Q2 … ,Qm} and P =

{P1, P2 … , Pn} be two sets of m alternatives and n criteria, respec-
tively.

Let us consider the performance of the alternatives Qi (i =
1, 2… ,m) with respect to the criteria Pj ( j = 1, 2… , n) calcu-
lated by the NWHFE. The hierarchical structure of the pro-
posed NWHF-MAUT is shown in Figure 2.

h̃i j = {𝜂i j ∈ h̃i j }, (3)

h̃i j = {[𝜂(h𝜂i j
)]∕𝜑(h𝛽i j

) ∈ 𝛽i j }. (4)

Step 1:

Construct the NWHFDM following Table 1,

H̃ = h̃i j = [h̃i j ]m×n (5)

= {𝜂i j ∈ h̃i j } = {𝜂(h𝜂i j
)∕𝜂(h𝜂i j

) ∈ 𝜂i j }.
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Step 2:

Determine the score function in reference to NWHFE as,

SNW (⟨h, 𝜂(h)⟩) = 𝛼(h̄ − 𝜎h ) + (1 − 𝛼)

(
1
h

#h∑
i=1

̃̄𝜈 − 𝜎𝜈̃i

)
.

(6)

Step 3:

The normalization of the NWHDM matrix is calculated by
using the equation

NWH ∗
i j =

hi j − min(hi j )

max(hi j ) − min(hi j )
. (7)

The normalized performance of normal wiggly is NWH ∗
i j . It is

based on the ith alternative and j th criteria.
Step 4:

Standard deviation and correlation of criteria are used to
find weights of the criteria. Wj (NW )s denote the normal wig-
gly DM weights and the calculation procedure is given as
follows:

Wj (NW ) =
Cj (NW )∑n

j=1 Cj (NW )

, (8)

where the quantity of information about the criteria is Cj (NW ).

Cj (NW ) = 𝜎 j

n∑
j=1

(1 − r j j ). (9)

Here, 𝜎 j (NW ), r j j is the standard deviation and the correlation
between the two criteria, respectively.

3.2 Algorithm for the proposed outranking
method (NWHF-MAUT)

In the MCDM technique, ranking is important for sorting
the alternatives. There are several types of outranking meth-
ods that are followed by many researchers. In this research
paper, we use one of the most popular outranking methods
named the MAUT (multi-attribute utility theory). Here, we
extend this to the NWHF. The proposed algorithm of the
NWHF-MAUT is given in the following steps. The procedure
of NWHF-MAUT method is shown as hierarchical structure in
Figure 3.

Step 1:

Constructing the decision matrix is based on selected criteria
and alternatives.

Step 2:

The criteria weights are formulated by the CRITIC method.
Step 3:

Based on the selected criteria and the alternatives, we make
the NWHD matrix H(NW ).

FIGURE 3 The hierarchical structure of the NWHF-MAUT method

Step 4:

The utility function of the criteria is constructed dependent
upon the beneficial and the cost criteria.

Uj (hi j (NW ) ) =
hi j (NW ) − min(hi j (NW ) )

max(hi j (NW ) ) − min(hi j (NW ) )
, (10)

Uj (hi j (NW ) ) =
max(hi j (NW ) ) − (hi j (NW ) )

max(hi j (NW ) ) − min(hi j (NW ) )
, (11)

where i is alternative and j is criteria. The utility function of
beneficial and cost criteria is Uj (NW ).

Step 5:

Constructing the integrated utility of each alternative,

U (Ai )(NW ) =

n∑
j=1

Wj (NW ) Uj (NW ) (hi j )(NW ). (12)

Here, U (Ai )(NW ) is the utility function of each alternative,
Wj (NW ) is criteria weight, hi j (NW ) is the hesitant decision matrix
and Uj (hi j (NW ) ) denotes the utility function of each of the cri-
teria.

The MAUT method is ranked to the alternative by the order
of the highest alternative integrated utility value.
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4 TECHNOLOGY OF WIND TURBINES

The wind turbine produces electricity by using the force of the
wind to rotate wind turbine rotor blades and ultimately charge
a generator thereby. Wind energy is a permanent energy source
and is safer than energy derived from most of the fuels. Wind
turbines do not emit any harmful greenhouse gases. Moreover,
they incur fewer side-effects and problems than all other modes
of non-renewable energy generation and do not require much
land or water for their setup.

Wind turbines are categorized into the following three types
according to their operation.

