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Abstract Listeriosis is one of the zoonotic diseases affecting most parts of the Sub-Saharan coun-

tries. The infection is often transmitted by eating and it can also pass by respiratory and direct con-

tact. In this paper, a listeriosis mathematical model is formulated involving fractal-fractional orders

in both Caputo and Atangana–Baleanu derivatives. Moreover, future behaviors of the disease are

investigated by considering the fractal–fractional operators that are very effective in modeling the

real-life phenomena by virtue of their memory effect. The basic properties and steady states are also

obtained. The threshold parameter for determining the spread of the disease is computed. Numer-

ical results are presented for each fractal-fractional-order operator. The results obtained in the

paper show that the numerical schemes are effective for predicting and analyzing complex phenom-

ena.
� 2019 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Man has not done well in protecting the natural environment
due to several reasons including population growth. The
degrading of the immediate environment has so many negative

consequences on mankind. Therefore, the spread of diseases
has become inevitable in society including zoonotic ones such
as Listeriosis [4,5]. This disease is acquired via two folds [4]. It

is acquired after taking food contaminated with Listeria
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monocytogenes and also mothers who possess the disease can
transmit it to the babies during delivery through their skin or
respiratory track [9]. Listeria monocytogenes is known to be

one of the easiest causes of bacterial meningitis in the class
of neonates. Some of the factors which are known to be asso-
ciated with this disease include weak immune suppression, cir-

rhosis, diabetes, and renal failure [6,8].
Researchers and biomedical scientists have continuously

studied the qualitative properties and numerical solutions of

fractional-order HIV epidemic models with stability analysis.
Stability analysis of a system in epidemiology and immunology
determines the behavior of the system in disease transmission.
By stability analysis one knows when and where the disease

spreads by calculating the most wanted quantity known as
basic reproduction number denoted by R0. It is the threshold
quantity which shows whether infection spreads or dies in

the susceptible population. In other words, we can say that
the population is free from the disease if R0 < 1 and disease
spreads in the whole population if R0 > 1.

Mathematical modeling in the last century has proven to be
very effective tool in managing and controlling many diseases
through vital qualitative information [7]. In absence of real

data which sometimes very expensive mathematical models
offer the alternative platform in this regard. Althought the
fractional order mathematical modelling study of the listeriosis
is totally very few in the literature, integer order models on lis-

teriosis are not the new subject to researchers.
In [1], the authors constructed an integer model to examine

the transmission dynamics of Listeriosis incorporating vacci-

nation class. Authors in [2] formulated the Anthrax–Listeriosis
coinfected model and obtained the steady states also under-
took sensitivity analysis on the reproduction number. In [3] a

deterministic model was developed on Listeriosis driven by
cross contamination of ready-to-eat food products and sug-
gested that reduction of contamination workers and removal

of infected product would reduce the level of contamination
of food product.

Fractional calculus possess memory effect and this property
helps to predict accurately physical systems. Several fractional

order derivatives have been formulated including, Riemann–
Liouville-Caputo, Atangana-Baleanu, Caputo–Fabrizio [10–
12]. Fractional calculus theory and its illustrative applications

are attracting attention all over the world day by day. New
fractional operators that have different features have been
defined and have been used extensively to model real-life prob-

lems. The arise of the new operators in the literature can be
considered as a result of the reproduction of new problems
that model different types of real-life events. In this context,
a number of effective problems have been solved by different

types of fractional operators that contain different kernels
and presented their illustrative numerical simulations in terms
of the fractional operators. As suggestions one can follow

these papers to have more opinion about the applications of
FC [13–27]. Very recent, researchers have developed complex
fractional operators consisting of more than single operator

such fractal-fractional Caputo order derivative, fractal-
fractional Caputo–Fabrizio and fractal-fractional Atangana–
Baleanu derivative and conformable fractional order Caputo

derivative [28,29]. These operators are adequate to describe
highly complex phenomena that single operators cannot
describe. Some interesting applications can be applied to engi-
neering, biology, medicine and many other [31–50].
In this work, we have formulated the model in the context
of fractal and fractional. Naturally, most objects in the biolog-
ical point of view contain fractal. Therefore, modelling of epi-

demiology with respect to two dimensions presents a true
reflection of the projection that comes out the analysis. In
our model, the purpose of dealing with fractional-order sys-

tems is the memory and hereditary properties which are the
complex behavioral patterns of biological systems gives us
more realistic way to biological systems. In the fractional-

order models, the memory property allows the integration of
more information from the past which predicts and translates
the models more accurately. Also, the hereditary property
describes the genetic profile along with age and status of the

immune system. Because of such properties fractional-order
calculus have found wide applications to model dynamics pro-
cesses in many well-known fields of science, engineering, biol-

ogy, medicine and many others [51,52]. To the best of our
knowledge no single mathematical Listeriosis model has been
formulated in fractional dynamics and this study would lead

to some vital qualitative information in the advancement of
the Listeriosis. This study aims to use the newly-developed
fractal-fractional derivatives in Caputo and Atangana-

Baleanu sense to capture information on the dynamics of Lis-
teriosis disease.

2. Preliminaries

In this section, we give the fundamental definitions that we use
throughout the paper. These definitions generally explain the
fractal-fractional derivative involving the power kernel and

Mittag–Leffler kernel.

Definition 1. [30,53] Assuming that / tð Þ is continuous on
a; bð Þ, and fractal-differentiable on a; bð Þ with order a, the

fractal-fractional derivative of / tð Þ in the Caputo sense
involving power law-type kernel is given by
0
FFCDa;#

t / tð Þf g ¼ 1

C k� að Þ
Z t

0

d/ sð Þ
ds#

t� sð Þk�a�1
ds; ð1Þ

where k� 1 < a; # 6 k 2 N and

d

ds#
/ sð Þ ¼ lim

t!s

/ tð Þ � / sð Þ
t# � s#

: ð2Þ

If we consider the particular case of # ¼ 1, Eq. (1) turns to
well-known Caputo fractional derivative

0
CDa

t / tð Þf g ¼ 1

C k� að Þ
Z t

0

dk

dsk
/ sð Þ t� sð Þk�a�1

ds; ð3Þ

where k� 1 < a 6 k 2 N.

