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In this study, an algebraic stability test procedure is presented for fractional
order time delay systems. This method is based on the principle of eliminating
time delay. The stability test of fractional order systems cannot be examined
directly using classical methods such as Routh-Hurwitz, because such systems
do not have analytical solutions. When a system contains the square roots of
s, it is seen that there is a double value function of s. In this study, a stability
test procedure is applied to systems including

√

s and/or different fractional
degrees such as s

α where 0 < α < 1, and αǫR. For this purpose, the integer
order equivalents of fractional order terms are first used and then the stability
test is applied to the system by eliminating time delay. Thanks to the proposed
method , it is not necessary to use approximations instead of time delay term
such as Padé. Thus, the stability test procedure does not require the solution
of higher order equations.
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1. Introduction

The systems shown by differential equations with
real orders instead of integer orders are called
fractional order systems [1]. Fractional order sys-
tems (FOS) are one of the most popular research
topics of today. Although the mathematical anal-
ysis of such systems has been known since 1695,
mostly, it has been discussed and investigated
by mathematicians because of its complexity [1].
The most important feature of this subject is that
it expresses real systems better than integer order
ones [2]. As it is known time delays are intrinsic of
a variety of electrical, electronic, and communica-
tion systems, control applications, power systems
with long transmission lines, and many real world
applications [3–5]. In control applications, there
are many examples of neutral-type time-delay sys-
tems as well as discrete-continuous hybrid sys-
tems regarded as delay differential algebraic equa-
tions (DDAEs) [4]. Besides, power systems with
long transmission lines can be modeled as DDAEs

for certain assumptions [4]. Systems with neutral
delay differential equations (NDDEs) contains de-
lays in both the state variables and their time
derivatives [3]. If fractional order systems include
time delay, the analysis of such systems becomes
more and more complicated. And, the studies to
obtain analytical solutions of fractional order sys-
tems with delays are very restricted.

Many studies have been carried out in relation
to FOS, in the literature [6–14]. Analytical sta-
bility test procedures of FOS are still important
research topics. Analytical stability test proce-
dures such as the Routh-Hurwitz method cannot
be applied to FOS,directly. There are some stud-
ies on the stability of FOS in [1, 15–22]. In [15],
a method for stability analysis of distributed pa-
rameter systems having delay is presented. This
method is also applicable to FOS. In [18], internal
and external stabilities of fractional differential
systems in the state-space form are investigated.
In [16], stability for a certain class of linear and
nonlinear fractional order systems is presented. A
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test procedure based on the Nyquist stability cri-
terion is presented in [1]. However, the studies
related to the stability of FOS continue, and an
analytical stability test technique does not exist,
to the best of the author’s knowledge. In addi-
tion, examining of time response analysis of such
systems is very complicated since calculating in-
verse Laplace transforms of them is difficult, in
spite of this, time response analysis of FOS can
be made by using integer order approximations.
Some toolboxes designed to examine such systems
can be found in [23–26].The frequency domain
based methods can be considered advantageous
for FOS since the stability of FOS can be tested
thanks to frequency domain methods such as the
Nyquist curve.

In the literature, the most preferred method to in-
vestigate FOS is to use integer-order approxima-
tions [27, 28]. That is, in order to apply methods
in classical control to such systems, integer-order
equivalent transfer functions can be used. There
are many approximation methods to obtain inte-
ger order equivalencies of fractional order differ-
ential equations. For example, the continued frac-
tion expansion method (CFE), Oustaloup, Carl-
son and Matsuda’s method and Maclaurin series
etc. [29]. In this study, the CFE method is pre-
ferred to obtain integer order approximations of
FOS. Then, the proposed algebraic stability test
is applied to the system. According to results that
are obtained in [28], it is observed that when the
degree of used approach increases the obtained re-
sults are closer to the original system. However,
this makes the process mathematically more com-
plicated. As aforementioned, the analytical sta-
bility test of FOS cannot be performed by classical
methods, directly. Therefore, this study is aimed
to fill this gap. For this purpose,in the first step,
the integer order equivalents of fractional order
terms are used. In the second step, the stabil-
ity test is applied to the system by eliminating
time delay. As it is known, in general, analytical
stability test procedures of time delay systems re-
quire to use some approximation methods such as
Padé. Besides, we need to use higher order Padé
approximations instead of time delay term to ob-
tain more reliable results. This process makes the
analysis of time delay systems more complicated.
However, using the proposed method, it is not
necessary to use approximations instead of time
delay term since it is eliminated. Thus, the sta-
bility test procedure does not require the solution
of higher order equations. This makes the pro-
posed method practical and preferable. For the
future studies, this method can be extended for
systems with multiple time delays. It can also be

applied to systems controlled by fractional order
controllers. Besides, power systems modeled by
delayed differential equations can be investigated
by using the proposed method.

