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The present article attempts to examine fractional order Covid-19 model by employing an efficient and powerful
analytical scheme termed as g-homotopy analysis Sumudu transform method (g-HASTM). The g-HASTM is the
hybrid scheme based on g-HAM and Sumudu transform technique. Liouville-Caputo approach of the fractional
operator has been employed. The proposed modelis also examined numerically via generalized Adams-Bashforth-
Moulton method. We determined model equilibria and also give their stability analysis by employing next
generation matrix and fractional Routh-Hurwitz stability criterion.

Introduction

As the beginning of the last centenary, the continuous development
in mathematical models has used to analyze the blowout of trans-
missible disease in the epidemiology [1-3]. The investigators obtain
precious information for diverse infectious diseases by study the sto-
chastic and deterministic models. Kermack with McKendrick (1927)
proposed a model beneficial for executing and evolving intricate
epidemic models which considered as basic model in field of epidemi-
ology till now [4].

Numerous communicable diseases can transmit in vertical and hor-
izontal in both directions. Some examples of such human diseases are
Hepatitis B, Herpes Simplex, HIV/AIDS and Rubella, etc. These diseases
are horizontally transmitted in humans and animals through proximity
amidst hosts or by disease carriers, e.g., flies and mosquitoes etc.

Epidemiological models are valuable in comprising, forecasting,
employing, prevention, assessing various detection, therapy and control
programs [5-7].

In year 2003, the first-time outburst termed as Severe Acute Respi-
ratory Syndrome (SARS) occurred in mainland China ([8,9]) and other
outbreak named as MERS occurred in South Korea in year 2015
([10,11]). The recent outbreak is occurred in China and spread world-
wide in the form of COVID-19. It is a transmissible disease due to a new
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virus called as novel corona virus. Since November 2019 to till date,
cases of corona virus detected in several countries.

In the end of December 2019, first time it was recognized in Wuhan
city (China). In February 2020, WHO announced it as pandemic and
named it “COVID-19” and the ICTV declared “severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)” [12]. Some studies state that it
may be originate from bat or pangolins [13], and also, the spread of the
virus may be connected to a seafood market ([14,15]) but no report
confirms about the intermediate host. The patients of COVID-19 shown
early identical symptoms as MERS-CoV and SARS-CoV infections like
cough, tiredness, sore throat, fever, conjunctivitis and also in severe
cases bilateral lung penetration [16]. In addition, some patients may
suffer from diarrhea, loss of taste or smell, without any signs of
breathing disorder ([17,18]).

From a few decades, significant development has made within the
field of FDEs due to its applicability in the miscellaneous area of science
and technology (Oldham and Spanier [19], Podlubny [20], Miller and
Ross [21]). In 2014; El-Shahed et al. [22] considered childhood diseases
model with fractional derivatives. Atangana et al. [23] discussed frac-
tional order model for spread-ness of river blindness disease. Salman
et al. [24] studied HBV infection model with fractional order derivative
and Area et al. analysed fractional order Ebola epidemic Model [25],
Sardar et al. developed Dengue Model with memory effect [26],
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mathematical model of HIV discussed by Babaei et al. and Baleanu et al.
[27,28] and Baleanu et al. [29] examined a rubella disease problem
pertaining to Caputo-Fabrizio operator.

There are numerous epidemiological models such as SIR model [30-
32], SIS model [33], SEIR model [34,35], SIRC model [36,37], etc.
which generally depends on the compartments.

In the literature of numerous mathematical models which study ex-
istence and uniqueness properties, stability analysis and control theory
of biological and epidemic models with fractional order derivative
[38-40]. Gao et al., in [41] studied of COVID-19 mathematical model in
the edge of fractional calculus in Caputo sense by ADM. Atangana pro-
posed that the virus can be transported from deceased individuals to
other individuals [42]. Gao, et al. [43] reported a novel study for a
replication model of the COVID-19 endemic and obtained the optimal
parameters for the model to support in controlling the transmitted and
spread the virus. Recently, Qureshi and Atangana [44] considered a
model with the contribution of novel fractional operator to examine the
diarrhea virus model.

Now a days many effective techniques are employed to get analytical
and numerical and results for the epidemic models with fractional order
derivative, such as Adomian decomposition method [45,46], homotopy
perturbation technique [47], modified Laplace decomposition algorithm
[48-50], HAM [51-53], ¢-HAM [54,55], g-HATM [56].

Integral transform techniques are largely employed to solve differ-
ential equations of physical importance. Sumudu transform was coined
and studied by Watugala [57]. A number of important and useful results
for the Sumudu transform were developed by Chaurasia and Singh [58],
Belgacem et al. [59] many others.

In this work, a powerful computational method g-HASTM is involved
in becoming the solutions of the time-fractional derivative of the Covid-
19 model.

