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Abstract
Evaluation of the correlation among the activities of various organs is an important research area
in physiology. In this paper, we analyzed the correlation between the brain and skin reactions in
response to various auditory stimuli. We played three different music (relaxing, pop, and rock
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music) to eleven subjects (4 M and 7 F, 18–22 years old) and accordingly analyzed the changes
in the complexity of Electroencephalogram (EEG) and Galvanic Skin Response (GSR) signals
by calculating their fractal exponent and sample entropy. A strong correlation was observed
among the alterations of the complexity of GSR and EEG signals in the case of fractal dimension
(r = 0.9971) and also sample entropy (r = 0.8120), which indicates the correlation between the
activities of skin and brain. This analysis method could be further applied to investigate the
correlation among the activities of the brain and other organs of the human body.

Keywords : Skin; GSR Signals; Brain; EEG Signals; Fractal Dimension; Sample Entropy;
Complexity.

1. INTRODUCTION

Skin as the cover of the body reacts to exter-
nal changes around us. For instance, we feel the
cold with our skin. For years, several works have
been devoted to investigating human skin reactions,
mainly for emotion recognition1,2 and in response
to external stimuli.3–5 It is known that the human
skin as the body’s cover is controlled by the brain
through the nervous system. Although the nature
of this control, which is performed through a high
degree of complexity, is not fully understood,6 how-
ever, an important category of work is to quan-
tify the correlation among the reactions of skin and
brain in different conditions.

In this study, we focus on analyzing the correla-
tion between the brain and skin activities. Accord-
ing to the literature, some researchers have simul-
taneously analyzed the reaction of the brain and
skin in different conditions.7–10 Since music affects
the human skin,11 studying the correlation between
brain and skin in auditory stimulation is very
important. Therefore, in this paper, for the first
time, we discuss the correlation between brain and
skin reactions while participants listen to different
music.

Since the brain and skin activities, which are
quantified using EEG and GSR signals, have com-
plex structures, we utilized fractal theory to eval-
uate the correlation among the brain and skin
reactions to auditory stimuli. Fractals are objects
(1D, 2D, or 3D) that show self-similarity or self-
affinity. We can observe how different segments of a
self-similar fractal object have a geometrical rela-
tionship to each other. However, self-affine frac-
tals behave differently, and we cannot see any rela-
tionship among their different parts due to their
different scaling exponents in various directions.12

Therefore, EEG and GSR signals are categorized as

self-affine fractals. Fractal exponent is the principal
exponent to quantify the complexity of fractals. In
general, for a fractal object, the fractal dimension
satisfies the following Szpilrajn inequality:

F ≥ D, (1)

where F and D represent the fractal dimension and
topological dimension (Euclidean dimension) of the
object, respectively.

Many works have investigated complex struc-
tures of various physiological signals using fractal
theory.13–17 Similarly, many works have analyzed
the EEG signals due to external stimulation using
fractal theory. The studies that evaluated the effect
of auditory,18,19 electrical,20,21 and visual22,23 stim-
uli on EEG signals, can be stated. However, the
application of fractal theory in the analysis of GSR
signals was limited. In Ref. 10, we analyzed the
skin’s reaction to different odors, and in Ref. 24, the
authors identified the drivers’ distraction by evalu-
ating their GSR signals.

In this work, we also chose sample entropy to
evaluate the complexity of recorded signals. In fact,
we verified the result of the fractal analysis by com-
puting their sample entropy. Sample entropy has
been utilized extensively to analyze the complex-
ity of various types of physiological signals. Specifi-
cally, we can mention many works that used sample
entropy to analyze the EEG signals.25–27 However,
the application of sample entropy in GSR signals
analysis has been very limited.28

As previously mentioned, no reported study has
focused on the analysis of the correlation between
skin and brain reaction due to auditory stimuli.
Therefore, in this paper, we applied fractal theory
and sample entropy to EEG and GSR signals to
evaluate how the alterations of these complex sig-
nals are coupled with the changes in the auditory
stimuli.
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2. METHOD

We evaluated the correlation between the reactions
of the brain and skin in auditory stimulation. We
utilized the fractal theory to quantify the com-
plexity of EEG and GSR signals. Fractal exponent
reflects the complexity; an object with greater com-
plexity has a bigger fractal exponent.