(i) Wind turbine in horizontal axis
(ii) Wind turbine in vertical axis
(iii) Ducted wind turbine

Turbines are power transfer mechanisms. Wind turbines are
chosen based on their properties, the regulation of the envi-
ronment and their suitability. The technical choices include the
speed of the atmospheric conditions associated with the wind
and the density of the air. The technical features include the
refined area and turbine height. Wind energy includes technolo-
gies such as wind power, wind speed and ambient technology
available in a given area. A wind turbine cannot convert all wind
into energy due to inefficiencies accruing from the Betz law,
rotor blade friction and drag, gearbox losses, and generator and
converter losses [11]. The following equation is used for finding
the wind energy.

P = 1∕2 ∗ 𝜌 ∗ A ∗ v3. (13)

The output of turbine power is

PT = 1∕2 ∗ 𝜌 ∗ A ∗ v3 ∗ Cp. (14)

In above equation, Cp represents the ratio of power extracted
by the turbine where Cp is given as:

Cp = PT ∕PW . (15)

The maximal possible Betz limit Cp is 16∕27. PT represents
the wind power potential, A represents the swept area, V is
the velocity of wind, and 𝜌 is the air density. More than any
other renewable energy, the amount of energy received from
the wind has increased. Over the last 10 years, wind power has
been established in India and has seen a huge growth in power
generation. The growth of wind farms installed over the last
5 years is given in Table 2. Figure 4 represents the graphical
representation of growth of wind farms.

The technology of wind energy is changing everyday. Dif-
ferent wind turbine models are evaluated by their wind power.
Wind force is calculated on different heights from the ground
level, including wind speed and density of air. Wind turbines
designed according to the wind speeds are classified in Table 3.
The air is cleaned by the wind turbine. Wind turbines emit

TABLE 2 Installed wind power capacity and generation in India

2014 2015 2016 2017 2018

Year -2015 -2016 -2017 -2018 -2019

Installed capacity(MW) 23,447 26,777 32,280 34,046 36,625

Generation(GWh) 28,214 28,604 46,011 52,666 64,036

FIGURE 4 Graphical representation of wind production and power

low levels of carbon. In the fiscal year 2017, air pollution was
reduced by 189 million tons of carbon pollution. In the grow-
ing field of wind power generation, onshore–offshore wind tur-
bines are to be planned based on the most suitable locations for
power generation.

5 ILLUSTRATIVE EXAMPLE

In this illustrative section, the wind turbine models suitable for
the proposed mathematical logical method are taken as alterna-
tives. They are selected to serve the world and the people on
the basis of certain criteria. The wind turbine model alternatives
are based on their characteristics and criteria. The growth of
the wind turbine industry, in fact, is the driving growth in the
world market. The installation of the wind turbine has increased

TABLE 3 Wind turbine classes

Class Average wind speed Wind turbulence

IA 10 16%

IB 10 14%

IC 10 12%

IIA 8.5 16%

IIB 8.5 14%

IIC 8.5 12%

IIIA 7.5 16%

IIIB 7.5 14%

IIIC 7.5 12%
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FIGURE 5 Characteristics of selected offshore wind turbine models

considerably since the early days. Hence, decision-making for
the selection of the wind turbine technology is a real-time issue.
The characteristics upon which the optimal selection is to be
done mathematically to avoid financial loss and loss of selec-
tion time. In this illustrative example, the characteristics of the
selected offshore wind turbines are presented in Figure 5. The
alternatives are: Q1 → XD115

Q2 → SWT − 6.0 − 154
Q3 → SWT − 7.0 − 154
Q4 → SG − 8.0 − 167DD

Q5 → SG − 10.0 − 193DD

Selection of these models is based on the literature review,
their respective characteristics, and their power output. The
selection criteria are:

P1 → Characteristics of machine

P2 → Operation and maintenance cost

P3 → Cost factor

P4 → Reliability

P5 → Technical characteristics

The characteristics of the wind turbine alternatives con-
sidered are the magnitude of the power output, the wind
speed, and the nature of the blades. Some additional proper-
ties regarding the selected offshore wind turbine are shown in
Figure 6. After selecting the best five models and their criteria,
the mathematical logic proposed here is ranked by the NWHF-
CRITIC and NWHF-MAUT methods. The wind turbine model
most suitable for the current situation finally is chosen. The
solution entails solving the mathematical logic by sequencing.
In Figure 6, the hierarchical structure of the alternatives and cri-
teria are formulated.

Main result

Initially, we make a decision matrix of the NWHF values in
the ascending order, as given in Table 4. This decision matrix
includes five criteria and five alternatives.

