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1 Introduction
Digital signal processing (DSP) has revolutionized many areas in science and engineer-
ing such as space, medicine, commerce, military, technology, and communication. The
Laplace transform (LT) and discrete Laplace transform (DLT) effectively change a signal
(function) from time domain to frequency domain with the factor e–st . Several applica-
tions of LT and DLT were discussed by many authors [6, 8–10]. The applications of the
n-dimensional Laplace transform appear in heat equations, wave equations, and model-
ing in fluid dynamics [13, 14, 21]. In [22, 23], the authors considered some mathematical
logistic models of fractional operators. Recently, the authors found the solutions of frac-
tional difference equations [24–26]. Some more findings on fractional order models with
the numerical simulation are discussed in [27–33]. For recent development in the theory
of fractional difference operators, we refer to [15–20].

The LT and DLT are respectively defined as L[u(t)] =
∫ ∞

0 u(t)e–st dt and L[u(n)] =
∑∞

n=0 u(n)e–sn, s > 0. From the basic difference identity �–1 xn|∞0 =
∑∞

n=0 xn [4] the DLT can
be expressed as L[u(n)] = �–1 u(n)e–sn. In the literature the Laplace transform in discrete
calculus comes from the time scale definition of the Laplace transform and has a strong re-
lation with the Z-transform. Here we define a different kind of Laplace transform because
it has two different kinds of solutions and is more suitable with the literature. Let u(t) be
an input signal (function), and let h be a shift value. Then we define the alpha fractional
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frequency Laplace transform (LFT) with tuning factor α and frequency s1/ν as

Lα(h)u(t) =
–1
�
α(h)

u(t)e–s1/ν t∣∣∞
0 = h

∞∑

r=0

α–(r+1)u(rh)e–s1/ν rh. (1)

When α = 1 and h = 1, transform (1) becomes the discrete Laplace transform. When α = 1
and h → 0, (1) becomes the Laplace transform [5, 6]. To develop LFT, we can study the
operators �h and �α(h) and their inverses [7, 11].

In 2011, the authors in [1] defined the alpha difference operator as

�
α(h)

u(t) =
u(t + h) – αu(t)

h
= u(t), t ∈ [0,∞), h ∈ (0,∞). (2)

In this research work, we extend the results on multiseries by using α-difference operators
and then analyze LFT for signals of algebraic and geometric type functions.

2 Preliminaries
In [3] the authors introduced t(m)

h =
∏m–1

r=0 (t – rh) and obtained the following expressions:

(i) �
h

t(m)
h = (mh)t(m–1)

h , (ii) t(m)
h =

m∑

r=1

sm
r hm–rtr ,

(iii) tm =
m∑

r=1

Sm
r hm–rt(r)

h ,

(3)

where sm
r and Sm

r denote the Stirling numbers.

Lemma 2.1 ([2]) If limri→∞ 1
α

ri
i

�
–1
αi(hi) u(t + rihi) = 0, then the αi-difference equation

�
αi(hi)

v(t) = u(t), t ∈ [0,∞), hi > 0, (4)

has a solution in the following infinite series form:

–1
�

αi(hi)
u(t) =

–hi

αi

∞∑

ri=0

α
–ri
i u(t + rihi). (5)

Lemma 2.2 ([12]) Let p > 0 and 1 + α2 – cos ph �= 0. Then

–1
�
α(h)

sin pt = h
sin p(t – h) – α sin pt

1 + α2 – cos ph
+ ch(t) (6)

and

–1
�
α(h)

cos pt = h
cos p(t – h) – α cos pt

1 + α2 – cos ph
+ ch(t).r. (7)
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3 Summation operator
Remark 3.1 Hereafter we take P = p(n1 – 2r1) + q(n2 – 2r2) and P = p(n1 – 2r1) – q(n2 – 2r2),
so that P and P depend on n1, n2, r1, r2, p, and q. We use the notation {(, o} for odd numbers
and {[, e} for even numbers.

(i) Too = {(1, 0), (0, 1)},
(ii) Toe = {(1, 0), (0, 1), (1, 1)},

(iii) Teo = {(1, 0), (0, 1), (1, –1)},
(iv) Tee = {(1, 0), (0, 1), (1, 1), (1, –1)},
(v) ((n2)) =

( n2
n2
2

)–uv( u–v
u2+v2 ),

(vi) ((n3)) =
( n3

n3
2

)uv( u+v
u2+v2 ).

