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*is study reveals new fractional behavior of Minkowski inequality and several other related generalizations in the frame of the
newly proposed fractional operators. For this, an efficient technique called generalized proportional fractional integral operator
with respect to another functionΦ is introduced. *is strategy usually arises as a description of the exponential functions in their
kernels in terms of another function Φ. *e prime purpose of this study is to provide a new fractional technique, which need not
use small parameters for finding the approximate solution of fractional coupled systems and eliminate linearization and un-
realistic factors. Numerical results represent that the proposed technique is efficient, reliable, and easy to use for a large variety of
physical systems. *is study shows that a more general proportional fractional operator is very accurate and effective for analysis
of the nonlinear behavior of boundary value problems. *is study also states that our findings are more convenient and efficient
than other available results.

1. Introduction

Recently, the idea of nonlocal operators of differentiation has
boarded out numerous analysts from practically all parts of
sciences and engineering due to their abilities to include
progressively complex characteristics into numerical con-
ditions. Fractional calculus has also been comprehensively
utilized in several instances, but the concept has been
popularized and implemented in numerous disciplines of
science, technology, and engineering as a mathematical
model [1, 2]. Numerous distinguished generalized fractional
integral operators consist of the Hadamard operator,
Erdélyi–Kober operators, the Saigo operator, the Gaussian
hypergeometric operator, the Marichev–Saigo–Maeda
fractional integral operators, and so on, out of the which, the
Riemann–Liouville fractional integral operator has been
extensively utilized by researchers in theory as well as

applications. For added information related to fractional
calculus operators and their usefulness, one may also
communicate to the expositions by Miller and Ross [3],
Samko et al. [4], Kiryakova [5], and Baleanu et al. [6].
Almeida [7] proposed a new fractional derivative called
Caputo derivative with respect to another function Φ, and
Kilbas et al. [8] explored the concept of Riemann–Liouville
fractional integrals with respect to another function Φ.

Within the structure of applied science and mathe-
matical modeling, there exists an outstanding kind of op-
erator known as generalized proportional fractional integral
operator with respect to another function Φ in which the
variable is a scaled according to proportionality index σ. *is
diversified operator was introduced by Rashid et al. [9], to
conceivably role those physical problems for which classical
physical law, for example, the well-known Mellin transform,
Fourier transform, and probability theory, is suitable; such
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physical issue is accepted to be founded on the fractional
calculus and pertinent to the media of nonintegral fractional
operators. Amongst others, we estimate real-world issues
such as Porous media, aquifer, and turbulence; furthermore,
progressively, other media regularly show fractional prop-
erties [10–22].

During the most recent decade, integral inequalities have
been expanding enthusiasm to employ fractional techniques
that have capacious significance to many fields, including
neural networks, remote sensing, optimization of structures,
optimization of electromagnetic systems, and many other
applied sciences [23–33]. Lately, much consideration has
been given to the fractional calculus of integral inequalities.
We comment that fractional calculus is imperative for a few
reasons. We contemplate the subjective conduct of the so-
lution of the integral-differential and difference equations
when the given operator and the feasible variations occur in
a parameter. Several integral inequalities and their modifi-
cations have been derived via the classical fractional oper-
ators [34–42].

*e first fractional technique was employed on reverse
Minkowski inequality in [43]. Lately, Anber et al. [44]
proposed some fractional integral inequalities within the
scope of Riemann–Liouville fractional integral. In [45], the
researchers explored someMinkowski inequalities and other
variants by contemplating Katugampola’s fractional tech-
niques. In [46–48], many researchers have been focused on
their attentions in order to find the distinguished version of
the reverse Minkowski inequality for generalized
k−fractional conformable integral, by generalized propor-
tional fractional integral operator and Hadamard fractional
integral operators.

*e aim to deal with new operators of integration has
been introduced in this paper comprising exponential
functions in their kernels in terms of another functionΦ and
generalized some well-known fractional operators as gen-
eralized proportional fractional integral operator, Rie-
mann–Liouville fractional integral operator, Katugampola
fractional integrals, and Hadamard fractional integral op-
erators. *e new operators will be referred to as the gen-
eralized proportional fractional integral operator with
respect to another function Φ. *e new operators are ex-
pected to fascinate the reverse Minkowski inequality and
other associated integral inequalities in the light of a gen-
eralized proportional fractional integral operator. Moreover,
the numerical approximation of these new operators are
additionally given a few utilities to a real-world problem.

2. Preliminaries

*is segment is dedicated to some recognized definitions
and outcomes associated with the generalized conformable
fractional integral operators and their generalization related
to the generalized conformable fractional integral operators.
Set et al., in [49], launched the fractional version of the
Hermite–Hadamard and reverse Minkowski inequality.
Additionally, Hardy’s type and reverse Minkowski in-
equalities were supplied by Bougoffa in [36]. *e subsequent
consequences concerning the reverse Minkowski

inequalities are the inducement of labor finished to date,
concerning the classical integrals.