This paper is organized as follows: In the first sec-
tion, literature information has been presented.
In the second section, fractional order time delay
systems are introduced. In the third section, an
algebraic stability test procedure is presented for
fractional order time delay systems. In the last
section, concluding remarks have been presented.

2. Fractional order time delay systems

Systems where derivatives are expressed in frac-
tional orders instead of integer ones are called
fractional order systems. A unity feedback con-
trol system is given in Fig.(1).

Definition 1. Fractional order time delay sys-
tems are represented as follows.

G(s) = N(s)
D(s)e

−hs

= bmsβm+bm−1s
βm−1+...+b0s

β0

ansαn+an−1s
αn−1+...+a0s

α0
e−hs

(1)

Where, h represents time delay, ak (k = 0, ..., n),
and bk (k = 0, ...,m) are constants, αk (k =
0, ..., n), and βk (k = 0, ...,m) are arbitrarily real
numbers. Where, one can assume inequalities
αn > αn−1 > . . . > α0 and βm > βm−1 > . . . > β0
without loss of generality [30].

Time delay, which may cause poor performance
or even instability in system response, is a com-
mon case in many industrial processes. It can
be originated from the internal dynamics of the
system [31]. Since stability test of time delay sys-
tems cannot be performed directly, some approxi-
mations such as Padé are used instead of time de-
lay term. However, in some cases, the first order
Padé approximation may not give correct results
in terms of stability [31]. Therefore, to obtain
more correct results, it is necessary to increase
the degree of approach, which makes the processes
mathematically more complicated. Thus, a sta-
bility test eliminating time delay will be impor-
tant for simplicity.

3. A Stability test for fractional order

time delay systems

Definition 2. The characteristic equation for
a linear system having a single time delay is ex-
pressed as follows, where h is time delay [32].

∆(s, h) = ∆1(s) + ∆2(s)e
−hs = 0 (2)
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Figure 1. A feedback system.

Definition 3. The general representation of this
expression for systems having multiple commen-
surate time delay is given as follows [32].

∆n(s, h) =
n
∑

k=0

∆k(s)e
−ksh (3)

For zero delay systems, the necessary and suffi-
cient condition of asymptotic stability is known
as the presence of all the roots of the charac-
teristic equation on the left half of the complex
s plane. For systems with time delay, this re-
sult may be stable or unstable for some values
of h [32]. It has been concluded that the sys-
tem is asymptotically stable regardless of delay
for a particular case where all positive values of
time delay h are not negative [32]. Here, the main
problem is to determine h values when ∆(s, h) =
∆1(s) + ∆2(s)e

−hs = 0 has root/or roots on the
complex axis. ∆(s, h) = 0 is an implicit func-
tion of s and h, which may exceed or not exceed
the imaginary axis. Suppose that all the roots of
∆(s, 0) = 0 are in the left-half plane. So, the sys-
tem is stable for zero time delay. If ∆(s, h) = 0
has a root on the imaginary axis when s = jω for
some values of h, it can be said that ∆(−s, h) = 0
has also a root on the imaginary axis for the same
values of h and ω. Thus, with the same common
root ∆(s, h) = 0 and ∆(−s, h) = 0 for the deter-
mination of the roots on the imaginary axis, we
do not need to find h values. That is, a structure
independent of time delay is obtained.

Theorem. A system is asymptotically stable re-
gardless of delay for a particular case where all
positive values of time delay h are not negative.
If ∆(s, h) = ∆1(s)+∆2(s)e

−hs = 0 has root/roots
on the complex axis, the value range of h is cal-
culated for the stability.

Proof. ∆(s, h) = 0 is an implicit function of s
and h, which may exceed or not exceed the imag-
inary axis. If all the roots of ∆(s, 0) = 0 are in
the left-half of s plane, the system is stable for
zero time delay. If ∆(s, h) = 0 has a root on
the imaginary axis when s = jω for some val-
ues of h, ∆(−s, h) = 0 has also a root on the
imaginary axis for the same values of h and ω.
Thus, with the same common root ∆(s, h) = 0
and ∆(−s, h) = 0 for the determination of the

roots on the imaginary axis, it is not necessary to
find h values.