Singh et al. [60] proposed and developed the q-HASTM for exam-
ining nonlinear differential and integral equations. The g-HASTM is
based on homotopy polynomials, Sumudu transform scheme and g-
HAM. El-Tavil et al. [54,55] proposed a modified technique of HAM
namely g-HAM. It is well known that HAM comprises a specific auxiliary
parameter # for controlling the region of convergence, however, ¢-HAM
involves 7 and n in such a manner that HAM solution is special case of g-
HAM for n = 1. The suggested scheme is trustily useful for solving
nonlinear models without considering linearization or any other
restrictive suppositions and also disregards round off errors.

We have analyzed the nonlinear Covid-19 model pertaining to time-
fractional operator by using a generalized Adams-Bashforth-Moulton
scheme [61-64].

Preliminaries

Here, we define the required definitions and results of fractional
operators and the Sumudu transform (ST).

Definition 2.1. [20] The Liouville-Caputo (LC) fractional operator of
order ais presented as

. , 1 '
SO =S T = s / (=) (s, mezt

we have
D% =0,/ <a
I'(7+1
g :ﬂt”‘ﬂ/z a.
O/ —a+1)

Definition 2.2. The integral operator /¢ of fractional order a > 0 for the
function f : %t —.% in Riemann-Liouville (RL) sense is expressed as
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we have

= F{ﬁ;ﬂ)t”“,l > aand 7 f(t) = f(t).

Definition 2.3. Let us assume

o = FOBR2,6.6 > 0f(1)| < M if 1€ (— 1) x [0,00)

is a set of functions, then the ST operator over ./ is expressed by the
formula [57,59],

F¥0) =70 = [ e unanue @.¢)

Definition 2.4. The ST of LC fractional operator [58] is expressed as
m—1

ID@)] =u T =Y u I PO0+)m—1<a<m
k=0

and .Y[1] = 1,/{%} =u"1n>0.

Authors have mostly considered the Caputo type fractional de-
rivatives in comparison to Riemann-Liouville derivative for the reason
that Caputo approach is more suitable and convenient for handling
physical problems.

Formulation of mathematical model

Chen et al. [65] introduced a model and simulated the data of
spreads from the source of infection to the infection in people.

Khan and Atangana [66] describe the fractional- order mathematical
modelling and dynamics of the corona virus.

We will assume that all the parameters as well as variables involved
in the model are non-negative during a present study in the individual
community.

The total population of individuals considered as N(t) which is
separated in five compartments such as susceptible S(t), exposed E(t),
symptomatic infected I(t), asymptotically infected A(t) and recovered
R(t) populations.

The following assumptions carried out during model formulation

e The recruitment of individuals increases the class of susceptible to
the susceptible group at a constant rate I1.

The childbirth rate and natural mortality rate of the individuals is
indicated by parameters p and & respectively.

e The susceptible individual has been infected over ample contacts

with infected individual I(t) via the given term p w, where contact

rate fis disease transmission coefficients.

The transmission among the asymptotically infected individual A(t)

with susceptible individual S(t)could take place at form ﬁy/w,

where y € [0, 1] is transmissibility multiple of A(t) to the I(t), if y =

0, no transmissibility multiple will exist and so vanish, if y =1, then

transmissibility multiple will exist and same like infection.

e The parameter ¢ is proportion of asymptotic infection. The param-
eters 6 and o respectively indicate the transmission rate after
accomplishing the incubation period and reduced into infected,
joining the class I(t) and A(t).

e The individual in the symptomatic group I(t) and asymptomatic
group A(t)are removed at recovery rates of y and 7 and are added to
the recovered R(t) compartment.
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o The susceptible individual will be infected after the interaction the
reservoir or the seafood place or market class P(t) through the term
given by n%, where 7 is disease transmission coefficients from
S(t) to P(t).

The I(t) and A(t) individuals contributing the virus into reservoir or
the seafood place or market class P(t) at a constant rate ¢ and ¢
respectively.

The removing rate of the virus from the reservoir or the seafood place
or market class P(t) is indicated via «.

Using the above assumptions to mathematical representation of the
model comprise of the fractional order dynamical system as

des SI SA SP
=N-B=—py——p=——5S
dr PN—Pry =1y
dE  SI SA
=B 4 Py —+ " — (1 — ¢)0E — pwE — SE 1
Jia Pyt Ty ( ?) Po. @
de1
== (1—¢)0E —yI -4l
gz = (L= @)0E—yI =6
d°A
die = pwE — 1A — 5A
R _ I+7A — 5R
a7
ap
d = ol + €A — kP
dr*

Subject to conditions

S(0) = Sy > 0,E(0) = Ey > 0,1(0) = Iy > 0,
A(0) = Ag > 0,R(0) = Ry > 0,P(0) = P, > 0.