Here s, p and q are real numbers.
(1) For odd positive integers n2 and n3, we denote

s,c∑

(n2,n3)

=
(–1)

n2–1
2

2n2+n3–1

n2–1
2∑

s2=0

n3–1
2∑

s3=0

(–1)s2
n(s2)

2
s2!

n(s3)
3
s3!

.

(2) For even positive integers n2 and n3, we denote

s,c∑

[n2,n3]

=
(–1)

n2
2

2n2+n3–1

n2–2
2∑

s2=0

n3–2
2∑

s3=0

(–1)s2
n(s2)

2
s2!

n(s3)
3
s3!

.

The operator used for products of circular functions with exponential functions alone is
defined as

s,c,m∑

(n2,n3)

=
(–1)

n2–1
2

2n2+n3–1

m∑

s1=0

n2–1
2∑

s2=0

n3–1
2∑

s3=0

(–1)s1+s2
m(s1)

s1!
n(s2)

2
s2!

n(s3)
3
s3!

.

The operator used for products of circular functions with t-factorial and also for products
of circular, t-factorial, and exponential functions is defined as

s,c,m+s1∑

n1(n2,n3)

=
(–1)

n2–1
2

2n2+n3–1

n1∑

s1=0

n2–1
2∑

s2=0

n3–1
2∑

s3=0

m+s1∑

s4=0

n(s1)
1 n(s2)

2 n(s3)
3 (m + s1)(s4)

(–1)s1+s2+s4 s1!s2!s3!s4!
.

In the m(α)-series formula, we use

[t]∑

(r)1→i

=
[ t

h ]∑

r1=0

[ t–r1h
h ]∑

r2=0

· · ·
[ t–(r1+r2 ···ri)h

h ]∑

ri=0

, (UV ) =
(

uP + vP
u2 + v2

)

.

4 Multiseries inverse of product of two and three functions
In this section, we derive a finite summation formula and m-series formula. Also, we
present the m-series inverse of the product of two and three functions.
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Theorem 4.1 (Finite summation formula) Let α �= 1 and m > 1. Then we have

m∑

r=1

αr–1hru(t – rh) =
–1
�
α(h)

u(t) – αm+1hm –1
�
α(h)

u(t – mh). (8)

Note: (8) can be represented as �
–1
α(h) u(t)|tt–mh.

Proof From the definitions of �α(h) and �
–1
α(h) we have

�
α(h)

v(t) = u(t) implies v(t) =
–1
�
α(h)

u(t), (9)

(i.e.)
v(t + h) – αv(t)

h
= u(t) ⇒ v(t + h) = h

[
u(t) + αv(t)

]
(10)

Replacing t by t – h, t – 2h, . . . , t – mh in (10), we get expressions for v(t), v(t – h), . . . , v(t –
mh). Successively substituting all these expressions into (10), we arrive at

hu(t – h) + αh2u(t – 2h) + · · · + αm–1hmu(t – mh) = v(t) – αm+1hrv(t – mh). (11)

Now (8) follows from the equality v(t) = �
–1
α(h) u(t – mh). �

Remark 4.2 We denote �
–1
α(h) u(t) – αm+1hr �

–1
α(h) u(t – mh) = �

–1
α(h) u(t)|tt–mh.

Lemma 4.3 Let t ∈ [h,∞), ah �= α, and h(t) = (t – mh). Then we have

–1
�
α(h)

at∣∣t
h(t) =

hat+h

(ah – α)
– αm+1hr+1 ah

(ah(t) – α)
. (12)

Proof Using (2) and Remark 4.2, we get (12). �

Theorem 4.4 For the functions u(t) and v(t), we have

–1
�
α(h)

[
u(t)v(t)

]
= u(t)

–1
�
α(h)

v(t) –
–1
�
α(h)

[ –1
�
α(h)

v(t + h)�
h

u(t)
]
. (13)

Proof From the definition of �α(h) we have

�
α(h)

[
u(t)w(t)

]
= u(t) �

α(h)
w(t) + w(t + h)�

h
u(t). (14)