We utilized the box-counting fractal dimension
to quantify the complexity of EEG and GSR sig-
nals. The box-counting algorithm covers the object
with same-size (ε) boxes and accordingly counts
their number (N). This process is repeated in fur-
ther levels by changing the box size at each level.
The fractal dimension is computed as

F = lim
ε→0

log N(ε)
log 1/ε

. (2)

Equation (2) in the general form is formulated as29

FDh = lim
ε→0

1
h − 1

log
∑N

j=1 zh
j

log ε
, (3)

where h is the order and zj indicates the probability

zh
j = lim

t→∞
tj
T

, (4)

where T represents the total period of the signal.
We also utilized sample entropy to quantify the

complexity of EEG and GSR signals in different
music stimulation. Sample entropy is similar to
the approximate entropy but is independent of the
length of data. If we consider a signal in the form
of {y(1), y(2), . . . , y(n)} with a constant interval of
α, we define a template vector of length k in the
form of Wk(i) = {yi, yi+1, yi+2, . . . , yi+z−1}, and
the distance function d[Wk(i),Wk(j)](i �= j) is to
be Chebyshev distance. Then, the sample entropy
(SamEn) is formulated as30

SamEn = −log
A

C
. (5)

Considering ε as the tolerance (0.2 ×
standard deviation of data), A stands for the num-
ber of template vector pairs that

d[Wk+1(i),Wk+1(j)] < ε. (6)

Besides, C stands for the number of template vector
pairs that

d[Wk(i),Wk(j)] < ε. (7)

We chose three music as auditory stimuli in
this study. These auditory stimuli include relaxing
music, pop music, and rock music. In fact, choos-
ing different types of music enabled us to evaluate

the correlation among the complexities of EEG and
GSR signals.

We played each music for subjects and then inves-
tigated the correlation between EEG and GSR sig-
nals by calculating their fractal exponent and sam-
ple entropy.

3. DATE COLLECTION AND
ANALYSIS

This paper was approved by Monash University (#
18267). The experiment was run on eleven healthy
participants (4 M, 7 F, 18–22 years old) after they
gave their consent. Participants did not drink alco-
holic/caffeine beverages within 48 h before sitting
for the experiment.

As shown in Fig. 1, we attached the EMO-
TIV EPOC EEG device to the subject’s scalp. It
contains 14 recordings and 2 reference electrodes.
We also attached the Shimmer GSR device to the
right hand of the subjects, and its two electrodes
were mounted on the subject’s fingers. We recorded
EEG and GSR signals, respectively, at 128 Hz and
51.2 Hz. We used a computer speaker to play each
music to subjects at 50 dB.

Initially, we recorded EEG and GSR signals dur-
ing rest for one minute. Then we, respectively,
played “Zen”, “Happy”, and “My life” music as
relaxing, pop, and rock music (each music for one
minute) to the subjects and recorded their EEG and
GSR signals. One-minute rest was given to partic-
ipants between different stimulations. The experi-
ment has been repeated in another session for all

Fig. 1 The setup of the experiment.

2150124-3

Fr
ac

ta
ls

 2
02

1.
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
A

N
K

A
Y

A
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
6/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2021 17:8 0218-348X 2150124

H. Namazi et al.

participants. We should note that the EEG device
had some poor connection (or disconnected) during
the data collection in four periods, and therefore,
we excluded those recorded data from the analysis.

After removing the DC offset, we filtered
EEG signals using Butterworth band-pass filter at
1–40 Hz. We also denoised GSR signals at 20 Hz cut-
off frequency. We checked the filtered versus raw sig-
nals to ensure the quality of filtering. After that, we
calculated the fractal exponent and sample entropy
of filtered signals. We used boxes with the sizes
of 1

2 , 1
4 , 1

8 , 1
16 , . . . in running the box-counting algo-

rithm. All steps of data analysis were conducted in
MATLAB R2019a (MathWorks, USA).

We compared the complexity of EEG signals (and
GSR signals) among various conditions by con-
ducting the posthoc test. Besides, the effect sizes
(Cohen’s d) were computed to analyze the effect of
different music on the alterations of the complexity
of EEG and GSR signals. We examined the correla-
tion among the alterations of complexity EEG and
GSR signals by calculating the Pearson correlation
coefficient. The significance level of 0.05 was chosen
for statistical analyses.

4. RESULTS

The presented results are based on the average of
recorded data from all channels for all participants
in both recording sessions. The changes in the frac-
tal exponents of EEG signals are shown in Fig. 2.
Error bars indicate the standard deviation.

As Fig. 2 demonstrates, the EEG signals’ fractal
exponent increased due to the application of first
music to the subjects. After that, by moving from
relaxing to pop and rock music, the fractal expo-
nent of EEG signals reduced. Therefore, we can
state that initially, the complexity of EEG signals

Fig. 2 The fractal exponent of EEG signals.

increased and then decreased. The initial increase of
the EEG signals’ complexity is due to the sudden
change in the brain’s activity because of external
stimulation.