Definition 2. [30,55] Assuming that / tð Þ is continuous on

a; bð Þ, and fractal-differentiable on a; bð Þ with order a, the
fractal-fractional derivative of / tð Þ in the Caputo sense
involving the generalized Mittag–Leffler type kernel is given by
0
FFABDa;#

t / tð Þf g ¼ W að Þ
k� a

Z t

0

d

ds#
/ sð ÞEa �a

t� sð Þa
k� a

� �
ds; ð4Þ

where k� 1 < a; # 6 k 2 N;W að Þ is an adjusting function and
d
ds# / sð Þ is defined in Eq. (2). Considering the particular case of



2018 E. Bonyah et al.
# ¼ 1, the Eq. (4) turns to well-known Atangana-Baleanu-

Caputo fractional derivative

0
ABCDa

t / tð Þf g ¼ W að Þ
k� a

Z t

0

dk

dsk
/ sð ÞEa �a

t� sð Þa
k� a

� �
ds; ð5Þ

where k� 1 < a 6 k 2 N.

Definition 3. [53] The Caputo fractional integral of a given

function / tð Þ is defined as

0
CIat / tð Þf g ¼ 1

C að Þ
Z t

0

/ sð Þ t� sð Þa�1
ds: ð6Þ

Definition 4. [54] The corresponding integral of the Atangana-

Baleanu fractional derivative is defined as

0
ABIat / tð Þf g ¼ 1� a

W að Þ / tð Þ þ a
C að ÞW að Þ

�
Z t

0

/ sð Þ t� sð Þa�1
ds; ð7Þ

where W að Þ is defined in Eq. (5).

Definition 5. [30] The fractal-fractional integral of the given
function / tð Þ in the Caputo sense involving power-type kernel

is defined as

0
FFCIa;#t / tð Þf g ¼ #

C að Þ
Z t

0

s#�1/ sð Þ t� sð Þa�1
ds: ð8Þ

which gives the Caputo fractional integral given in Eq. (6) in
the particular case of # ¼ 1.

Definition 6. [30] The fractal-fractional integral of the given
function / tð Þ in the Caputo sense involving the generalized
Mittag–Leffler type kernel is defined as

0
FFABIa;#t / tð Þf g ¼ 1� að Þ#t#�1

W að Þ / tð Þ þ a#
C að ÞW að Þ

�
Z t

0

s#�1/ sð Þ t� sð Þa�1
ds; ð9Þ

which gives the Atangana-Baleanu fractional integral given in
Eq. (7) in the particular case of # ¼ 1.
3. Mathematical Model Formulation

The model sub-divides the entire related human population at
time t, denoted by ! tð Þ, into the following sub-populations of
susceptible individuals who have not infected with listeriosis

yet S tð Þ, those that have been infected with listeriosis I tð Þ,
those recovered from the infection R tð Þ; and C tð Þ is the popu-
lation of carcasses of animals in the soil that may have died of

listeriosis. Since the carcasses of animals that may have not
been properly disposed of have the tendency of generating
pathogens. Thus, the total human population is

! ¼ Sþ Iþ Rþ C. The concentration of carcasses and inges-
tion rate are depicted by g and n, respectively. And listeriosis
related death rate is k, waning immunity rate is x, natural
death rate is given by l, carcasses (bacteria) mortality rate is
ld. Human recruitment rate is H, listeriosis waning immunity
rate is x, listeriosis recovery rate is d and listeriosis contribu-
tion to environment is depicted by r.

Based on the interrelationship with the compartments the
following nonlinear ordinary differential equations are
obtained [2].

dS
dt
¼ Hþ xR tð Þ � gC tð Þ

nþC tð ÞS tð Þ � lS tð Þ;
dI
dt
¼ gC tð Þ

nþC tð ÞS tð Þ � dþ kþ lð ÞI tð Þ;
dR
dt
¼ dI tð Þ � xþ lð ÞR tð Þ;

dC
dt
¼ rI tð Þ � ldC tð Þ;

! tð Þ ¼ S tð Þ þ I tð Þ þ R tð Þ þ C tð Þ:

ð10Þ

The above ordinary differential model (10) is further modified
to a fractional-order system of order a. The purpose of consid-
ering the fractional-order case is the significant uniqueness of

these varieties of fractional-order systems with non-local char-
acteristics (memory) and hereditary properties that have not
been seen with the integer-order differential operators which

widely exists in biology. Non-integer modeling possesses the
previous and current in order to make prediction for the
future. The value a, is the fractional order and # constitutes
the fractal dimension. In reality, objects are made up fractal

and including fractal perspective would lead to better under-
standing of phenomena. Thus, our proposed fractional-order
model for listeriosis disease transmission has the following

form

0
�Da;#

t S tð Þ ¼ Hþ xR tð Þ � gC tð Þ
nþC tð ÞS tð Þ � lS tð Þ;

0
�Da;#

t I tð Þ ¼ gC tð Þ
nþC tð ÞS tð Þ � dþ kþ lð ÞI tð Þ;

0
�Da;#

t R tð Þ ¼ dI tð Þ � xþ lð ÞR tð Þ;
0
�Da;#

t C tð Þ ¼ rI tð Þ � ldC tð Þ:

ð11Þ

with the initial values

S0 tð Þ ¼ S 0ð Þ; I0 tð Þ ¼ I 0ð Þ;R0 tð Þ ¼ R 0ð Þ;C0 tð Þ ¼ C 0ð Þ; ð12Þ
where 0 < a 6 1 shows the fractional order of the system and

0
�Da;#

t represents the corresponding fractional or fractal-

fractional operator, i.e., Caputo- Fractional, Atangana-

Baleanu-Fractional, Caputo-Fractal-Fractional or Atangana-
Baleanu-Fractal-Fractional operator. If we take into account
a ¼ 1 in the system (11), then it reduces to the system (10)

which gives the integer order one. Moreover, one can reduce
the fractal-fractional system (11) to the fractional system by
taking # ¼ 1.