FIGURE 6 Hierarchical structure of selected application

TABLE 4 Normal wiggly hesitant decision matrix

P1 P2 P3 P4 P5

Q1 (0.3, 0.4, 0.6) (0.4, 0.5, 0.6) (0.7, 0.8, 0.8) (0.2, 0.4, 0.4) (0.7, 0.8, 0.9)

Q2 (0.5, 0.6, 0.8) (0.5, 0.6, 0.7) (0.3, 0.5, 0.5) (0.4, 0.5, 0.6) (0.4, 0.5, 0.5)

Q3 (0.6, 0.7, 0.9) (0.3, 0.5, 0.6) (0.5, 0.6, 0.6) (0.3, 0.6, 0.7) (0.6, 0.7, 0.7)

Q4 (0.2, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.4, 0.4) (0.6, 0.7, 0.8) (0.3, 0.5, 0.5)

Q5 (0.7, 0.8, 0.9) (0.1, 0.2, 0.4) (0.1, 0.2, 0.3) (0.5, 0.7, 0.7) (0.2, 0.4, 0.4)

We determine the score function in reference to NWDHFE
using (6).

First, we calculate the hesitant score matrix Hi j based on (6).
In Table 5, we have given the score values of NWHF.

5.1 The NWHF-CRITIC method

In this subsection, the weights of the criteria are calculated using
(7). Next, we have to find the normalized values of the NWHFs.
The resulting values are given in Table 6.

TABLE 5 Normal wiggly hesitant score matrix

P1 P2 P3 P4 P5

Q1 0.311 0.4171 0.7247 0.2466 0.706

Q2 0.4936 0.4986 0.3577 0.4162 0.3835

Q3 0.6072 0.3959 0.5279 0.3946 0.6268

Q4 0.2042 0.2042 0.2574 0.6254 0.3565

Q5 0.706 0.0656 0.1029 0.5556 0.2574

TABLE 6 Normal wiggly hesitant normalized matrix

P1 P2 P3 P4 P5

Q1 0.2128 0.8117 1 0 1

Q2 0.5767 1 0.4097 0.4477 0.2811

Q3 0.8031 0.7628 0.6834 0.3907 0.8231

Q4 0 0.3201 0.2484 1 0.2209

Q5 1 0 0 0.8157 0
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TABLE 7 Value of correlation co-efficient of each criteria

P1 P2 P3 P4 P5

P1 1 −0.2064 −0.3233 0.0175 −0.2422

P2 −0.0613 1.0003 0.7373 −0.7381 0.6406

P3 −0.3391 10.7373 1 −0.8998 0.5864

P4 0.0177 −0.7381 −0.8998 1 −0.8519

P5 −0.2422 0.6406 0.5864 −0.8159 1

FIGURE 7 Values of correlation co-efficient of each criteria

The standard deviation and correlation coefficients are fol-
lowed by calculation of the criteria weights and are denoted by
(Wj (NW ) ). The weights of the criteria are constructed using (8).
In Table 7, the values of pairwise comparison and standard devi-
ation are given. In Figure 7, the correlation coefficient values
are shown.

The proposed NWHF-CRITIC weights finding method is
constructed according to the criteria of the highest value of stan-
dard deviation and the lowest value of correlation coefficient.

The criteria weight and quantity of information are calculated
using Equations (8) and (9). The criteria quantity information
is shown in Figure 8. The results for the weighted criteria are
shown in Table 8. The weighted criteria are shown in Figure 9.

FIGURE 8 Quantity of information on criteria

TABLE 8 Value of correlation co-efficient of each criteria

Criteria P1 P2 P3 P4 P5

(Cj (NW )) 1.9040 1.4564 1.5094 2.2663 8.7807

(Wj (NW )) 0.2168 0.1658 0.1718 0.2581 0.1872

FIGURE 9 Criteria weight values

TABLE 9 Value of utility function of each criterion

P1 P2 P3 P4 P5

Q1 0.2128 0.1882 0 0 1

Q2 0.5767 0 0.5902 0.4477 0.2811

Q3 0.8031 0.2372 0.3165 0.3907 0.8231

Q4 0 0.6799 0.7515 1 0.2209

Q5 1 1 1 0.8157 0

5.2 The NWHF-MAUT method

In this subsection, NWHF is considered as an outranking
method for the sorting of the selected alternatives. For that, we
calculate each criterion’s utility function. In addition, the utility
function depends on the beneficial and cost criteria. The utility
function of each criterion is determined by the Equations (10)
and (11).