Corollary 1. The Eq.(6) is obtained by elimi-
nating the time delay h from Eq.(4) and Eq.(5).
It is clear that this structure is independent of
time delay.

∆(jω, h) = ∆1(jω) + ∆2(jω)e
−jωh = 0 (4)

∆(−jω, h) = ∆1(−jω) +∆2(−jω)e+jωh = 0 (5)

M(ω2) = ∆1(jω)∆1(−jω)−∆2(jω)∆2(−jω) = 0
(6)

Corollary 2. Where, it is clear that M(ω2) is a
polynomial in the form ω2 = −s2. If M(ω2) = 0
does not have positive roots, the system is stable
for all h ≥ 0.

The proposed stability test procedure is summa-
rized as follows:

(1) In the first step, Eq.(2) is turned into the
form of Eq.(7) for h=0.

∆(s, 0) = ∆1(s) + ∆2(s) = 0 (7)

It is tested whether the zeros of the char-
acteristic equation are in the left half of
s plane. The system is stable for h if all
the zeros are located in the left half of s
plane. If so, the second step is applied.

(2) The presence of positive roots of M(ω2) =
0 is investigated. The system is stable for
all h ≥ 0 if M(ω2) = 0 does not have
any positive roots. If M has at least one
positive root, the range of h must be in-
vestigated for the stability.

(3) If the second condition is met, the follow-
ing equations are used to determine the
range of h [32].

cos(ωh) = Re
{

−∆1(jω)
∆2(jω)

}

,

sin(ωh) = Im
{

∆1(jω)
∆2(jω)

} (8)
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For the given value of ω, h0(ω) is the smallest pos-
itive value of h providing Eq.(8), and the general
solution is given as follows.

h = h0(ω) + 2πn/ω, n = 0, 1, 2, 3, ... (9)

More information about the method can be found
in [32, 33]. Let handle some examples to better
understand the subject.

3.1. Example 1

Consider the characteristic equation given as fol-
lows.

∆(s, h) = s2 + 4s+ 4− e−hs = 0 (10)

When the procedure described above is applied,
one obtains

∆(s, 0) = s2 + 4s+ 3 = 0 (11)

for ∆(s, 0) = 0, we obtain s = −3 and s = −1.
It is clear that the system is stable for h = 0.
Thus, the second step is applied to the system as
follows.

M(ω2) = (−ω2 + 4jω + 4)(−ω2 − 4jω + 4)
−1 = ω4 + 8ω2 + 15

(12)

Since ω2 = −3 and ω2 = −5, there is no positive
root of M(ω2) = 0. It means that there is no any
point touching or crossing imaginary axis. Thus,
this system is stable independent of time delay h.

3.2. Example 2

For a unity feedback system given in Fig.(1), G(s)
is given by Eq.(13).

G(s) =
1

s1.1 + 2
e−hs (13)

The characteristic equation of the system is ob-
tained as follows.

∆(s, h) = s1.1 + 2 + e−hs = 0 (14)

In this equation, if we use the first order integer
approximation instead of fractional order term,
the characteristic equation is obtained as follows.

∆(s, h) = s2+2.46s+2+(0.82s+1)e−hs = 0 (15)

The characteristic equation is stable for h = 0 and
it is obtained as follows.

∆(s, 0) = s2 + 3.28s+ 3 = 0 (16)

In this case, the second stage is applied. There-
fore, M is obtained by Eq.(17)

M(ω2) = (−ω2 + 2.46jω + 2)(−ω2 − 2.46jω + 2)
−(1 + 0.82jω)(1− 0.82jω)

(17)

Since Eq.(17) does not have a positive solution,
the system is stable regardless of time delay. Let’s
examine the Nyquist curve of the system to con-
firm this result. The Nyquist diagrams of the
original system and the first order approximation
for ω = 0 : 0.01 : 5, and h = 1 are shown in
Fig.(2). As can be seen from the Fig.(2), the sys-
tem is stable because the curve does not contain
the critical point (−1, j0). Besides, the results
of original system and of first order approxima-
tion are very close to each other. In Fig.(3), the
Nyquist diagrams of the original system are given
for ω ∈ [0, 50], and h = 0.1 : 0.1 : 2. The Nyquist
diagrams of original system and of first order ap-
proximation for ω ∈ [0, 50], and h = 0.1 : 0.1 : 2
are shown in Fig.(4). As can be seen from Fig.(3)
and Fig.(4), the curves do not include the critical
point for increasing values of h. Therefore, if the
system is stable for condition 1 and 2, as stated
in the stability test procedure in section 3, it can
be said that it is stable for all values of h ≥ 0.
The Nyquist diagrams are shown in Fig.(3) and
Fig.(4) also support this result.