4. Investigation of the Dynamics of the Model

Stability analysis of a system in epidemiology and immunology

determines the behavior of the system in disease status. By sta-
bility analysis one knows when and where the disease spread
by calculating the most wanted quantity known as basic repro-
duction number denoted by U0. It is the threshold quantity

which shows whether infection spreads or not in the suscepti-
ble population. In this section, the positivity and boundedness
of the solution for the proposed model given by Eq. (11) are

given, after that the basic reproduction number is pointed
out. Finally, the existence conditions and the stability results
for both disease-free equilibrium and endemic equilibrium

are provided.
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4.1. Positivity and Boundedness

By positivity means the population survives and boundedness
refers as a natural restriction to growth because of limited
resources. In order to show the positivity of the solution, let

us depict R4
þ ¼ K tð Þ 2 R4 : K tð Þ P 0

� �
, and let K tð Þ ¼ S tð Þ;½

I tð Þ;R tð Þ;C tð Þ�T. Hence, the following theorem arises:

Theorem 1. The region R4
þ is positively invariant and the

solutions remain bounded throughout the region.

Proof 1. By considering the results in [58], we can determine
the solution on the positive axes by solving the fractional sys-
tem (11) taking into account the initial values given by (12).

Afterwards, we need to explain the positive region R4
þ remains

positively invariant. Then we have

0
�Da;#

t S tð Þ��
S¼0

¼ Hþ gC tð Þ
nþC tð ÞR tð Þ P 0;

0
�Da;#

t I tð Þ��
I¼0

¼ gC tð Þ
nþC tð ÞS tð Þ P 0;

ð13Þ

0
�Da;#

t R tð Þ��
R¼0

¼ dI tð Þ P 0;

0
�Da;#

t C tð Þ��
C¼0

¼ rI tð Þ P 0:
ð14Þ

On each hyperplane bounding the non-negative orthant, the

vector field falls into the region R4
þ. This means that the region

is a positively invariant set. Moreover, from Eq. (11) we get

0
�Da;#

t ! tð Þ ¼ H� ldC tð Þ � l S tð Þ þ I tð Þ þ R tð Þð Þ þ r� kð ÞI tð Þ
6 H� l! tð Þ � k� rð ÞI tð Þ
6 H� l! tð Þ:

ð15Þ
Applying the Laplace transform of Eq. (15), we have

sa ~! sð Þ � sa�1! 0ð Þ 6 H
s
� l~! sð Þ;

which implies

~! sð Þ 6 s�1H tð Þ
sa þ l

þ sa�1

sa þ l
! 0ð Þ:

If we apply the inverse Laplace transform to the last equation

and taking into account that

! 0ð Þ ¼ S 0ð Þ; I 0ð Þ;R 0ð Þ;C 0ð Þð Þ 2 Rþ;

we get

! tð Þ 6 HtaEa;aþ1 �ltað Þ þ Ea �ltað Þ! 0ð Þ
¼ H

l ltaEa;aþ1 �ltað Þ þ Ea �ltað Þð Þ
¼ H

l :

ð16Þ

Hence, the biologically feasible region for the system (11) is
given by

Rþ
f ¼ S; I;R;Cð Þ 2 R4

þ : 0 < Sþ Iþ Rþ C 6 H
l

� �
: ð17Þ
4.2. Determining the Equilibria and Their Stabilities

The equilibrium points are obtained by equating to zero the
right-hand side of system (11) as
Hþ xR tð Þ � gC tð Þ
nþC tð ÞS tð Þ � lS tð Þ ¼ 0;

gC tð Þ
nþC tð ÞS tð Þ � dþ kþ lð ÞI tð Þ ¼ 0;

dI tð Þ � xþ lð ÞR tð Þ ¼ 0;

rI tð Þ � ldC tð Þ ¼ 0:

ð18Þ

Simplifying the system (18) we obtain the disease free equilib-

rium point P0
DF ¼ S0; I0;R0;C0

	 
 ¼ H
l ; 0; 0; 0

� �
, which is

defined as the point in which the population remains in the

lack of disease [59].
Now, in order to investigate the local stability of the

disease-free equilibrium, we need to evaluate the basic
reproduction number that can be regarded as a measure

to predict the future trend of the disease. It is considered
as the mean number of newly infected individuals procured
by a single infection individual. We use next generation

matrix method [59] in order to obtain the basic reproduc-
tion number and we evaluate the matrices at the disease-

free equilibrium point P0
DF for the new infection and trans-

fer terms as

A ¼
0 0 Hg

ln

0 0 0

0 0 0

0
B@

1
CA and B ¼

dþ kþ l 0 0

�d xþ l 0

�r 0 ld

0
B@

1
CA:

Thus, the basic reproduction number is given by the following
equation

U0 ¼ q AB�1
	 
 ¼ Hrg

lldn dþ kþ lð Þ ; ð19Þ

where q represents the spectral radius of the matrix AB�1.

Theorem 2. The system (11) has always a unique endemic
equilibrium if U0 > 1.
Proof 2. By equating to zero the right-hand side of system
(11), we get the endemic equilibrium point

P0
EE ¼ S�; I�;R�;C�ð Þ, where

S� tð Þ ¼ 1
�l2q�lqx

�Hlq�Hqx� dlþ klþ l2 þ kxþ lxð Þ

� lþxð Þ �gHqþdlnldþklnldþl2nldð Þ
dglþgklþdl2þgl2þkl2þl3þgkxþdlxþglxþklxþl2x

0
@

1
A;

I� tð Þ ¼ lþxð Þ gHq�dlnld�klnld�l2nldð Þ
q dglþgklþdl2þgl2þkl2þl3þgkxþdlxþglxþklxþl2xð Þ

¼ B1 lþxð Þ
qB2

U0 � 1ð Þ;
ð20Þ

R� tð Þ ¼ d gHq�dlnld�klnld�l2nldð Þ
q dglþgklþdl2þgl2þkl2þl3þgkxþdlxþglxþklxþl2xð Þ