After finding these, we have to calculate the integrated utility
of each alternative using (12). The weight of each criterion is
assigned by the CRITIC method. The criteria utility function
results are given in Table 9 and plotted in Figure 10.

In the following Table 10, we rank the selected alternatives in
the descending order. The ranking of the selected alternatives is

FIGURE 10 Value of utility function of each criterion
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TABLE 10 Values of integrated utility functions of alternatives

P1 P2 P3 P4 P5 Total Rank

Q1 0.0461 0.0312 0 0 0.1872 0.2645 V

Q2 0.1250 0 0.1013 0.1155 0.0526 0.3944 IV

Q3 0.1741 0.0393 0.0543 0.1008 0.1541 0.5226 III

Q4 0 0.1127 0.1291 0.2581 0.0413 0.5412 II

Q5 0.2168 0.1658 0.1718 0.2105 0 0.7649 I

FIGURE 11 Values of integrated utility functions of alternatives

Q5 < Q4 < Q3 < Q2 < Q1. Hence, SG − 10.0 − 193DD is the
best offshore wind turbine system. In Figure 11, the integrated
utility function of each alternative is shown. The ranking results
are shown in Figure 12.

6 DISCUSSION

The mathematical logic proposed in this section is applied to
choose the best turbine model. The deeper information of
the decision-maker is revealed in the course of the NWHF
decision making. Aggregation is used to rank the alternatives,
and NWTFN, three hesitant fuzzy values are found to deter-
mine the right solution. Our aim is to find the best model for

FIGURE 12 Ranking of alternatives

TABLE 11 Entropy weights of criteria

Criteria P1 P2 P3 P4 P5

(E j (NW )) 0.9472 0.9057 0.9010 0.9714 0.9579

(Wj (NW )) 0.1666 0.2976 0.3125 0.0902 0.1328

the selected application using the outranking method for the
NWHFs presented in this research article. We have also con-
verted the new weight finding CRITIC method to the NWHF-
CRITIC method and provided the theorem, the operation, and
the score function. We converted the MAUT method to the
NWHF-MAUT method for ranking of the corresponding solu-
tion methods. We selected wind turbine offshore models as
alternatives and chose the right model through the NWHF-
CRITIC and NWHF-MAUT methods. The NWHF-CRITIC
weight finding method provides more solutions than most of
the other weight finding methods. Other mathematical meth-
ods such as standard deviation and correlation are used in the
NWHF-CRITIC method. This study is set out to find increases
in wind energy in order to determine the proper installation of
the wind turbine. The amount of wind energy depends on the
turbine models. There will be many problems, as well as many
confusions and hesitations in selecting the models. The solu-
tion presented in this paper can be of significant help to the
decision-makers.

7 COMPARATIVE ANALYSIS

MCDM has been proposed under the NWHF environment.
The CRITIC method for weight finding and the MAUT
method for alternative finding are introduced under NWHF.
The solutions obtained from the above are compared with
other MCDM methods with identical values. Based on this
comparison, the proposed methods viz., the HWHF-CRITIC
and the NWHF-MAUT, provide a valid solution. Here, we
compare NWHF-CRITIC with the weighted entropy, the
results of which are listed in Table 11. Thus, we believe
that the proposed mathematical logical methods, the NWHF-
CRITIC and NWHF-MAUT methods, have been tested on
the basis of comparison, and that these methods are valid
in MCDM. The entropy criteria weight values are given in
Table 11.

In Table 8 and Table 11, the sums of the weighted cri-
teria are given in the same order. By using Equation (12)
and the weighted entropy, the utility function of each alter-
native value is given in Table 11. The integrated utility func-
tions of the alternatives using entropy weights are given in
Table 12. Figure 12 shows a comparison of the CRITIC and
the entropy ranking results. Figure 13 compares the results for
the respective criteria. Then, Figure 14 shows how the utility
function of each alternative changes when using the CRITIC
and entropy weight finding methods. Further comparisons of
the CRITIC and entropy weighted methods are shown in
Figures 15–19.
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TABLE 12 Integrated utility function of each alternative using entropy
weight

P1 P2 P3 P4 P5 Total Rank

Q1 0.0354 0.0560 0 0 0.1328 0.2242 V

Q2 0.0960 0 0.1844 0.0403 0.0373 0.358 IV

Q3 0.1337 0.0705 0.0989 0.0352 0.1093 0.4476 III

Q4 0 0.2023 0.2348 0.0902 0.0293 0.5566 II

Q5 0.1666 0.2976 0.3125 0.0735 0 0.8502 I

FIGURE 13 Ranking results for utility function of each alternative using
CRITIC and entropy weighted methods