Comparing the fractal exponents among the var-
ious conditions (Table 1) demonstrates that in gen-
eral, rock music caused a more significant alteration
in the EEG signals’ complexity compared to pop
music, which itself caused more significant changes
in the EEG signals’ complexity compared to relax-
ing music. Here, we should note that, in this study,
we look for the correlation between the alterations
of EEG and GSR signals, not the significance of
their alterations due to stimulation. Besides, the
calculated values of Cohen’s d in this table indi-
cate that by moving from relaxing to pop and rock
music, the impact of the music on the alterations to
the EEG signals’ complexity increased.

Figure 3 illustrates the alterations of the fractal
exponent of GSR signals. Error bars indicate stan-
dard deviation.

Table 1 Comparing the Fractal Expo-
nents of EEG Signals.

Pairwise p-Value Cohen’s d
Comparison

Rest versus
relaxing music 0.9668 −0.1470

Rest versus pop
music 0.9935 0.0887

Rest versus rock
music 0.6603 0.3380

Relaxing versus pop
music 0.8867 0.2357

Relaxing versus rock
music 0.3913 0.4574

Pop versus rock
music 0.8070 0.2687

Fig. 3 The fractal exponent of GSR signals.
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As can be observed, the GSR signals’ fractal
exponents increased due to the application of relax-
ing music and then decreased as we moved to pop
and rock music. The initial increase of the GSR
signals’ complexity is due to the sudden change
in the skin’s activity because of external stimula-
tion. Therefore, the alterations of the GSR signals’
complexity have a similar trend with the changes
in EEG signals’ complexity in Fig. 2. Besides, the
calculated Pearson correlation coefficient of 0.9971
reflects a strong correlation between the alterations
in the EEG and GSR signals’ complexities when
subjects listened to music.

Multiple comparisons of the fractal exponents of
GSR signals in Table 2 demonstrate that by mov-
ing from relaxing to pop and rock music, the alter-
ations in the complexity of GSR signals become
more significant. Besides, the effect sizes in this
table demonstrate that rock music had the largest
effect on the fractal exponent of the GSR signals.

Qualitatively comparing the effect sizes between
Tables 1 and 2 indicates the greater influence of
music on changing the complexity of GSR signals
than EEG signals from the rest condition. This find-
ing can be referred to as the activity of the brain
versus skin during rest. It is known that the skin is
less active than the brain during rest (the brain is
engaged with different processing even in rest con-
dition), and therefore, listening to music increased
its activity greater than the brain. Therefore, stim-
ulation of subjects with music caused greater alter-
ations in the activity of the skin than the brain.

Figure 4 illustrates the sample entropy of EEG
signals in rest and stimulations. Error bars indicate
standard deviation.

Table 2 Pairwise Comparison of Fractal
Exponents of GSR Signals.

Pairwise p-Value Cohen’s d
Comparison

Rest versus relaxing
music 0.0000 −6.8699

Rest versus pop
music 0.0000 −3.7458

Rest versus rock
music 0.0000 −3.1163

Relaxing versus pop
music 0.7135 0.3288

Relaxing versus rock
music 0.1842 0.5890

Pop versus rock
music 0.7440 0.2360

Fig. 4 The sample entropy of EEG signals.

As Fig. 4 demonstrates, the EEG signals’ sam-
ple entropy increased due to the application of first
music to the subjects. After that, by moving from
relaxing to pop and rock music, the sample entropy
of EEG signals decreased. Therefore, the complex-
ity of EEG signals increased and then decreased.
Comparing this figure with Fig. 2 indicates that
the results of sample entropy verify fractal analy-
sis findings.

Multiple comparisons from the Tukey test in
Table 3 demonstrate that by moving from relax-
ing to pop and rock music, the changes of sample
entropy of EEG signals become more significant. As
was mentioned previously, the in-significant alter-
ations of the complexity of EEG signals between dif-
ferent conditions are not considered in this research
since we are looking for the correlation between
the alterations of EEG and GSR signals, not the
significance of their alterations due to stimula-
tion. Besides, the values of Cohen’s d in this table

Table 3 Pairwise Comparison of Sample
Entropy of EEG Signals.

Pairwise p-Value Cohen’s d
Comparison

Rest versus relaxing
music 0.9913 −0.1005

Rest versus pop
music 0.9407 0.1940

Rest versus rock
music 0.8708 0.2340

Relaxing versus pop
music 0.8301 0.2655

Relaxing versus rock
music 0.7274 0.2979

Pop versus rock
music 0.9973 0.0549
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Fig. 5 The sample entropy of GSR signals.

indicate that rock and relaxing music, respectively,
have the largest to smallest effect on alterations to
the complexity of EEG signals.