¼ B1d
qB2

U0 � 1ð Þ;
C� tð Þ ¼ lþxð Þ gHq�dlnld�klnld�l2nldð Þ

dglþgklþdl2þgl2þkl2þl3þgkxþdlxþglxþklxþl2xð Þld
¼ B1 lþxð Þ

ldB2
U0 � 1ð Þ;

where B1 ¼ gHq� dlnld � klnld � l2nld, and B2 ¼ dglþ
gklþ dl2 þ gl2 þ kl2þ l3 þ gkxþ dlxþ glxþ klxþ l2x.
It is clear that if U0 > 1, then there is always a unique endemic
equilibrium of the system. Hence the proof.
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Therefore, the proposed nonlinear fractional-order listerio-
sis epidemic model has at most two equilibria namely disease-

free equilibrium point P0
DF ¼ H

l ; 0; 0; 0
� �

, and the endemic

equilibrium point P0
EE ¼ S�; I�;R�;C�ð Þ. At this stage, for

the stabilities of the equilibria the next theorem arises:

Theorem 3. The disease-free equilibrium point P0
DF is locally

asymptotically stable if U0 < 1 and otherwise unstable.
Table 1 Parameters and variables with their values for

fractional order listeriosis epidemic model.

Parameters Meaning Values/Unit

H Human recruitment rate 0:001

(assumed)

x Waning immunity rate 0:001
Proof 3. By solving the system (11) at the disease-free equilib-
rium (DFE), we get the following general Jakobian matrix:

JjP0
DF

¼

�l 0 x � H g
l n

0 �d� k� l 0 H g
l n

0 d �x� l 0

0 r 0 �ld

0
BBBB@

1
CCCCA:

Hence, the DFE is locally asymptotically stable if all the eigen-
values ui; i ¼ 1; 2; 3; 4 of the matrix JjP0

DF
satisfy the following

condition:

arg eig JjP0
DF

� �� ���� ��� ¼ arg uið Þj j > a
p
2
; i ¼ 1; 2; 3; 4: ð21Þ

Thus, the corresponding characteristic equation is given as

JjP0
DF

� uI
��� ��� ¼ 0;

which gives

lþ uð Þ lþ xþ uð Þ u2 þ Auþ B
	 
 ¼ 0; ð22Þ

where A ¼ dþ kþ lþ ld;B ¼ 1� U0ð Þ dþ kþ lð Þld. Clearly,

u1 ¼ �land u2 ¼ �l� x are negative. Moreover, we have for

other eigenvalues that u3;4 ¼ � dþ kþ lþ ldð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ kþðp

lþ ldÞ2 � 4 1� U0ð Þ dþ kþ lð Þld, which gives that when

U0 < 1 all eigenvalues of Eq. (22) have roots whose real parts
are negative. Otherwise, at least one of the eigenvalues has pos-
itive real part. Hence the proof.

Further, it can be seen that when U0 < 1, then the disease
does not spread in the population and the infection dies. On

the other hand, if U0 > 1, then the disease persists in the whole
population. This represents, that the basic reproduction num-
ber U0 determines the next behaviour of the model.

Theorem 4. The endemic equilibrium point P0
EE is locally

asymptotically stable if U0 > 1 and otherwise unstable.
(assumed)

d Listeriosis recovery rate 0:002

(assumed)

l Natural death rate 0:2[56]

r Listeriosis contribution to

environment

0:65 (assumed)

ld Carcasses (bacteria) mortality rate 0:0025

(assumed)

k Listeriosis related death rate 0:2 [2]

g Concentration of carcasses 10000 [57]

n Bacteria Ingestion rate 0:5 [57]

S tð Þ Susceptible individuals Variable

I tð Þ Infected individuals Variable

R tð Þ Recovered Individuals Variable

C tð Þ Population of animal carcasses Variable
Proof 4. To establish the local stability of the endemic equilib-

rium P0
EE, the Jacobian matrix of the system (11) is given by

JjP0
EE

¼

�l� C� g
C�þn 0 x � S� n g

C�þnð Þ2

C� g
C�þn �d� k� l 0 S� n g

C�þnð Þ2

0 d �x� l 0

0 r 0 �ld

0
BBBBB@

1
CCCCCA
:

The characteristic equation of JjP0
EE

is obtained by

JjP0
EE
� uI

��� ��� ¼ 0, which is expressed as the following

polynomial
P uð Þ ¼ u4 þ x1u
3 þ x2u

2 þ x3uþ x4 ¼ 0; ð23Þ
where,

x1 ¼ dþ kþ 3lþ ld þ xþ C�g
C�þn ;

x2 ¼ 3l2 þ dld þ dxþ 3lld þ kld þ kxþ ldxþ 2dlþ 2klþ 2lx

þ C�g
nþC� 2lþ k þ dþ ld þ xð Þ � S�nqg

nþC�ð Þ2 ;

x3 ¼ C�g
nþC� l2 þ kl þ kld þ 2lld þ kxþ lxþ ldxþ dlþ dldð Þ
þl3 þ dl2 þ kl2 þ 3l2ld þ l2xþ 2klld þ dlxþ dldxþ klx

þkldxþ 2lldxþ 2dlld � S�nqg 2lþxð Þ
nþC�ð Þ2 ;

x4 ¼ dlldxþ klldxþ l3 ld þ dl2 ld þ kl2 ld þ l2 ldx

þ C�g
nþC� klld þ kldxþ lldxþ dlld þ l2ldð Þ � S�nqgl lþxð Þ

nþC�ð Þ2 :

Then, according to the Routh-Hurwitz criteria [60], we can say
that all the roots of the fourth degree characteristic polynomial

are negative or have negative real part if and only if the follow-
ing conditions are satisfied:

ið Þx1 > 0;

iið Þx3 > 0;

iiið Þx4 > 0;

ivð Þx1x2x3 > x2
3 þ x2

1x4:

ð24Þ

Since all the parameters are positive, clearly, we have

x1 ¼ dþ kþ 3lþ ld þ xþ C� g
C�þn > 0. For the condition (ii),

since we can the following inequality,

C�g
nþC� l2 þ kl þ kld þ 2lld þ kxþ lxþ ldxþ dlþ dldð Þ
þl3 þ dl2 þ kl2 þ 3l2ld þ l2xþ 2klld þ dlxþ dldxþ klx

þkldxþ 2lldxþ 2dlld >
S�nqg 2lþxð Þ

nþC�ð Þ2 ;

which gives that x3 > 0. Considering the same procedure and

taking into account the variables given in Table 1, it can be
used to show that other two conditions hold. Therefore, all
the roots of the characteristic polynomial in Eq. (23) have neg-

ative real parts and satisfy the condition
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arg uið Þj j > a p
2
; i ¼ 1; 2; 3; 4, when U0 > 1. This proves the

theorem.
5. Existence and Uniqueness of the Solution Under ABC-

Fractal-Fractional Derivative

In this section we show the existence and uniqueness of the
ordinary differential equations constructed by the Atangana-
Baleanu operator in the frame of fractal-fractional. For this

we consider the following general Cauchy problem:

0
FFDa

t / tð Þf g ¼ - t;/ tð Þð Þ: ð25Þ
Then we can get the following by the corresponding definition

W að Þ
1� a

d

dt

Z t

0

- 1;/ 1ð Þð ÞEa �a
t� sð Þa
1� a

� �
ds: ð26Þ

Hence, considering the fact that the integral is differentiable,
we may arrange it as

W að Þ
1� a

#�1t1�# d

dt

Z t

0

- 1;/ 1ð Þð ÞEa �a
t� #ð Þa
1� a

� �
d#: ð27Þ

This allows us to write the main problem in Eq. (25) as

W að Þ
1� a

d

dt

Z t

0

- 1;/ 1ð Þð ÞEa �a
t� #ð Þa
1� a

� �
d# ¼ #t#�1- t;/ tð Þð Þ:

ð28Þ
Taking the Atangana-Baleanu fractional integral of the right
hand side of Eq. (28) we get

/ tð Þ ¼/ 0ð Þ þ 1� að Þ#t#�1

W að Þ - t;/ tð Þð Þ ð29Þ

þ a#
C að ÞW að Þ

Z t

0

1#�1- 1;/ 1ð Þð Þ t� #ð Þa�1
d#: ð30Þ

Considering such as Picard-Lindelöf theorem [61] we take

Pq
p ¼ rm tmð Þ � X0 /0ð Þ; ð31Þ

where rm tmð Þ ¼ tm�p; tmþp

� �
;X0 /0ð Þ ¼ t0 � q; t0 þ q½ �. Now we

proceed by letting

W ¼ sup
t2Pq

p

-k k; ð32Þ

and by defining the norm

- tð Þk k1 ¼ sup
t2Pq

p

- tð Þk k: ð33Þ

Thus, the following assignment can be developed

f:C rm tmð Þ;Xq tmð Þ� � ) C rm qð Þ;Xq tmð Þ	 

; ð34Þ

defined by

fe tð Þ ¼ /0 þ 1�að Þ#t#�1

W að Þ - t; e tð Þð Þ
þ a#

C að ÞW að Þ
R t

0
1#�1- 1; e 1ð Þð Þ t� #ð Þa�1

d#:
ð35Þ

The main goal is to indicate that the operator we have defined
maps to Q which is complete norm empty metric space Q into

itself, and moreover it is a contraction mapping. Then the first
thing is to demonstrate that
fe tð Þ � /0k k 6 q;

6 1�að Þ#t#�1

W að Þ - t; e tð Þð Þk k1
þ a#

C að ÞW að Þ
R t

0
1#�1 - 1; e 1ð Þð Þk k t� #ð Þa�1

d#;

ð36Þ
6 1� að Þ#t#�1

W að Þ Wþ a#
C að ÞW að ÞW

Z t

0

1#�1 t� #ð Þa�1
d#:

Taking 1 ¼ ty, we can rewrite Eq. (36) as

fe� /0k k 6 W
1� að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ t

#þa�3Z #; að Þ
� �

;

ð37Þ
which yields the following equation by considering the inequal-
ity in Eq. (36)

W <
q

1�að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ t

#þa�3Z #; að Þ
: ð38Þ

Theorem 5. The operator fhas the unique solution.

Proof 5. To demonstrate that the operator fhas the unique
solution, we take e1 and e2such that

ei 2 C rm tmð Þ;Xq tmð Þ� �
; i ¼ 1; 2 by using the Banach fixed point

theorem to have the following result:

fe1 � fe2k k 6 M e1 � e2k k1; ð39Þ
where M < 1.

fe1 � fe2k k 6 1�að Þ#t#�1

W að Þ - t; e1ð Þ � - t; e2ð Þk k
þ a#

C að ÞW að Þ
R t

0
1#�1 - 1; e1ð Þ � - 1; e2ð Þk k t� #ð Þa�1

d#;
ð40Þ

where -being contraction, we get

fe1 � fe2k k 6 1�að Þ#t#�1

W að Þ M e1 � e2k k1
þ a#M

C að ÞW að Þ e1 � e2k k1
R t

0
1#�1 t� #ð Þa�1

d#;

6 1�að Þ#t#�1

W að Þ M e1 � e2k k1 þ a#M
C að ÞW að Þ e1 � e2k k1t#þa�3Z #; að Þ:

ð41Þ
Therefore, we can write

fe1 � fe2k k 6 1� að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ t

#þa�3Z #; að Þ
� �

M e1 � e2k k1;

ð42Þ
which gives

M 1�að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ t

#þa�3Z #; að Þ
� �

< M 1�að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ p

#þa�3Z #; að Þ
� �

:
ð43Þ

Moreover, f is the contraction if

fe1 � fe2k k 6 f e1 � e2k k:
Then
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M <
1