8 SENSITIVITY ANALYSIS

The sensitivity analysis was conducted to determine the effects
of changes in the weights of the criteria and changes in the data
at the end of the offshore wind turbine selection. The offshore
wind turbine models, such as XD115, SWT-6.0-154, SWT-7.0-
154, SG-8.0-167 DD, and SG-10.0-193DD, were selected based
on the characteristics of the machine, operation and mainte-
nance cost, cost factor, reliability and technical characteristics
criteria. In this analysis, the weight of a given criterion is deter-
mined by changing the weight of each criterion proportionally
to the weights of the other criteria. In this research, we used
the CRITIC method to determine the weights of the criteria.
The weights obtained by the CRITIC method were 0.2168 for
the characteristics of the machine, 0.1658 for the operation

FIGURE 14 Comparison of the CRITIC and the entropy weighted values

FIGURE 15 P1 criterion weight comparison between CRITIC and
entropy weighted methods

FIGURE 16 P2 criterion weight comparison between CRITIC and
entropy weighted methods

FIGURE 17 P3 criterion weight comparison between CRITIC and
entropy weighted methods

FIGURE 18 P4 criterion weight comparison between CRITIC and
entropy weighted methods
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FIGURE 19 P5 criterion weight comparison between CRITIC and
entropy weighted methods

TABLE 13 Integrated utility function of each alternative, when
W1 = 0.15, W2 = 0.179, W3 = 0.175, W4 = 0.264, W5 = 0.214

P1 P2 P3 P4 P5 Total Rank

Q1 0.0319 0.0336 0 0 0.214 0.2795 V

Q2 0.0865 0 0.1032 0.1181 0.0601 0.3679 IV

Q3 0.1204 0.0424 0.0553 0.1031 0.1761 0.4973 III

Q4 0 0.1217 0.1315 0.264 0.0472 0.5644 II

Q5 0.15 0.179 0.175 0.2153 0 0.7193 I

and maintenance cost, 0.1718 for the cost factor, 0.2581 for
reliability, and 0.1872 for technical characteristics, as shown in
Table 8.

Case 1:

When the weight of the characteristics of the machine
changes from 0.2168 to 0.15, the changes in the weights of the
other criteria are given in Table 13. The weights of the other
criteria are calculated as follows. The sum of the weights of
the other criteria becomes 1−0.15 = 0.85. The sum of these
weights is used to calculate the ratios of the weights of the
other criteria. The weights of operation and maintenance cost

is W2 =
0.1658

(1−0.2168)
× 0.85 = 0.179. Similarly, the weights of

the cost factor, reliability and technical characteristics criteria
are W3 = 0.175, W4 = 0.274 and W5 = 0.214, respectively.
Each new ranking of the integrated utility function is recal-
culated by the weight of these new criteria. As shown in Fig-
ure 20, in the selection of the characteristics of the machine cri-
terion, there is no sensitivity. This is because its weight loss or
increase shows an identical pattern with no change in the alter-
native ranking, namely, SG − 10.0 − 193DD > SG − 8.0 −
167DD > SWT − 7.0 − 154 > SWT − 6.0 − 154 > XD115.

The operation and maintenance cost criterion show a slight
sensitivity to changes in their weights. Only the wind turbine
model SG − 10.0 − 193DD is best selected until the weight
of the scale increases to 0.85. Table 13 presents the ranking
of the utility function of each alternative for the changing of
weight values to W1 = 0.15, W2 = 0.179, W3 = 0.175, W4 =

0.264, W5 = 0.214. The results of sensitivity analysis of Case 1
are shown in Figures 22–26.

FIGURE 20 When W1 = 0.15, W2 = 0.179, W3 = 0.175, W4 = 0.264,
W5 = 0.214

FIGURE 21 When W1 = 0.2168, W2 = 0.1658, W3 = 0.1, W4 = 0.2581,
W5 = 0.1872

Case 2:

The operation and maintenance cost, and cost factor cri-
teria have similar weight values. Therefore, Table 8 gives
the changes in the values of the other criteria when the
weight of the cost factor criterion is reduced to 0.1. The cur-
rent rank order is SG − 10.0 − 193DD > SET − 7.0 − 154 >

SG − 8.0 − 167DD > SWT − 6.0 − 154 > XD115. Cost is an

FIGURE 22 P1- Characteristics of machine
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FIGURE 23 P2- Operation and maintenance cost