In this example, if we use second order integer ap-
proximation instead of fractional order term, the
characteristic equation is obtained as follows.

∆(s, h) = 1.351s3 + 6.67s2 + 10.34s+ 2.702
+(s2 + 4.67s+ 1.351)e−hs = 0

(18)

If the procedure is applied to the system, one ob-
tains

∆(s, 0) = 1.351s3 + 7.67s2 + 15.01s+ 4.053 = 0
(19)

where, s1,2 = −2.6791±j1.491, and s3 = −0.3191.
It is clear that the system is stable for h = 0.

In the second step, M is obtained by Eq.(20)

M(ω2) = (−1.351jω3 − 6.67ω2 + 10.34jω + 2.702)
×(1.351jω3 − 6.67ω2 − 10.34jω + 2.702)
−(−ω2 + 4.67jω + 1.351)(−ω2 − 4.67jω + 1.351)

(20)

Since Eq.(20) does not have a positive solution,
the system is stable regardless of time delay.
Fig.(5) shows unit step responses of the system
(using first order approximation) with the second
order Padé approximation for h = 0.1 : 0.1 : 1.2.

If we use a PI controller of the form C(s) =
(kps + ki)/s, as shown in Fig.(6), unit step re-
sponses of the system are depicted in Fig.(7) for
kp=ki=1. Here, It should be noted that M can
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Figure 2. Nyquist diagrams of the original system and the first order approximation for
ω ∈ [0, 5] and h = 1.

Figure 3. Nyquist diagrams of the original system for ω ∈ [0, 50] and h = 0.1 : 0.1 : 2.

Figure 4. Nyquist diagram of the original system (blue) and the first order approximation
(red) for ω ∈ [0, 50] and h = 0.1 : 0.1 : 2.
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Figure 5. Unit step responses of the system (the first order approximation) with the second
order Pade for h = 0.1 : 0.1 : 1.2.

have positive solutions. Thus, delay free sys-
tem can be unstable for some values of kp and
ki. In this case, it should be determined if the

root touches the imaginary axis. If not, it means
the system is unstable for h = 0, but it is sta-
ble for infinite small h, that is, it is stable for
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Figure 6. Feedback control system with PI controller.

Figure 7. Unit step responses of the first order approximation and the second order Padé for
h = 0.1 : 0.1 : 1.2, and kp=ki=1.

0 < h < h0(ω). If the root touches the imaginary
axis, then the system is unstable for h = 0 and
corresponding values of kp and ki for that h.

3.3. Example 3

In this example, G(s) is given by

G(s) =
1√

s(s+ 1)
e−hs (21)

By using the first order approximation, the char-
acteristic equation of the system is obtained as

∆(s, h) = 3s2 + 4s+ 1 + (s+ 3)e−hs = 0 (22)

The characteristic equation for h = 0 is obtained
as follows

∆(s, 0) = 3s2 + 5s+ 4 = 0 (23)

Where the roots of the characteristic equation are
s1,2 = −0.833 ± j0.8. Thus, the system is stable
for h = 0.

Thus, the second step of the procedure is applied
to the system. And one obtains

M(ω2) = (−3ω2 + 4jω + 1)(−ω2 − 4jω + 1)
−(3 + jω)(3− jω)

(24)

From Equation Eq.(24), we obtain ω2 = −1.5672,
and ω2 = 0.5672. Since M(ω2) = 0 has a positive
solution, there is a root touching the imaginary
axis. In this case, it is necessary to determine the
stability range of h. For this purpose, using the