Theorem 1 (see [49]). Let υ≥ 1, Υ ≥ c> 0, y>x≥ 0, and G

and H be two positive functions defined on [0,∞) such that
c≤ (G(z)/H(z))≤Υ, for all z ∈ [x, y]. 8en, one has

􏽚
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+ 􏽚
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(1/υ)

≤
1 + Υ(c + 2)

(Υ + 1)(c + 1)
􏽚

y

x
(G + H)

υ
(φ)dφ􏼒 􏼓

(1/υ)

.

(1)

Theorem 2 (see [49]). Let υ≥ 1, Υ ≥ c> 0, y>x≥ 0, and G

and H be two positive functions defined on [0,∞) such that
c≤ (G(z)/H(z))≤Υ, for all z ∈ [x, y]. 8en, the inequality
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,

(2)

holds.
In [43], Dahmani used the Riemann–Liouville fractional

integral operators to prove the subsequent reverse Min-
kowski inequalities.

Theorem 3 (see [43]). Let δ > 0, υ≥ 1, y>x≥ 0, Υ ≥ c> 0,
and G and H be two positive functions defined on [0,∞) such
that Tδ

x+ Gυ(φ)<∞ and Tδ
x+ Hυ(φ)<∞, for all φ> 0. 8en,

the inequality

T
δ
x+ G

υ
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(1/υ)
+ T
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,

(3)

holds if 0< c≤ (G(z)/H(z))≤Υ, for all z ∈ [x, y].

Theorem 4 (see [43]). Let δ > 0, υ≥ 1, y>x≥ 0, Υ ≥ c> 0,
and G and H be two positive functions defined on [0,∞) such
that Tδ

x+ Gυ(φ)<∞a and Tδ
x+ Hυ(φ)<∞, for all φ> 0.

8en, the inequality

T
δ
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(2/υ)
+ T

δ
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(2/υ)
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(φ)􏼐 􏼑
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,

(4)

takes place if 0< c≤ (G(z)/H(z))≤Υ, for all z ∈ [x, y].
Now, we present a new nonlocal fractional operator

which is known as the generalized proportional fractional
integral operator of a function with respect to another
function Φ introduced by Rashid et al. [9].

Definition 1 (see [9]). Let δ > 0, σ ∈ (0, 1], x, y ∈ R with
x<y, and Φ be an increasing and positive monotone
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function on (x, y] such that Φ′ is continuous on (x, y) and
Φ(0) � 0. *en, the left and right generalized proportional
fractional integral operators (Tδ,σ

x,ΦF)(φ) and (Tδ,σ
y,ΦF)(φ)

of the function F with respect to the function Φ of order
δ > 0 are defined by

T
δ,σ
x,ΦF􏼐 􏼑(φ) �

1
σδΓ(δ)

􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ F z1( 􏼁dz1, x<φ, (5)

T
δ,σ
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1
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􏽚
y

φ

exp ((σ − 1)/σ) Φ z1( 􏼁 −Φ(φ)( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ z1( 􏼁 − Φ(φ)( 􏼁
1−δ F z1( 􏼁dz1, φ<y, (6)

respectively, where Γ(x) � 􏽒
∞
0 tx− 1e−tdt is the Gamma

function [50–52].

Remark 1. Many fractional integral operators are the special
cases of (5) and (6). For example,

(1) Let Φ(φ) � φ. *en, (5) and (6) lead to the left and
right generalized proportional fractional integral
operators proposed by Jarad et al. [53] as follows:

T
δ,σ
x F􏼐 􏼑(φ) �

1
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T
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1
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1−δ F z1( 􏼁dz1, φ<y.

(7)

(2) If σ � 1, then (5) and (6) reduce to the left and right
generalized Riemann–Liouville fractional integral
operators introduced by Kilbas et al. [8] as follows:

T
δ
x,ΦF􏼐 􏼑(φ) �

1
Γ(δ)

􏽚
φ

x

Φ′ z1( 􏼁F z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ dz1, x<φ,

T
δ
y,ΦF􏼐 􏼑(φ) �

1
Γ(δ)
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y
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Φ z1( 􏼁 − Φ(φ)( 􏼁
1−δ dz1, φ<y.

(8)

(3) Let Φ(φ) � lnφ. *en, (5) and (6) become the left
and right generalized proportional Hadamard frac-
tional integral operators [54]:

T
δ,σ
x F􏼐 􏼑(φ) �

1
σδΓ(δ)

􏽚
φ

x

exp ((σ − 1)/σ) ln φ/z1( 􏼁( 􏼁􏼂 􏼃

ln φ/z1( 􏼁( 􏼁
1−δ

F z1( 􏼁

z1
dz1, x<φ,

T
δ,σ
y􏼐 􏼑(φ) �

1
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􏽚
y

φ

exp ((σ − 1)/σ) ln z1/φ( 􏼁( 􏼁􏼂 􏼃

ln z1/φ( 􏼁( 􏼁
1−δ

F z1( 􏼁

z1
dz1, φ<y.