1�að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ t

#þa�3Z #; að Þ
; ð45Þ

and

W <
q

1�að Þ#t#�1

W að Þ þ a#
C að ÞW að Þ p

#þa�3Z #; að Þ
: ð46Þ

This proves that the operator f has the unique solution.
6. Existence and Uniqueness of the Solution Under Caputo-

Fractal-Fractional Derivative

In this section we show the existence and uniqueness of the

solution in the frame of Caputo fractal-fractional operator
[29]. For this, we consider the same equation in (25), then we
have

/ tð Þ ¼ / 0ð Þ þ #a
C að Þ

Z t

0

1#�1- 1;/ 1ð Þð Þd1: ð47Þ

Then we have the following assignment

fe tð Þ ¼ /0 þ
#a
C að Þ

Z t

0

1#�1- 1; e 1ð Þð Þd1; ð48Þ

which implies
Fig. 1 Simulation of the fractal–fractional Caputo derivative m
fe tð Þ � /0k k < q ) W; ð49Þ
where W ¼ sup

t2Pq
p

-k k, and W < qC að Þ
a#p#þa�3Z #;að Þ. Following the

similar steps in the previous section we take

ei 2 C rm tmð Þ;Xq tmð Þ� �
; i ¼ 1; 2. Then we have

fe1 � fe2k k <
aM#

C að Þ p
#þa�3Z #; að Þ: ð50Þ

Therefore, the contraction property is given if the inequality
holds:

M <
C að Þ

a#p#þa�3Z #; að Þ ; ð51Þ

which implies

W <
qC að Þ

a#p#þa�3Z #; að Þ : ð52Þ

Thus, the mentioned problem has a unique solution and more-

over this result proves the existence and uniqueness condition
under the Caputo-fractal-fractional operator.

7. Numerical Scheme for the Fractal-Fractional Caputo

Listeriosis Model

In this section,
odel (11), when # ¼ 1; # ¼ 0:90; # ¼ 0:85; # ¼ 0:75 and a ¼ 1.
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0
FF�CDa;#

t S tð Þ ¼ Hþ xR tð Þ þ gC tð ÞS tð Þ
nþC tð Þ � lS tð Þ;

0
FF�CDa;#

t I tð Þ ¼ gC tð ÞS tð Þ
nþC tð Þ � dþ kþ lð ÞI tð Þ;

0
FF�CDa;#

t R tð Þ ¼ dI tð Þ � xþ lð ÞR tð Þ;
0
FF�CDa;#

t C tð Þ ¼ rI tð Þ � ldC tð Þ;

ð53Þ

with the corresponding initial conditions

S0 ¼ S 0ð Þ; I0 ¼ I 0ð Þ;R0 ¼ R 0ð Þ;C0 ¼ C 0ð Þ:
In this regard we investigate the following:

U1 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ Hþ xR tð Þ þ gC tð ÞS tð Þ
nþC tð Þ � lS tð Þ;

U2 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ gC tð ÞS tð Þ
nþC tð Þ � dþ kþ lð ÞI tð Þ;

U3 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ dI tð Þ � xþ lð ÞR tð Þ;
U4 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ rI tð Þ � ldC tð Þ:

ð54Þ
Eq. (53) is transformed into Volterra integrals, and the follow-
ing numerical scheme given at tnþ1 are obtained:
Fig. 2 Simulation of the fractal–fractional Caputo derivative m
Snþ1 ¼ S 0ð Þ þ #
C að Þ

Pn
v¼0

R tvþ1

tv
h#�1 tnþ1 � hð Þa�1U1 S hð Þ; I hð Þ;R hð Þ;C hð Þð Þdh;

Inþ1 ¼ I 0ð Þ þ #
C að Þ

Pn
v¼0

R tvþ1

tv
h#�1 tnþ1 � hð Þa�1U2 S hð Þ; I hð Þ;R hð Þ;C hð Þð Þdh;

Rnþ1 ¼ R 0ð Þ þ #
C að Þ

Pn
v¼0

R tvþ1

tv
h#�1 tnþ1 � hð Þa�1U3 S hð Þ; I hð Þ;R hð Þ;C hð Þð Þdh;

Cnþ1 ¼ C 0ð Þ þ #
C að Þ

Pn
v¼0

R tvþ1

tv
h#�1 tnþ1 � hð Þa�1U4 S hð Þ; I hð Þ;R hð Þ;C hð Þð Þdh:

ð55Þ
Here the purpose is to approximate the function

h#�1Ui S; I;R;C; hð Þ8i ¼ 1; 2; 3; 4 making use of Lagrangian

piece-wise interpolation principle so that we have

Wv sð Þ ¼ h� tv�1

tv � tv�1

t#�1
v Ui Sv; Iv;Rv;Cv; tvð Þ

� h� tv
tv � tv�1

Ui Sv�1; Iv�1;Rv�1;Cv�1; tv�1ð Þ ð56Þ

Therefore we arrive at the following:
odel (11), when a ¼ 1; a ¼ 0:90; a ¼ 0:85; a ¼ 0:75 and # ¼ 1.
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Snþ1 ¼ S 0ð Þ þ #
C að Þ

Pn
v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1Wv hð Þdh;

Inþ1 ¼ I 0ð Þ þ #
C að Þ

Pn
v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1Wv hð Þdh;

Rnþ1 ¼ R 0ð Þ þ #
C að Þ

Pn
v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1Wv hð Þdh;

Cnþ1 ¼ C 0ð Þ þ #
C að Þ

Pn
v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1Wv hð Þdh:

ð57Þ

Obtaining solution of the right -hand side of the integral leads

to the following numerical scheme:

Snþ1 ¼S 0ð Þþ # Dtð Þa
C aþ2ð Þ

Xn

v¼0

U1 Sv;Iv;Rv;Cv ;tvð Þ 1� vþnð Þa �vþnþ2það Þð

� �vþnð Þa �vþnþ2aþ2ð ÞÞ
�t#�1

v�1U1 Sv�1;Iv�1;Rv�1;Cv�1;tv�1ð Þ 1� vþnð Þaþ1 � �vþnð Þa �vþnþaþ1ð Þ
�� i

;