Eq.(8) and Eq.(9) the range of h making the sys-
tem stable is calculated as 0 ≤ h < 2.1086. The
Nyquist curve for h = 1 and the critical point
h = 2.1086 are shown in Fig.(8) according to the
first order approximation. As can be seen from
the Fig.(8), h = 2.1086 is the critical point for
stability of the system. However, this value was
obtained according to the first order approxima-
tion. That is, when the second, third and fourth
order approximations are used, the range value of
h would change. Depending on results in [28], it
can be said that third and fourth order approxi-
mations provide the best results in capturing the
original system. Thus, the value of h obtained
using these approximations will probably provide
the best results for the system. But this change
may not involve big numerical differences. That
is, using first order approximation may be suffi-
cient to examine stability of the system in terms
of simplicity. The unit step responses of the sys-
tem according to the first order approximation are
given in Fig.(9) for h = 1, and according to the
critical point h = 2.1086. As can be seen from the
Fig.(9), the critical point gives an oscillatory re-
sponse as expected. Fig.(10) shows the unit step
responses of the system for h = 2.2 and h = 2.5
values exceeding the critical point. The system
becomes unstable after the critical point.

In this example, if we use the second order inte-
ger approximation instead of the fractional order
parameter, the characteristic equation is obtained
as follows.
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Figure 9. Unit step responses of Example 3.

0 10 20 30 40 50 60 70 80 90 100

t(sec)

-20

-15

-10

-5

0

5

10

15

20

O
u
tp

u
t

h=2.2

h=2.5

Figure 10. Unit step responses of Example 3 for h=2.2 and h=2.5.

∆(s, h) = 5s3 + 15s2 + 11s+ 1
+(s2 + 10s+ 5)e−hs = 0

(25)

If the procedure is applied to the system, one ob-
tains

a.

∆(s, 0) = 5s3 + 16s2 + 21s+ 6 = 0 (26)

where, s1,2 = −1.4074 ± j1.0654, and s3 =
−0.3851. It is seen that the system is stable for
h = 0.

b. In the second step, M is obtained by Eq.(27)

M(ω2) = (−5jω3 − 15ω2 + 11jω + 1)
×(5jω3 − 15ω2 − 11jω + 1)−(−ω2 + 10jω + 5)
×(−ω2 − 10jω + 5)

(27)

From Equation Eq.(27), we obtain ω2 = −4.5038,
ω2 = −0.4906, and ω2 = 0.4344. That is,
M(ω2) = 0 has a positive solution. Using the
Eq.(8) and Eq.(9) the range of h making the sys-
tem stable is calculated as 0 ≤ h < 2.6962. The
unit step response of the system according to the
second order approximation is given in Fig.(11)
for the critical point h = 2.6962. As can be seen
from the Fig.(11), the critical point gives an os-
cillatory response as expected.

4. Conclusion

In this study, an algebraic stability test procedure
based on the principle of eliminating time delay
is presented for fractional order systems with a
single time delay. Thus, mathematical operations
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Figure 11. Unit step response of Example 3 for the second order approximation and the
critical point h = 2.6962.

that are already complicated for FOS have be-
come easier. The examples show that the pro-
posed method gives very reasonable results. For
this purpose, integer-order approximations have
been used. Thus, a fractional order equation has
been turned into an integer-order one, and then
the stability test has been applied to the sys-
tem. When using integer-order approximations,
there can be a difference depending on the de-
gree of approximation. Studies have shown that
good approximation results for FOS are obtained
when using third or fourth-order approximations.
Therefore, when determining the stability range
of h, the order of approximation can cause some
differences in the calculations. However, it can
be said that the first order approximation is suf-
ficient for determining whether a system is stable
or unstable because higher order approximations
make mathematical operations quite complicated.
Besides, too large values of the time delay can
produce unwanted results in system performance.
Thus, it is necessary to investigate of stability
range of h to obtain reasonable results. For fu-
ture works, stability analysis can be investigated
for FOS having parameter uncertainty or differ-
ent time delays. In addition, stability for different
types of controllers can also be investigated. As
there are no analytical methods in this area, the
studies on this subject will contribute significantly
to the field.
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Taǧluk, M. E. (2010). Design of PI and PID
controllers for fractional order time delay
systems. IFAC Proceedings Volumes (IFAC-
PapersOnline), 43, 355-360.

[29] Krishna, B. T. (2011). Studies on fractional
order differentiators and integrators: A sur-
vey. Signal Processing, 91(3), 386-426.

[30] Chen, Y. Q., Petráš, I., & Xue, D. (2009).
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