(9)
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(4) IfΦ(φ) � lnφ and σ � 1.*en, (5) and (6) lead to the
left and right Hadamard fractional integral operators
[8]:

T
δ
xF(φ) �

1
Γ(δ)

􏽚
φ

x

F z1( 􏼁

z1 ln φ/z1( 􏼁( 􏼁
1−δ dz1, x<φ,

T
δ
yF(φ) �

1
Γ(δ)

􏽚
y

φ

F z1( 􏼁

z1 ln z1/φ( 􏼁( 􏼁
1−δ dz1, φ<y.

(10)

(5) Let Φ(φ) � φ and σ � 1. *en, (5) and (6) become
the left and right Riemann–Liouville fractional in-
tegral operators:

T
δ
xF(φ) �

1
Γ(δ)

􏽚
φ

x

F z1( 􏼁

φ − z1( 􏼁
1−δ dz1, x<φ,

T
δ
yF(φ) �

1
Γ(δ)

􏽚
y

φ
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z1 − φ( 􏼁
1−δ dz1, φ<y.

(11)

3. Reverse Minkowski Inequalities via
Generalized Proportional Fractional Integral
Operator with respect to Another Function

*is segment will consist of several generalizations by using
generalized nonlocal proportional fractional integral

operator with respect to another functionΦ to derive reverse
Minkowski integral inequalities.

Theorem 5. Let σ ∈ (0, 1], δ > 0, υ≥ 1, Υ ≥ c> 0, G and H be
two positive functions defined on [0,∞) such that
Tδ,σ

x,ΦGυ(φ)<∞ andTδ,σ
x,ΦHυ(φ)<∞, for all φ> 0, andΦ be

an increasing and positive function defined on [0,∞) such
that Φ′ is continuous on [0,∞) and Φ(0) � 0. 8en,

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

(1/υ)
+ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

(1/υ)

≤
(1 + Υ)(c + 2)

(c + 1)(Υ + 1)
T

δ,σ
x,Φ(G + H)

υ
(φ)􏼐 􏼑

(1/υ)
,

(12)

if 0< c≤ (G(z)/H(z))≤Υ, for all z ∈ [x,φ] ⊆ [0,∞).

Proof. It follows from (G(z)/H(z)) ≤Υ for z1 ∈ [x,φ] that

(Υ + 1)
υ
G
υ

z1( 􏼁≤Υυ(G + H)
υ

z1( 􏼁. (13)

Multiplying both sides of (13) by
1

σδΓ(δ)
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Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (14)

and integrating with respect to z1 on (x,φ), we obtain
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􏽚
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≤
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􏽚
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exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
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υ
z1( 􏼁dz1,

(15)

which can be written as

T
δ,σ
x,ΦG

υ
(φ)≤

Υυ
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T

δ,σ
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υ
(φ), (16)

that is,

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

(1/υ)
≤
Υ

(Υ + 1)
T

δ,σ
x,Φ(G + H)

υ
(φ)􏼐 􏼑

(1/υ)
.

(17)

On the contrary, from cH(z1)≤G(z1), one has

1 +
1
c

􏼠 􏼡H z1( 􏼁≤
1
c

G z1( 􏼁 + H z1( 􏼁( 􏼁, (18)

which leads to

1 +
1
c

􏼠 􏼡

υ

H
υ

z1( 􏼁≤
1
c

􏼠 􏼡

υ

G z1( 􏼁 + H z1( 􏼁( 􏼁
υ
. (19)

Multiplying both sides of (19) by
1

σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (20)

and integrating with respect to z1 on (x,φ), we obtain

T
δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

(1/υ)
≤

1
(c + 1)

T
δ,σ
x,Φ(G + H)

υ
(φ)􏼐 􏼑

(1/υ)
.

(21)

Adding inequalities (17) and (21) yields the desired
inequality (12). □

Remark 2. If σ � 1, then *eorem 5 leads to *eorem 3.1 in
[47]. If Φ(z1) � z1 and σ � 1, then *eorem 5 reduces to
inequality (3). If Φ(z1) � z1 and δ � σ � 1, then *eorem 5
becomes inequality (1).
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Theorem 6. Let σ ∈ (0, 1], δ > 0, υ≥ 1, Υ ≥ c> 0, G and H be
two positive functions defined on [0,∞) such that
Tδ,σ

x,ΦGυ(φ)<∞ andTδ,σ
x,ΦHυ(φ)<∞, for all φ> 0, and letΦ

be an increasing and positive function defined on [0,∞) such
that Φ′ is continuous on [0,∞) and Φ(0) � 0. 8en,

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

2/υ
+ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

2/υ

≥
(Υ + 1)(c + 1)

Υ
− 2􏼠 􏼡 T

δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
,

(22)

if 0< c≤ (G(z)/H(z))≤Υ, for all z ∈ [x,φ]⊆ [0,∞).