Now taking �α(h) w(t) = v(t) and w(t) = �
–1
α(h) v(t) in equation (14), we obtain (13). �

Theorem 4.5 (Product of two functions) For odd positive integers n2 and n3,

–m
�
α(h)

(
e–s1/ν t sinn2 pt cosn3 qt

)

=
s,c,m∑

(n2,n3)

∑

(u,v)∈Too

es1s1/νh

es1/ν t

αs1 sin(UV )(t – (m – s1)h)
(e–s1/νh + α2es1/νh – 2 cos(UV )h)m

. (15)
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Proof After changing the powers of sin and cos into linear, we obtain

–1
�
α(h)

(
e–s1/ν t sinn2 pt cosn3 qt

)
=

s,c∑

(n2,n3)

–1
�
α(h)

(
e–s1/ν t(sin Pt + sin Pt)

)

= Im part of
s,c∑

(n2,n3)

× –1
�
α(h)

(
e–s1/ν t(eiPt + eiPt))

= Im part of
s,c∑

(n2,n3)

(
e(iP–s1/ν )t

e(iP–s1/ν )h – α
+

e(iP–s1/ν )t

e(iP–s1/ν )h – α

)

.

After simplification, we get

–1
�
h

(
e–s1/ν t sinn2 pt cosn3 qt

)

=
s,c,1∑

(n2,n3)

∑

(u,v)∈Too

e–s1/ν tαs1 es1s1/νh sin(UV )(t – (1 – s1)h)
(e–s1/νh + α2es1/νh – 2 cos(UV )h)m

. (16)

Applying �
–1
α(h) to both sides of equation (16), we get

–2
�
α(h)

(
e–s1/ν t sinn2 pt cosn3 qt

)

=
s,c,2∑

(n2,n3)

∑

(u,v)∈Too

e–s1/ν tαs1 es1s1/νh sin(UV )(t – (2 – s1)h)
(e–s1/νh + α2es1/νh – 2 cos(UV )h)m

.

Continuing this process up to m-inverse, we get (15). �

Theorem 4.6 (Product of three functions) For odd positive integers n2 and n3,

–m
�
α(h)

(
t(n1)
h e–s1/ν t sinn2 pt cosn3 qt

)

=
s,c,m+s1∑

n1(n2,n3)

∑

(u,v)∈Too

t(n1–s1)
h m(s1)α

s4

h–s1 es1/ν (t+s1h)

es4s1/νh sin(UV )(t – (m – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)m+s1

. (17)

Proof Let f1(t) = t(1)
h e–s1/ν t sinn2 pt cosn3 qt

–1
�
α(h)

f1(t) =
s,c∑

(n2,n3)

–1
�
α(h)

(
t(1)
h e–s1/ν t(sin Pt + sin Pt)

)

=
s,c,1+s1∑

1(n2,n3)

∑

(u,v)∈Too

t(1–s1)
h 1(s1)α

s4

h–s1 es1/ν (t+s1h)

es4s1/νh sin(UV )(t – (1 – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)1+s1

.

Applying �
–1
h to both sides, we get

–2
�
h

f1(t) =
s,c,2+s1∑

1(n2,n3)

∑

(u,v)∈Too

t(1–s1)
h 2(s1)α

s4

h–s1 es1/ν (t+s1h)

es4s1/νh sin(UV )(t – (2 – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)2+s1

.
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Continuing this process, we get

–m
�
α(h)

f1(t) =
s,c,m+s1∑

1(n2,n3)

∑

(u,v)∈Too

t(1–s1)
h m(s1)α

s4

h–s1 es1/ν (t+s1h)

es4s1/νh sin(UV )(t – (m – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)m+s1

.

Similarly, we can obtain

–m
�
α(h)

(
t(2)
h e–s1/ν t sinn2 pt cosn3 qt

)

=
s,c,m+s1∑

2(n2,n3)

∑

(u,v)∈Too

t(2–s1)
h m(s1)α

s4

h–s1 es1/ν (t+s1h)

es4s1/νh sin(UV )(t – (m – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)m+s1

.