FIGURE 24 P3- Cost factor

important criterion to the selection of this wind turbine model
due to the fact that cost reflects the model’s unique charac-
teristics. There is no sensitivity to the other criteria, such as
reliability and technical characteristics. The selected alterna-
tive is always SG − 10.0 − 193DD. The reliability criterion is
the most important one. But there is no sensitivity change

FIGURE 25 P4- Reliability

FIGURE 26 P5- Technical characteristic

TABLE 14 Integrated utility function of each alternative, when
W1 = 0.2168, W2 = 0.1658, W3 = 0.1, W4 = 0.2581, W5 = 0.1872

P1 P2 P3 P4 P5 Total Rank

Q1 0.0461 0.0312 0 0 0.1872 0.2645 V

Q2 0.1250 0 0.0590 0.1155 0.0526 0.3521 IV

Q3 0.1741 0.0393 0.0316 0.1008 0.1540 0.4998 II

Q4 0 0.1127 0.0751 0.2581 0.0413 0.4872 III

Q5 0.2168 0.1658 0.1 0.2105 0 0.6931 I

in reliability. SG − 8.0 − 167DD is selected as the second
best alternative until the weight increases above 0.85. The
results of the sensitivity analysis are shown in Figure 21.
Table 14 presents the ranking of the utility functions of the
respective alternatives for the changing of weight values to
W1 = 0.2168, W2 = 0.1658, W3 = 0.1, W4 = 0.2581, and W5 =

0.1872. The results of sensitivity analysis of Case 2 are shown in
Figures 27–31.

FIGURE 27 P1- Characteristics of machine
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FIGURE 28 P2- Operation and maintenance cost

FIGURE 29 P3- Cost factor

9 CONCLUSION

Energy is a precious resource that must be assiduously devel-
oped, husbanded, and conserved. Even though energy is avail-
able in a variety of different forms in our country, the over-

FIGURE 30 P4- Reliability

FIGURE 31 P5- Technical characteristic

all amount available is not sufficient due to a growing popu-
lation, environmental change, increase in the number of vehi-
cles, economic growth, and other issues. To compensate for
these changes, we are forced to look for alternative energy. A
perpetual source of energy that is naturally cleaner and more
readily available, that is to say, wind, should be studied and
applied for the purposes of energy savings. This renewable
energy has no deleterious effects on society or nature. The
establishment of a wind farm can reduce power shortages and
improve the country’s quality of production in the stock mar-
ket. The hesitant fuzzy values considered in the NWHF method
can reveal the hesitation situations of decision-makers in seek-
ing to select the best wind turbine models. In the present
study, we converted the two best MCDM methods, CRITIC
and MAUT, to the NWHF-CRITIC and NWHF-MAUT meth-
ods, respectively, and selected the best solutions using them.
The NWHF-CRITIC method is used for weight finding and for
NWHF-MAUT ranking. Based those processes, Q5 → SG −

10.0 − 193DD was selected as the best alternative followed
by Q4 → SG − 8.0 − 167DD, Q3 → SWT − 7.0 − 154, Q2 →

SWT − 6.0 − 154 and Q1 → XD115 in that order.

NOMENCLATURE

AHP Analytical hierarchy process
CRITIC Criteria Importance Through Intercriteria

Correlation
MAVT Multi Attribute Value Theory

DM Decision Making
ELECTRE Elimination Et ChoixTraduisant la REalite

GIS Geographic Information System
GP Goal Programming
GP Goal Programming

GPS Global Positioning System
GW Gigawatt

MAUT Multi Attribute Utility Theory
MCDM Multi-Criteria Decision Making
MCDM Multi-Criteria Decision Making

MOORA Multi - Objective Optimization on the Basis
of Ratio Analysis
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MW Megawatt
NWHF Normal Wiggly Hesitant Fuzzy

NWHFDM Normal Wiggly Hesitant Fuzzy Decision
Making

NWHFE Normal Wiggly Hesitant Fuzzy Element
NWTHFE Normal Wiggly Triangular Hesitant Fuzzy

Element
NWTHFN Normal Wiggly Triangular Hesitant Fuzzy

Number
NWTHFS Normal Wiggly Triangular Hesitant Fuzzy

Set
PROMOTHEE Preference Ranking Organization METHod

for
Enrichment of Evaluations

ROV Range of Value
TOPSIS Technique for Order Preference by Similar-

ity to Ideal Solution
TWh Terawatt hours

VIKOR VIsekriterijumsko KOmpromisno Rangi-
ranje
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