Proof. Carrying out product between (17) and (21) yields

(Υ + 1)(c + 1)

Υ
􏼠 􏼡 T

δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ

≤ T
δ,σ
x,Φ(G(φ) + H(φ))

υ
􏼐 􏼑

1/υ
􏼔 􏼕

2
.

(23)

Applying the Minkowski inequality to the right-hand
side of (23), we obtain

T
δ,σ
x,Φ(G(φ) + H(φ))

υ
􏼐 􏼑

1/υ
􏼔 􏼕

2

≤ T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
+ T

δ,σ
x,ΦH(φ)􏼐 􏼑

1/υ
􏼔 􏼕

2

≤ T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

2/υ
+ T

δ,σ
x,ΦH(φ)􏼐 􏼑

2/υ

+ 2 T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
T

δ,σ
x,ΦH(φ)􏼐 􏼑

1/υ
.

(24)

It follows from (23) and (24) that

(Υ + 1)(c + 1)

Υ
− 2􏼠 􏼡 T

δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ

≤ T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
+ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
􏼒 􏼓

2
.

(25)

Inequality (25) leads to the conclusion that

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

2/υ
+ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

2/υ

≥
(Υ + 1)(c + 1)

Υ
− 2􏼠 􏼡 T

δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
,

(26)

which complete the proof of *eorem 6. □

Remark 3. If σ � 1, then *eorem 6 leads to *eorem 3.2 of
[47]; if Φ(z1) � z1 and σ � 1, then *eorem 6 reduces to
inequality (4); if Φ(z1) � z1 and δ � σ � 1, then *eorem 6
becomes inequality (2).

4. Some Estimates for the Generalized
Proportional Fractional Integral
Operator with Respect to Another Function

*is section is consisted to establishing several associated
variants concerning to the generalized proportional
fractional integral operator with respect to another
function Φ.

Theorem 7. Let σ ∈ (0, 1], δ > 0, Υ ≥ c> 0, υ1, υ2 > 1 with
(1/υ1) + (1/υ2) � 1, G and H be two positive functions de-
fined on [0,∞) such that Tδ,σ

x,ΦG(φ)<∞ and
Tδ,σ

x,ΦH(φ)<∞ for φ> 0, andΦ be an increasing and positive
function defined on [0,∞) such that Φ′ is continuous on
[0,∞) and Φ(0) � 0. 8en, one has

T
δ,σ
x,ΦG(φ)􏼐 􏼑

1/υ1
T

δ,σ
x,ΦH(φ)􏼐 􏼑

1/υ2

≤
Υ
c

􏼠 􏼡

1/υ1υ2
T

δ,σ
x,ΦG

1/υ1(φ)H
1/υ2(φ)􏼐 􏼑,

(27)

if 0< c≤ (G(z)/H(z))≤Υ, for all z1 ∈ [x,φ]⊆ [0,∞).

Proof. It follows from (G(z1)/H(z1))≤Υ for z1 ∈ [x,φ]

that

H z1( 􏼁( 􏼁
1/υ2 ≥Υ− 1/υ2( ) G z1( 􏼁( 􏼁

1/υ2 . (28)

Multiplying both sides of (28) by G1/υ1(z1) leads to

G
1/υ1 z1( 􏼁􏼐 􏼑 H

1/υ2 z1( 􏼁􏼐 􏼑≥Υ− 1/υ2( ) G z1( 􏼁( 􏼁. (29)

Multiplying on both sides of (28) by

1
σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (30)

and integrating with respect to z1 on (x,φ), we obtain
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Υ− 1/υ2( )

σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G z1( 􏼁( 􏼁dz1

≤
1

σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G

1/υ1 z1( 􏼁􏼐 􏼑 H
1/υ2 z1( 􏼁􏼐 􏼑dz1.

(31)

Inequality (31) can be written as

Υ− 1/υ1υ2( ) T
δ,σ
x,ΦG(φ)􏽨 􏽩

1/υ1 ≤ T
δ,σ
x,Φ [G(φ)]

1/υ1[H(φ)]
1/υ2􏼐 􏼑􏽨 􏽩

1/υ1
.