Continuing this process up to m-inverse for n1, we get equation (17). �

Corollary 4.7 For odd positive integers n2 and n3, we have

–m
�
α(h)

(
tn1 e–s1/ν t sinn2 pt cosn3 qt

)

=
n1∑

r1=1

s,c,m+s1∑

n1(n2,n3)

∑

(u,v)∈Too

Sn1
r1 t(r1–s1)

h m(s1)α
s4

hr1–n1 h–s1 es1/ν (t+s1h)

× es4s1/νh sin(UV )(t – (m – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)m+s1

. (18)

Proof The proof follows by applying (ii) of (3) in Theorem 4.6. �

Corollary 4.8 For odd positive integers n2 and n3, we have

–m
�
α(h)

(
t(n1)
h sinn2 pt cosn3 qt

)

=
s,c,m+s1∑

n1(n2,n3)

∑

(u,v)∈Too

t(n1–s1)
h m(s1)hs1αs4

sin(UV )(t – (m – s4)h)
(1 + α2 – 2α cos(UV )h)m+s1

. (19)

Theorem 4.9 (m-series formula) For m ∈N(2) and t ∈ [mh,∞), we have

[ t
h ]∑

r=0

(r + 1)m–1

(m – 1)!
αru(t – rh) +

m–1∑

i=1

[t]∑

(r)1→i

α
[

t–
∑i

j=1 rjh
h ]+

∑i
j=1 rj+1

× –(m–i)
�
α(h)

u
(
h(t) + (m – i – 1)h

)

=
–m
�
α(h)

u(t + mh) – α[ t
h ]+1 –m

�
α(h)

u
(
h(t) + (m – 1)h

)
. (20)

Proof Replacing t by t – h in (8) and multiplying both sides by α, we get

α
{

u(t – h) + αu(t – 2h) + α2u(t – 3h) + · · · + α[ t–h
h ]u

(
h(t)

)}

= α
{ –1

�
α(h)

u(t) – α[ t–h
h ]+1 –1

�
α(h)

u
(
h(t)

)}
.
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Replacing t by t – 2h in (8) and multiplying both sides by α2, we get

α2{u(t – 2h) + αu(t – 2h) + α2u(t – 3h) + · · · + α[ t–2h
h ]u

(
h(t)

)}

= α2{ –1
�
α(h)

u(t – h) – α[ t–2h
h ]+1 –1

�
α(h)

u
(
h(t)

)}
.

Proceeding similarly, replacing t by h(t) in (8), and multiplying both sides by α[ t
h ], we get

α[ t
h ]u(h(t)) = α[ t

h ]{�–1
α(h) u(h(t) + h) – α[ h(t)

h ]+1
�

–1
α(h) u(h(t))}.

Adding all left- and right-hand sides with (8), we get

[ t
h ]∑

r=0

(r + 1)αru(t – rh) +
[ t

h ]∑

r1=0

α[ t–r1h
h ]+r1+1 –1

�
α(h)

u
(
h(t)

)

=
–2
�
α(h)

u(t + 2h) – α[ t
h ]+1 –2

�
α(h)

u
(
h(t) + h

)
. (21)

Similarly, by replacing t by t – h, t – 2h, . . . , h(t) in (21), multiplying by α,α2, . . .α[ t
h ], respec-

tively, and adding all with (21), we arrive at

[ t
h ]∑

r=0

(r + 1)(r + 2)
2!

αru(t – rh) +
[ t

h ]∑

r1=0

α[ t–r1h
h ]+r1+1 –2

�
α(h)

u
(
h(t) + h

)
+

[ t
h ]∑

r1=0

[ t–r1h
h ]∑

r2=0

× α[ t–(r1+r2)h
h ]+r1+r2+1 –1

�
α(h)

u
(
h(t)

)

=
–3
�
α(h)

u(t + 3h) – α[ t
h ]+1 –3

�
α(h)

u
(
h(t) + 2h

)
. (22)

Proceeding similarly, we finally obtain (20). �

Theorem 4.10 For odd positive integers n1 and n2, the m-series corresponding to (15) is

[ t
h ]∑

r=0

(r + 1)(m–1)

(m – 1)!
αr(t – rh)(n1)

h e–s1/ν (t–rh) sinn2 p(t – rh) cosn3 q(t – rh)

+
m–1∑

i=0

∑

(r)1→i

s,c,m–i+s1∑

n1(n2,n3)