Inþ1 ¼ I 0ð Þþ # Dtð Þn
C aþ2ð Þ

Xn

v¼0

U2 Sv ;Iv;Rv;Cv;tvð Þ 1� vþnð Þa �vþnþ2það Þð

� �vþnð Þa �vþnþ2aþ2ð ÞÞ
�t#�1

v�1U2 Sv�1;Iv�1;Rv�1;Cv�1;tv�1ð Þ 1� vþnð Þaþ1 � �vþnð Þa �vþnþaþ1ð Þ
�� i

;

Rnþ1 ¼R 0ð Þþ # Dtð Þn
C aþ2ð Þ

Xn

v¼0

U3 Sv ;Iv;Rv;Cv;tvð Þ 1� vþnð Þa �vþnþ2það Þð

� �vþnð Þa �vþnþ2aþ2ð ÞÞ
�t#�1

v�1U3 Sv�1;Iv�1;Rv�1;Cv�1;tv�1ð Þ 1� vþnð Þaþ1 � �vþnð Þa �vþnþaþ1ð Þ
�� i

;

Cnþ1 ¼C 0ð Þþ # Dtð Þn
C aþ2ð Þ

Xn

v¼0

U4 Sv ;Iv;Rv;Cv;tvð Þ 1� vþnð Þa �vþnþ2það Þð

� �vþnð Þa �vþnþ2aþ2ð ÞÞ
�t#�1

v�1U4 Sv�1;Iv�1;Rv�1;Cv�1;tv�1ð Þ 1� vþnð Þaþ1 � �vþnð Þa �vþnþaþ1ð Þ
�� i

:

ð58Þ
Fig. 3 Simulation of the fractal–fractional ABC derivative of the
8. Numerical Scheme for the Fractal-Fractional ABC Listeriosis

Model

This aspect considers the Listeriosis model in fractal-fractional

ABC operator in Caputo derivative sense and given by:

0
FF�ABCDa;#

t S tð Þ ¼ Hþ xR tð Þ þ gC tð ÞS tð Þ
nþC tð Þ � lS tð Þ;

0
FF�ABCDa;#

t I tð Þ ¼ gC tð ÞS tð Þ
nþC tð Þ � dþ kþ lð ÞI tð Þ;

0
FF�ABCDa;#

t R tð Þ ¼ dI tð Þ � xþ lð ÞR tð Þ;
0
FF�ABCDa;#

t C tð Þ ¼ rI tð Þ � ldC tð Þ:

ð59Þ

The associated initial condition is given by:

S0 ¼ S 0ð Þ; I0 ¼ I 0ð Þ;R0 ¼ R 0ð Þ;C0 ¼ C 0ð Þ:
Here we examine:

U1 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ Hþ xR tð Þ þ gC tð ÞS tð Þ
nþC tð Þ � lS tð Þ;

U2 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ gC tð ÞS tð Þ
nþC tð Þ � dþ kþ lð ÞI tð Þ;

U3 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ dI tð Þ � xþ lð ÞR tð Þ;
U4 S tð Þ; I tð Þ;R tð Þ;C tð Þð Þ ¼ rI tð Þ � ldC tð Þ:

ð60Þ
Making use of ABC integral at tnþ1 in Eq. (60) gives the
following:
model (11), when # ¼ 1; # ¼ 0:90; # ¼ 0:85; # ¼ 0:75 and a ¼ 1.
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Snþ1 ¼ S 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U1 S tð Þn; I tð Þn;R tð Þn;C tð Þn; tn

	 


þ a#
M að ÞC að Þ

Xn

v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1U1 S hð Þ; I hð Þ;R hð Þ;C hð Þ; hð Þdh;

Inþ1 ¼ I 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U2 S tð Þn; I tð Þn;R tð Þn;C tð Þn; tn

	 


þ a#
M að ÞC að Þ

Xn

v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1U2 S hð Þ; I hð Þ;R hð Þ;C hð Þ; hð Þdh;

Rnþ1 ¼ R 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U3 S tð Þn; I tð Þn;R tð Þn;C tð Þn; tn

	 


þ a#
M að ÞC að Þ

Xn

v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1U3 S hð Þ; I hð Þ;R hð Þ;C hð Þ; hð Þdh;

Cnþ1 ¼ C 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U4 S tð Þn; I tð Þn;R tð Þn;C tð Þn; tn

	 


þ a#
M að ÞC að Þ

Xn

v¼0

Z tvþ1

tv

h#�1 tnþ1 � hð Þa�1U4 S hð Þ; I hð Þ;R hð Þ;C hð Þ; hð Þdh:

ð61Þ
Introducing approximation of h#i�1Ui S tð Þ; I tð Þ;R tð Þ;C tð Þ; hð Þ
8i ¼ 1; 2; 3; 4 tv; intvþ1½ � the following numerical scheme is
obtained:
Fig. 4 Simulation of the fractal–fractional ABC derivative of the
Snþ1 ¼ S 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U1 S tð Þn ; I tð Þn ;R tð Þn ;C tð Þn ; tn

	 
þ # Dtð Þa
M að ÞC aþ2ð Þ

�Pn
v¼0

U1 S tð Þv ; IS tð Þv ;RS tð Þv ;CS tð Þv ; tv
	 
�

1� vþ nð Þa �vþ nþ 2þ að Þ � �vþ nð Þa �vþ nþ 2aþ 2ð Þð Þ

�t#�1
v�1U1 S tð Þv�1 ; I tð Þv�1 ;R tð Þv�1 ;C tð Þv�1 ; tv�1

	 

v� nþ 1ð Þaþ1 � �vþ nð Þa �vþ nþ aþ 1ð Þ

i
;

Inþ1 ¼ I 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U2 S tð Þn ; I tð Þn ;R tð Þn ;C tð Þn ; tn