(32)

On the contrary, cH(z1)≤G(z1) leads to

c
1/υ1H

1/υ1 z1( 􏼁≤G
1/υ1 z1( 􏼁. (33)

Multiplying on both sides of (33) by H1/υ2(z1) and using
the identity υ−1

1 + υ−1
2 � 1, we have

c
1/υ1H z1( 􏼁≤H

1/υ1 z1( 􏼁G
1/υ2 z1( 􏼁. (34)

Multiplying on both sides of (34) by
1

σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (35)

and integrating with respect to z1 on (x,φ), we obtain

c 1/υ1( )

σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ H z1( 􏼁dz1

≤
1

σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ H

1/υ1 z1( 􏼁G
1/υ2 z1( 􏼁dz1.

(36)

Inequality (36) leads to

c
1/υ1υ2 T

δ,σ
x,ΦH(φ)􏼐 􏼑

1/υ2 ≤ T
δ,σ
x,ΦH

1/υ1(φ)G
1/υ2( )(φ)􏼒 􏼓

1/υ2
.

(37)

From (32) and (37), together with υ−1
1 + υ−1

2 � 1, we
clearly see that

T
δ,σ
x,ΦG(φ)􏼐 􏼑

1/υ1
T

δ,σ
x,ΦH(φ)􏼐 􏼑

1/υ2 ≤
Υ
c

􏼠 􏼡

1/υ1υ2
T

δ,σ
x,Φ G

1/υ1(φ)􏼐 􏼑 H
1/υ2(φ)􏼐 􏼑􏼐 􏼑, (38)

which completes the proof of inequality (27). □

Theorem 8. Let σ ∈ (0, 1], δ > 0, Υ ≥ c> 0, υ1, υ2 > 1 with
(1/υ1) + (1/υ2) � 1, G and H be two positive functions

defined on [0,∞) such that Tδ,σ
x,ΦG(φ)<∞ and

Tδ,σ
x,ΦH(φ)<∞ for φ> 0, andΦ be an increasing and positive

function defined on [0,∞) such that Φ′ is continuous on
[0,∞) and Φ(0) � 0. 8en, one has

T
δ,σ
x,Φ(G(φ)H(φ))≤

2υ1− 1Υυ1
υ1(Υ + 1)υ1

T
δ,σ
x,Φ G

υ1 + H
υ1( 􏼁(φ) +

2υ2− 1

υ2(c + 1)υ2
T

δ,σ
x,Φ G

υ2 + H
υ2( 􏼁(φ), (39)

if 0< c≤ (G(z)/H(z))≤Υ, for all z1 ∈ [x,φ] ⊆ [0,∞).

Proof. By the given conditions, we have the following
inequality:

(Υ + 1)
υ1G

υ1 z1( 􏼁≤Υυ1(G + H)
υ1 z1( 􏼁. (40)

Multiplying both sides of (40) by
1

σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (41)

and integrating with respect to z1 on (x,φ) lead to
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(Υ + 1)υ1

σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ)Φ (φ) −Φ z1( 􏼁Φ′ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G

υ1 z1( 􏼁dz1

≤
Υυ1

σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (G + H)

υ1 z1( 􏼁dz1.

(42)

Inequality (42) can be written as

T
δ,σ
x,ΦG

υ1(φ)≤
Υυ1

(Υ + 1)υ1
T

δ,σ
x,Φ(G + H)

υ1(φ). (43)

On the contrary, it follows from (G(z1)/H(z1))>Υ that
(c + 1)

υ2H
υ2 z1( 􏼁≤ (G + H)

υ2 z1( 􏼁. (44)

Multiplying on both sides of (44) by

1
σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (45)

and integrating with respect to z1 on (x,φ), we obtain

T
δ,σ
x,ΦH

υ2(φ)≤
1

(c + 1)υ2
T

δ,σ
x,Φ(G + H)

υ2(φ). (46)

*e well-known Young’s inequality states that
Gυ1 z1( 􏼁

υ1
+

Hυ2 z1( 􏼁

υ2
≥G z1( 􏼁H z1( 􏼁. (47)

Multiplying both sides of (47) with
1

σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (48)

and integrating with respect to z1 on (x,φ) give
1
υ1

T
δ,σ
x,ΦG

υ1(φ)􏼐 􏼑 +
1
υ2

T
δ,σ
x,ΦH

υ2(φ)􏼐 􏼑≥Tδ,σ
x,Φ(G(φ)H(φ)).

(49)

From (43), (46), and (49), we clearly see that

T
δ,σ
x,Φ(G(φ)H(φ)) ≤

1
υ1

T
δ,σ
x,ΦG

υ1(φ)􏼐 􏼑 +
1
υ2

T
δ,σ
x,ΦH

υ2(φ)􏼐 􏼑≤
Υυ1

υ1(Υ + 1)υ1
T

δ,σ
x,Φ(G + H)

υ1(φ) +
1

υ2(c + 1)υ2
T

δ,σ
x,Φ(G + H)

υ2(φ).