∑

(u,v)∈Too

α
[

t–
∑i

j=1 rjh
h ]+

∑i
j=1 rjh+1(h(t1)

)(n1–s1)
h αs4

× (m – i)(s1)hs1

es1/ν (h(t1)+s1h)

es4s1/νh sin(UV )(h(t) + (s4 – i – 1)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)m–i+s1

=
s,c,m+s1∑

n1(n2,n3)

∑

(u,v)∈Too

{
(t + mh)(n1–s1)

h m(s1)

h–s1 es1/ν ((t+mh)+s1h)

αs4 es4s1/νh sin(UV )(t + s4h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)m+s1

– α[ t
h ]+1 (h(t2))(n1–s1)

h m(s1)

h–s1 es1/ν (h(t2)+s1h)

αs4 es4s1/νh sin(UV )(h(t) + (s4 – 1)h)
(e–s1/νh + α2esh – 2α cos(UV )h)m+s1

}

, (23)

where h(t1) = h(t) + (m – (i + 1)h), h(t2) = h(t) + (m – 1)h.
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Proof The proof is obtained by replacing u(t) by (t(n1)
h e–s1/ν t sinn2 pt cosn3 qt) in Theo-

rem 4.9 and using (20). �

Example 4.11 Consider (20), where m = 3, p = 5, q = 3, α = 2, s = 2, n1 = 4, n2 = 4, n3 = 4,
P = (5(4 – 2r1) + 3(4 – 2r2)), and P = (5(4 – 2r1) – 3(4 – 2r2)),

LHS =
[ t

h ]∑

r=0

(r + 1)(3–1)

(3 – 1)!
αr(t – rh)(4)

h e–s1/ν (t–rh) sin4 5(t – rh) cos4 3(t – rh)

+
m–1∑

i=1

[t]∑

(r)1→i

α
[

t–
∑i

j=1 rjh
h ]+

∑i
j=1 rj+1 –(m–i)

�
α(h)

u
(
h(t) + (m – i – 1)h

)

=
–m
�
α(h)

u(t + mh) – α[ t
h ]+1 –m

�
α(h)

u
(
h(t) + (m – 1)h

)
. (24)

Here

u(t) =
s,c,3+s1∑

4[n2,n3)

∑

(u,v)∈Tee

((n2))((n3))t(4–s1)
h

h–s1 es1/ν (t+s1h)

αs4 es4s1/νhh cos(UV )(t – (3 – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)3+s1

+
n( n2

2 )
2
n2
2 !

n( n3
2 )

3
n3
2 !

1
2(e–s1/νh – α)3+s1

.

5 Laplace transforms and its applications
Here,] we derive the fractional frequency Laplace transform for the input functions (sig-
nals) in multiseries (m = 1) and analyze the results by MATLAB.

Theorem 5.1 For odd positive integers n2 and n3,
(i)

Lα(h)
(
sinn2 pt cosn3 qt

)
= –h

∞∑

r=0

(
α–(r+1)e–s1/ν rh sinn2 prh cosn3 qrh

)

=
s,c,1∑

(n2,n3)

∑

(u,v)∈Too

–hes1s1/νhαs1 sin(UV )(s1 – 1)h
(e–s1/νh + α2es1/νh – 2 cos(UV )h)

,

(ii)

tLα(h)
(
sinn2 pt cosn3 qt

)

= –h ×
∞∑

r=0

(
α–(r+1)e–s1/ν (t+rh) sinn2 p(t + rh) cosn3 q(t + rh)

)

= h
s,c,1∑

(n2,n3)

∑

(u,v)∈Too

es1s1/νh

es1/ν t

αs1 sin(UV )(t – (1 – s1)h)
(e–s1/νh + α2es1/νh – 2 cos(UV )h)

.

Proof Taking the limit from 0 to ∞ in (15) gives the Laplace transform of sinn2 pt cosn3 qt.�

Similarly, we can find results for other cases (odd–even, even–odd, even–even).
In the following example, we analyze LTT using MATLAB.
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Figure 1 Input Signal

Figure 2 Output signal for � = 0.3 and α

Example 5.2 Taking n2 = 3, n3 = 3, p = 3, and q = 7 in Theorem 5.1, we obtain

Lα(h)
(
sin3 3t cos3 7t

)
= (–h)

∞∑

r=0

α–(r+1)e–s1/ν rh sin3 3rh cos3 7rh

=
s,c,1∑

(3,3)

∑

(u,v)∈Too

–hes1s1/nuhαs1 sin(UV )(s1 – 1)h
(e–s1/νh + α2es1/νh – 2 cos(UV )h)

,

which is verified for ν = 0.1,α = 4, h = 0.5, and s = 10 by MATLAB.