	 
þ # Dtð Þa
M að ÞC aþ2ð Þ

�Pn
v¼0

U2 S tð Þv ; IS tð Þv ;R tð Þv ;C tð Þv ; tv
	 
�

1� vþ nð Þa �vþ nþ 2þ að Þ � �vþ nð Þa �vþ nþ 2aþ 2ð Þð Þ

�t#�1
v�1U2 S tð Þv�1 ; I tð Þv�1 ;R tð Þv�1 ;C tð Þv�1 ; tv�1

	 

v� nþ 1ð Þaþ1 � �vþ nð Þa �vþ nþ aþ 1ð Þ

i
;

Rnþ1 ¼ R 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U3 S tð Þn ; I tð Þn ;R tð Þn ;C tð Þn ; tn

	 
þ # Dtð Þa
M að ÞC aþ2ð Þ

�Pn
v¼0

U3 S tð Þv ; I tð Þv ;R tð Þv ;C tð Þv ; tv
	 
�

1� vþ nð Þa �vþ nþ 2þ að Þ � �vþ nð Þa �vþ nþ 2aþ 2ð Þð Þ

�t#�1
v�1U3 S tð Þv�1 ; I tð Þv�1 ;R tð Þv�1 ;C tð Þv�1 ; tv�1

	 

v� nþ 1ð Þaþ1 � �vþ nð Þa �vþ nþ aþ 1ð Þ

i
;

Cnþ1 ¼ C 0ð Þ þ #t#�1
n 1�að Þ
M að Þ U4 S tð Þn ; I tð Þn ;R tð Þn ;C tð Þn ; tn

	 
þ # Dtð Þa
M að ÞC aþ2ð Þ

�Pn
v¼0

U4 S tð Þv ; I tð Þv ;R tð Þv ;C tð Þv ; tv
	 
�

1� vþ nð Þa �vþ nþ 2þ að Þ � �vþ nð Þa �vþ nþ 2aþ 2ð Þð Þ

�t#�1
v�1U4 S tð Þv�1 ; I tð Þv�1 ;R tð Þv�1 ;C tð Þv�1 ; tv�1

	 

v� nþ 1ð Þaþ1 � �vþ nð Þa �vþ nþ aþ 1ð Þ

i
:

ð62Þ
9. Numerical Simulations and Discussion

Fractional order influences the dynamics of a phenomenon.

However, researches have established that the realistic frac-
model (11), when a ¼ 1; a ¼ 0:90; a ¼ 0:85; a ¼ 0:75 and # ¼ 1.
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tional order in nonlinear models are from 0.5 to 0.99. This is
the reason why almost all fractional models have the orders
ranging from these values. When both fractal and fractional

orders are the same it means that the fractional dimension
coincides with the fractional order and depending on the
model would determine the physical model to be involved.

The step size employed in this work was 0:01 with the time
interval [0,30] taking into account the following initial condi-
tions S 0ð Þ ¼ 100; I 0ð Þ ¼ 3;R 0ð Þ ¼ 40;C 0ð Þ ¼ 30. The parame-

ter values used for this study are indicated in Table 1 as follows
H ¼ 0:001; d ¼ 0:002; l ¼ 0:2; r ¼
0:65; ld ¼ 0:0025; k ¼ 0:2; g ¼ 10000; n ¼ 0:5;x ¼ 0:001.
Fig. 1 (a-d) represent the numerical simulation results based on

the fractal–fractional Caputo derivative model as fractal order
a is varied and fractional order # is kept constant. In Figs. 1 (a-
c) as the a values are increased the number of individuals in

these compartments turn to be asymptotically to the x- axis.
Thus, the number of individuals in these respective classes
reduces as fractal order a values increase. This indicates that

naturally most biological objects are influenced by fractal
properties. Integer order derivatives do not have such proper-
ties. However, in Fig. 1 (d) the number of carcasses of animals

increases as the a values increase. This means that the fractal
order influences on the control of the carcasses of animals.
So, in order to reduce this infection the fractal order must be
reduced. Figs. 2 (a-d) are the numerical simulation results

hinged on fractal–fractional Caputo derivative as # values
are varied and a is kept constant. In Figs. 2 (a-c), the number
of individuals decreases as fractional order # values go up and

a sharp contrast can be seen in Fig. 2 (d) as the # values
increase the number of carcasses of animals in the class also
appreciate in values. This implies that the fractional order

directly affects the number of carcasses of animals at any given
time. The number of carcasses of animals can be kept at min-
imal by equally reducing the fractional order derivative and

keeping the fractal order constant. This indicates that the frac-
tional order derivative can be employed to obtain a clear qual-
itative information on this disease. Figs. 3 (a-d) are the
numerical results based on the fractal–fractional ABC deriva-

tive in Caputo sense. Figs. 3 (a-c) indicate that as the fractal
order a values are increased the number of individuals in each
respective classes reduces. This indicates that the fractal order

affects the dynamics of listeriosis. In Fig. 3 (d) as a values are
appreciated the number of carcasses of animals increases and
similarly in order to reduce this disease the fractal order must

be reduced. Figs. 4 (a-d) represent the numerical simulation
results based on the fractal–fractional ABC derivative in
Caputo sense as the fractional order # values are varied. It
can be seen in Figs. 4 (a-c) that as # values increase the number

of individuals in the respective classes reduces, however, in
Fig. 4 (d) the number of carcasses of animals rises up as the
fractional order # values increase. Thus, it is important to con-

trol the number of carcasses of animals which can be done by
reducing fractional order values so that the spread of the dis-
ease can be controlled.

10. Conclusions

In this paper, a listeriosis model has been formulated involving

fractal-fractional order derivatives in Caputo and Atangana–
Baleanu sense. Moreover, future behaviors of the disease are
investigated by considering the fractal–fractional operators
that are very effective in modeling the real-life phenomena
by virtue of their memory effect. The reproduction number

of the listeriosis model has been computed and the existence
and uniqueness of solutions to both operators involving
fractal-fractional derivatives have been proved, also numerical

schemes for each fractal-fractional derivative operator have
been derived. The numerical results have indicated that the
fractal-fractional Atangana–Baleanu derivative has performed

better than the fractal-fractional Caputo derivative operator.
These newly defined operators can be used to model other
complex dynamics in the scientific environment, too.
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