(50)

Making use of the inequality (a1 + a2)
q ≤ 2q− 1(a

q
1 + a

q
2),

for a1, a2 > 0 and q> 1, we can obtain

T
δ,σ
x,Φ(G + H)

υ1(φ)≤ 2υ1− 1
T

δ,σ
x,Φ G

υ1 + H
υ1( 􏼁(φ), (51)

T
δ,σ
x,Φ(G + H)

υ2(φ)≤ 2υ2− 1
T

δ,σ
x,Φ G

υ2 + H
υ2( 􏼁(φ). (52)

*erefore, inequality (39) follows easily from inequalities
(50)–(52). □

Theorem 9. Let σ ∈ (0, 1], δ > 0, Υ ≥ c> 0, υ≥ 1, G and H be
two positive functions defined on [0,∞) such that
Tδ,σ

x,ΦG(φ)<∞ and Tδ,σ
x,ΦH(φ)<∞ for φ> 0, and Φ be an

increasing and positive function defined on [0,∞) such that
Φ′ is continuous on [0,∞) and Φ(0) � 0. 8en, one has
Υ + 1
Υ − ω

T
δ,σ
x,Φ[G(φ) − ωH(φ)]

υ
􏼐 􏼑

1/υ
≤ T

δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

(1/υ)

+ T
δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ

≤
c + 1
c − ω

T
δ,σ
x,Φ[G(φ) − ωH(φ)]

υ
􏼐 􏼑

1/υ
,

(53)

if 0<ω<c≤ (G(z1)/H(z1))≤Υ, for all z1 ∈ [x,φ] ⊆ [0,∞).

Proof. It follows from 0<ω< c≤ (G(z1)/H(z1))≤Υ that
cω≤Υω,

cω + c≤ cω + Υ≤Υω + Υ,

(Υ + 1)(c − ω)≤ (c + 1)(Υ − ω),

Υ + 1
Υ − ω
≤

c + 1
c − ω

,

c − ω≤
G z1( 􏼁 − ωH z1( 􏼁

H z1( 􏼁
≤Υ − ω,

G z1( 􏼁 − ωH z1( 􏼁( 􏼁
υ

(Υ − ω)υ
≤H

υ
z1( 􏼁≤

G z1( 􏼁 − ωH z1( 􏼁( 􏼁
υ

(c − ω)υ
,

1
Υ
≤

H z1( 􏼁

G z1( 􏼁
≤
1
c

,

c − ω
cω
≤

G z1( 􏼁 − ωH z1( 􏼁

ωG z1( 􏼁
≤
Υ − ω
ωΥ

,

(54)

Υ
Υ − ω

􏼒 􏼓
υ
G z1( 􏼁 − ωH z1( 􏼁

υ ≤G z1( 􏼁􏼁
υ ≤

c

c − ω
􏼠 􏼡

υ

G z1( 􏼁 − ωH z1( 􏼁( 􏼁
υ
.

(55)
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Multiplying both sides of (54) by
1

σδΓ(δ)

exp (((σ − 1)/σ)) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (56)

and integrating with respect to z1 on (x,φ) lead to

1
(Υ − ω)υσδΓ(δ)

􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G z1( 􏼁 − ωH z1( 􏼁( 􏼁

υdz1

≤
1

σδΓ(δ)
􏽚

φ

x

􏽚exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ H

υ
z1( 􏼁dz1

≤
1

(c − ω)υσδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G z1( 􏼁 − ωH z1( 􏼁( 􏼁

υdz1.

(57)

Inequality (57) can be rewritten as
1

c − ω
T

δ,σ
x,Φ(G(φ) − ωH(φ))

υ
􏼐 􏼑

1/υ
≤ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ

≤
1

c − ω
T

δ,σ
x,Φ(G(φ) − ωH(φ))

υ
􏼐 􏼑

1/υ
.

(58)

Again, multiplying both sides of (55) with
1

σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (59)

and integrating with respect to z1 on (x,φ) give

Υ
Υ − ω

T
δ,σ
x,Φ(G(φ) − ωH(φ))

υ
􏼐 􏼑

1/υ
≤ T

δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ

≤
c

c − ω
T

δ,σ
x,Φ(G(φ) − ωH(φ))

υ
􏼐 􏼑

1/υ
.

(60)

*erefore, inequality (53) follows from (58) and
(60). □

Theorem 10. Let σ ∈ (0, 1], δ > 0, υ≥ 1, 0≤ κ≤K,
0≤M≤M, G and H be two positive functions defined on

[0,∞) such that Tδ,σ
x,ΦGυ(φ)<∞ and Tδ,σ

x,ΦHυ(φ)<∞ for
φ> 0, andΦ be an increasing and positive function defined on
[0,∞) such that Φ′ is continuous on [0,∞) and Φ(0) � 0.
8en, the inequality

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
+ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
≤
K(κ + M) + M(M + K)

(M + K)(κ + M)
T

δ,σ
x,Φ(G(φ) + H(φ))

υ
(φ)􏼐 􏼑

1/υ
(61)

holds if κ≤G(z1)≤K and M≤H(z1)≤M, for all
z1 ∈ [x,φ].