The results are analyzed with input and output signals. Figure 1 shows the input signal
(function) for the product of sine and cosine functions. Figure 2 shows the output signal
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Figure 3 Output signal for � = 0.5 and α

Figure 4 Output signal for � = 0.8 and α

for � = 0.3 and varying α. Figure 3 shows the output signal for � = 0.5 with varying α.
Figure 4 is the output signal for � = 0.8 with varying α.

Theorem 5.3 For odd positive integers n2 and n3, we have
(i)

Lα(h)
(
tn1 sinn2 pt cosn3 qt

)

= –h
∞∑

r=0

(
α–(r+1)(rh)n1 e–s1/ν rh sinn2 prh cosn3 qrh

)

=
n1∑

r1=1

s,c,1+r1∑

n1(n2,n3)

∑

(u,v)∈Too

Sn1
r1 hn1–r1 1(r1)α

s4

h–r1 es1/ν r1h
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Figure 5 Input signal

× es4s1/νh sin(UV )(s4 – 1)h
(e–s1/νh + α2es1/νh – 2α cos(UV )h)1+r1

.

(ii)

tLα(h)
(
tn1 sinn2 pt cosn3 qt

)

= –h ×
∞∑

r=0

(
α–(r+1)(t + rh)n1 e–s1/ν (t+rh) sinn2 p(t + rh) cosn3 q(t + rh)

)

=
n1∑

r1=1

s,c,1+s1∑

n1(n2,n3)

∑

(u,v)∈Too

× Sn1
r1 t(r1–s1)

h 1(s1)α
s4

hr1–n1 h–s1 es1/ν (t+s1h)

es4s1/νh sin(UV )(t – (1 – s4)h)
(e–s1/νh + α2es1/νh – 2α cos(UV )h)1+s1

.

Proof Taking the limit 0 to ∞ in (18) gives the Laplace transform of tn1 sinn2 pt cosn3 qt. �

Similarly, we can find results for other cases (odd-even, even–odd, even–even).

Example 5.4 Taking n1 = 3, n2 = 1, n3 = 1, p = 5, and q = 7 in Theorem 5.3, we obtain

Lα(h)
(
t3 sin 5t cos 7t

)

= (–h)
∞∑

r=0

α–(r+1)(rh)3e–s1/ν rh sin 5rh cos 7rh

=
3∑

r1=1

s,c,1+r1∑

3(1,1)

∑

(u,v)∈Too

S3
r1 h3–r1 1(r1)α

s4

h–r1 es1/ν r1h

es4s1/νh sin(UV )(s4 – 1)h
(e–s1/νh + α2es1/νh – 2α cos(UV )h)1+r1

,

which is verified for α = 5, h = 0.8,ν = 0.1, and s = 15 by MATLAB.
The results are analyzed with input and output signals. Figure 5 shows the input

signal (function) for the product of polynomial, sine, and cosine functions. Figure 6
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Figure 6 Output signal for � = 0.2 and α

Figure 7 Output signal for � = 0.3 and α

shows the output signal for � = 0.2 with varying α. Figure 7 shows the output sig-
nal for � = 0.3 and varying α. Figure 8 shows the output signal for � = 0.8 with vary-
ing α.

6 Conclusions
We proposed formulas for the frequency Laplace transforms of the products of two and
three functions and a multiseries formula for circular functions. Further, LFT is employed
on circular functions to get appropriate results numerically and also analyzed the findings
for different values of tuning factor α and fractional frequency factor s1/ν . We also ob-
served with the help of the diagrams generated by MATLAB that LFT gives innumerable
outcomes for the given input signal, and this enables us to make a choice for an optimal
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Figure 8 Output signal for � = 0.8 and α

one. As a very important findingof this research, when α = ν = 1, we get the Laplace trans-
form existing in the literature.
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