Figure 5 shows the alterations of the sample
entropy of GSR signals in rest and stimulations.
Error bars indicate standard deviation.

This figure shows that the sample entropy of GSR
signals increased due to the application of relax-
ing music and then decreased as we moved to pop
and rock music. In fact, this result is similar to the
result of fractal analysis in Fig. 3. On the other
hand, Figs. 4 and 5 show similar trends for the
EEG and GSR signals’ sample entropy. Besides, the
calculated Pearson correlation coefficient of 0.8120
reflects a strong correlation between the alterations
in the EEG and GSR signals’ complexity when sub-
jects listened to different music. Therefore, the anal-
ysis of sample entropy verified the result of fractal
analysis.

Multiple comparisons of the sample entropy of
GSR signals in Table 4 demonstrate that by moving

Table 4 Pairwise Comparison of the Sam-
ple Entropy of GSR Signals.

Pairwise p-Value Cohen’s d
Comparison

Rest versus relaxing
music 0.0000 −2.4806

Rest versus pop
music 0.0000 −2.0929

Rest versus rock
music 0.0001 −1.5683

Relaxing versus pop
music 0.9915 0.0843

Relaxing versus rock
music 0.6836 0.3016

Pop versus rock
music 0.8283 0.2126

from relaxing to pop and rock music, the alterations
in GSR signals’ complexity become more signifi-
cant. Besides, the effect sizes in this table indicate
that rock music had the biggest effect on the sample
entropy of the GSR signals.

Therefore, according to the results, the changes
in the GSR and EEG signals’ complexity are cou-
pled; as we shift between different stimuli, the frac-
tal exponent (and sample entropy) of EEG and GSR
signals change together, which indicates the corre-
lation among the brain and skin activities.

5. DISCUSSION AND
CONCLUSION

For the first time, we evaluated the correlation
between the reactions of the brain and skin in audi-
tory stimulation, using the complexity theory. We
quantified the changes in the complexity of EEG
and GSR signals among various auditory stimu-
lations by calculating their fractal dimension and
sample entropy.

The results of the fractal analysis demonstrated
that EEG signals experienced more significant
changes by presenting relaxing, pop, and rock
music, respectively. Similar results were obtained
for the fractal exponent of GSR signals. The sta-
tistical analysis result showed that EEG and GSR
signals experience more significant changes by mov-
ing from relaxing to pop and rock music. Besides, a
strong correlation among the alterations of the com-
plexity of EEG and GSR signals in response to dif-
ferent music was observed, which indicates a strong
correlation among the brain and skin reactions to
stimuli.

The result of the analysis of sample entropy of
EEG and GSR signals was similar to the fractal
analysis findings and indicated a strong correlation
between the alterations of the complexity of EEG
and GSR signals. Therefore, we conclude that the
alterations of the activities of the brain and skin
are coupled. The conducted investigation in this
research is novel since, for the first time, we ana-
lyzed the correlation among the alterations of EEG
and GSR signals in auditory stimulation.

We elaborate on the results by referring to the
brain-skin connection. Due to the controlling role
of the brain on the skin’s activity through the ner-
vous system,31 the brain sends an impulse to the
skin about the stimulus that we receive (music in
this research). Therefore, depending on the type of
music that we listen to, different messages are sent
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to the skin by the brain, which causes different reac-
tions of the skin. In fact, the obtained results for
the response of the skin to music are valid based
on the obtained results in Ref. 32, which state the
changes in the GSR signals due to listening to dif-
ferent music.

In future studies, we can expand this analysis
to examine the correlation between brain and skin
reactions to other types of stimuli (e.g. electrical
stimuli). We can also investigate the correlation
among other organs of humans. For instance, we
can evaluate the correlation between facial muscles
and brain reactions to different stimuli by analyz-
ing EMG and EEG signals. Due to the interaction of
different regions of the brain together,33 we can also
focus on analyzing the association of skin reaction
with the changes in the complexity of EEG signals
recorded from different areas of the brain. Besides,
due to the interaction of various organs of the body
within the network physiology,34 the simultaneous
analysis of their reactions to external stimuli can
be examined. Working on the modeling of the rela-
tionship between external stimuli, EEG signals, and
GSR signals is another future work that can poten-
tially be done by employing fractional models35

or computational analysis.36,37 It should be noted
that all these analyses also can be conducted for
patients with different brain disorders to investigate
how a damaged brain can control different organs
within the physiological network. All these analy-
ses have great importance in understanding human
physiology.
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