Proof. It follows from the conditions given in *eorem 10
that

1
M
≤

1
H z1( 􏼁
≤

1
M

. (62)

Inequality (62) and 0≤ κ≤G(z1)≤K lead to the con-
clusion that

κ
M
≤

G z1( 􏼁

H z1( 􏼁
≤
K

M
. (63)

From (63), we clearly see that

H
υ

z1( 􏼁≤
M

κ + M
􏼠 􏼡

υ

G z1( 􏼁 + H z1( 􏼁( 􏼁
υ
, (64)

G
υ

z1( 􏼁≤
K

M + K
􏼠 􏼡

υ

G z1( 􏼁 + H z1( 􏼁( 􏼁
υ
. (65)

Multiplying both sides of (64) and (65) by
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1
σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (66)

and integrating with respect to z1 on (x,φ), we obtain

T
δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
≤

M

κ + M
􏼠 􏼡 T

δ,σ
x,Φ G z1( 􏼁 + H z1( 􏼁( 􏼁

υ
􏼐 􏼑

1/υ
,

(67)

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
≤

K

M + K
􏼠 􏼡 T

δ,σ
x,Φ G z1( 􏼁 + H z1( 􏼁( 􏼁

υ
􏼐 􏼑

1/υ
.

(68)

*erefore, inequality (61) follows from (67) and
(68). □

Theorem 11. Let σ ∈ (0, 1], δ > 0, υ≥ 1, 0< c≤Υ, G and H

be two positive functions defined on [0,∞) such that
Tδ,σ

x,ΦGυ(φ)<∞ and Tδ,σ
x,ΦHυ(φ)<∞ for all φ> 0, and Φ be

an increasing and positive function defined on [0,∞) such
that Φ′ is continuous on [0,∞) and Φ(0) � 0. 8en, the
double inequality

Tδ,σ
x,ΦG(φ)H(φ)􏼐 􏼑

Υ
≤

Tδ,σ
x,Φ(G + H)2(φ)􏼐 􏼑

(c + 1)(Υ + 1)
≤

Tδ,σ
x,ΦG(φ)H(φ)􏼐 􏼑

c

(69)

holds if 0< c≤ (G(z1)/H(z1))≤Υ, for all z1 ∈ [x,φ].

Proof. It follows from 0< c≤ (G(z1)/H(z1))≤Υ that
H z1( 􏼁(c + 1)≤H z1( 􏼁 + G z1( 􏼁≤H z1( 􏼁(Υ + 1), (70)

G z1( 􏼁
Υ + 1
Υ

􏼒 􏼓≤H z1( 􏼁 + G z1( 􏼁≤G z1( 􏼁
c + 1

c
􏼠 􏼡. (71)

Inequality (70) and (71) lead to

G z1( 􏼁H z1( 􏼁

Υ
≤

G z1( 􏼁 + H z1( 􏼁( 􏼁
2

(c + 1)(Υ + 1)
≤

G z1( 􏼁H z1( 􏼁

c
. (72)

Multiplying both sides of (72) with
1

σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (73)

and integrating with respect to z1 on (x,φ), we obtain

1
ΥσδΓ(δ)

􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G z1( 􏼁H z1( 􏼁dz1

≤
1

(c + 1)(Υ + 1)σδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G z1( 􏼁 + H z1( 􏼁( 􏼁

2dz1

≤
1

cσδΓ(δ)
􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ z1( 􏼁 − Φ z1( 􏼁( 􏼁
1−δ G z1( 􏼁H z1( 􏼁dz1.

(74)

Inequality (74) can be rewritten as

Tδ,σ
x,ΦG(φ)H(φ)􏼐 􏼑

Υ
≤

Tδ,σ
x,Φ(G + H)2(φ)􏼐 􏼑

(c + 1)(Υ + 1)
≤

Tδ,σ
x,ΦG(φ)H(φ)􏼐 􏼑

c
.

(75)
□

Theorem 12. Let σ ∈ (0, 1], δ > 0, υ≥ 1, 0< c≤Υ, G and H

be two positive functions defined on [0,∞) such that
Tδ,σ

x,ΦGυ(φ)<∞ and Tδ,σ
x,ΦHυ(φ)<∞ for all φ> 0, and Φ be

an increasing and positive function defined on [0,∞) such
that Φ′ is continuous on [0,∞) and Φ(0) � 0. 8en, the
inequality

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
+ T

δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
≤ 2 T

δ,σ
x,ΦΔ

υ
(G(φ), H(φ))􏼐 􏼑

1/υ
, (76)

holds if c≤ ((G(z1))/(H(z1)))≤Υ for all z1 ∈ [x,φ], where

Δ(G(φ), H(φ)) � max Υ
Υ
c

+ 1􏼠 􏼡G z1( 􏼁 − ΥH z1( 􏼁􏼢 􏼣,
(c + Υ)H z1( 􏼁 − G z1( 􏼁

c
􏼨 􏼩. (77)

Proof. It follows from c≤ (G(z)/H(z))≤Υ that
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c≤Υ + c −
G z1( 􏼁

H z1( 􏼁
, (78)

Υ + c −
G z1( 􏼁

H z1( 􏼁
≤Υ. (79)

From (78) and (79), we clearly see that

H z1( 􏼁<
(Υ + c)H z1( 􏼁 − G z1( 􏼁

c
≤Δ(G(φ), H(φ)), (80)

where

Δ(G(φ), H(φ)) � max Υ
Υ
c

+ 1􏼠 􏼡G z1( 􏼁 − ΥH z1( 􏼁􏼢 􏼣,
(c + Υ)H z1( 􏼁 − G z1( 􏼁

c
􏼨 􏼩. (81)

Similarly, from 0< (1/Υ)≤ (H(z1)/G(z1))≤ (1/c), we
have

1
Υ
≤
1
Υ

+
1
c

−
H z1( 􏼁

G z1( 􏼁
, (82)

1
Υ

+
1
c

−
H z1( 􏼁

G z1( 􏼁
≤
1
c

. (83)

Inequalities (82) and (83) lead to
1
Υ
≤

((1/Υ) +(1/c))G z1( 􏼁 − H z1( 􏼁

G z1( 􏼁
≤
1
c

. (84)

It follows that

G z1( 􏼁 � Υ
1
Υ

+
1
c

􏼠 􏼡G z1( 􏼁 − ΥH z1( 􏼁 �
Υ(Υ + c)G z1( 􏼁 − Υ2cH z1( 􏼁

cΥ
�
Υ
c

+ 1􏼠 􏼡G z1( 􏼁 − ΥH z1( 􏼁

≤Υ
Υ
c

+ 1􏼠 􏼡G z1( 􏼁 − ΥH z1( 􏼁􏼢 􏼣≤Δ(G(φ), H(φ)).

(85)

From (80) and (85), we clearly see that

G
υ

z1( 􏼁≤Δυ(G(φ), H(φ)), (86)

H
υ

z1( 􏼁≤Δυ(G(φ), H(φ)). (87)

Multiplying both sides of (86) with

1
σδΓ(δ)

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ (88)

and integrating with respect to z1 on (x,φ), we obtain

1
σδΓ(δ)

􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ G

υ
z1( 􏼁dz1 ≤

1
σδΓ(δ)

􏽚
φ

x

exp ((σ − 1)/σ) Φ(φ) −Φ z1( 􏼁( 􏼁􏼂 􏼃Φ′ z1( 􏼁

Φ(φ) − Φ z1( 􏼁( 􏼁
1−δ Δυ(G(φ), H(φ))dz1.

(89)

Inequality (89) can be written as

T
δ,σ
x,ΦG

υ
(φ)􏼐 􏼑

1/υ
≤ T

δ,σ
x,ΦΔ

υ
(G(φ), H(φ))􏼐 􏼑

1/υ
. (90)

Similary, from (87), we obtain

T
δ,σ
x,ΦH

υ
(φ)􏼐 􏼑

1/υ
≤ T

δ,σ
x,ΦΔ

υ
(G(φ), H(φ))􏼐 􏼑

1/υ
. (91)

*erefore, inequality (76) follows easily from (90) and
(91). □

5. Conclusion

In this paper, we introduce a nonlocal generalized pro-
portional fractional integral operator with respect to another
functionΦ, and then we derived several variants concerning
to the reverse Minkowski inequality by involving the gen-
eralized proportional fractional integral operator with re-
spect to another function Φ; as a particular case, the
inequality involving fractional integrals in the
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Riemann–Liouville, Hadamard, and Katugampola sense can
be found by choosing appropriate and suitable substitutions
in the proportionality index σ and Φ. *e variants obtained
in this research will lead to the inequalities which are
established earlier by Rahman et al. [47] and numerous
outcomes can be generalized for the application of these
newly introduced fractional integral operators by utilizing
Remark 1. Note that the outcomes in this paper are like
hypothetically surely understood proliferation properties of
fractional Schrödinger equation [55, 56]. Besides, our out-
comes are practically identical to equality-time evenness in a
fractional Schrödinger equation [57]. Indeed, the work
established in the given arrangement is new and contributes
suggestively to the study of integrodifferential and difference
equations.
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[34] R. P. Agarwal and A. Özbekler, “Lyapunov type inequalities
for mixed nonlinear Riemann-Liouville fractional differential
equations with a forcing term,” Journal of Computational and
Applied Mathematics, vol. 314, pp. 69–78, 2017.
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