(2)
Analysis of the model

Lemma 4.1 (Generalized mean value theorem)

Assume that f(t) € #[a,b] and LC fractional operator Z/f(t) €
Z(a,b] for 0 < a <1, then we get f(t) = f(a) +r(1a)9§’f(t)(t7 a)® with
0<t<v/ Ve (ab]

Remark 4.1. If f(t) € #[0,b] and LC fractional operator Zlf(t) €
Z(a,b] for 0 < a < 1. It can be noted from Lemma that if Z7{f(t) > OVt €
(0,b], then the function f(t) is non-decreasing and if Z{f(t) < 0Vt € (0,b],
then the function f(t) is non-increasing.

Theorem 4.1. For the given model (1) the biological feasible region is in
%’i given by the following X =

{(5(0,E0).10).A(0) R(@),P(1)) € 75 10 <S+E+1+A+R <K 0 <P
<P}

, Where the boundedness, uniqueness and existence hold for the model and
solution remains in X.

Proof. In view of Lin from the theorem 3.2 [67] and remark 3.2 [67], we
obtain the uniqueness and existence results of the model. We have to
demonstrate that the X is positively invariant

s
=1I>0
dr* |,
d"E SI SA  SP
= 50
@), , PNy Ty =
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d*I

=(1—-¢)0E >0
T —-apE>
a
A = ¢wE >0
di* |
d’R

=yl+7A >0
|, 'tH=
dp
| =ol+eA>0 ©)
% poo

on every hyper plane bounding the non-negative orthant, the vector
field points into .#5.
Now, By means of the circumstance that N =S+ E+1+A + R

d’°N _d*S d°E d’l d"A d°R

v ar de ae T ae T ae

o

d*N
So o =4 —0ON

On utilizing the Laplace transform in equation (4), we achieve the
result

N(t) = <—’§ +N(0))Ea( —6t") + &, where E,(—6t%)is termed as the

Mittag-Leffler function.

Since 0 < E,(—6t") < 1,if N(0) <& then N(t) <%, so the closed set X
is the positive invariant set of the system (1).

The compartments population can be normalized by the Nadopting
the current state variables
x=5y=Lz=fu=4v=8w==Fandy =14

Therefore, the population is now normalized and non-dimensional
form as
d’x

%:,u—/}xz—ﬂl//xu—ﬂxw—ﬁx

a

d
=2 = Pzt — (1= )0y — oy — oy

d’z
o (1—¢)0y—yz—6
g = (1= )0y —yz—52
du
dr*

= ¢wy —Tu — du

d*v
T yZ+ 71U — v
d*w
dr®

= 07+ €U — kw 5)

with initial conditions

x(0) = x> 0,y(0) =y > 0,2(0) = 2 > 0, (6)
u(O) =y > O7v(0) =vy > O,W(O) =wy >0

Stability of fractional order system

Consider
d* d* dz
d_z: =fi(x,y,z,u,v, W)7d—; =f(xy.z,u,, W)’d_ﬂf =f(6y,z,u,v,w)
d(l d(l d(l
d: :f4(x7y72>’4a v, W)v?: :fS(x7y~,Z!uv V7w)7dT:V :fﬁ(xay7z-,uvvv W) (7)

where 0 < a < 1 and dd—; is LC derivative.
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stable

stable ™2 ypstable >

-ma/2 unstable

stable

Fig. 1. Stability region for the fractional order system.

o o u d o o]
ox dy 0z Ou dv ow
ox dy 0z Oou oJv ow
N
ox dy 0z Odu oJv ow
Let J = i i i (8)

hod % A d %
ox dy 0z Ou oJv ow
ox dy dz oOu OJv Ow
b U K U % %
ox dy 0z Ou odv ow

be the Jacobian matrix of the system.

Theorem 5.1. The model is said to be asymptotically stable (locally) if
every Eigen values of the J at its fixed point satisfy |arg(1)| > an/2.

Fig. 1 demonstrates that the stability region for the model with
fractional order exceeds in comparison of system with integer order. It is
clearly observable from the figure that stability region for an integer
order system lies only in the left part of the vertical axis while it lies also
in the right part for fractional system.

Routh-Hurwitz (RH) stability criterion for system of fractional order

Let us assume a system of fractional order expressed as
d” ) .
%fli(z) =il 3 000596),  1=1,2,3,4,560 <a <1, 9
with the initial conditions (IC):
45/1(0) :Ilov%z(o) =203 (0) :,,’/307/4(0) =S40 5 (0) :5/507(5‘6(0) =760
(10)
To evaluate the equilibrium points of Eq. (9), taking D} Y;(t) = 0, this

implies that fi(y1.55.55.74.45:5) = 0-Let X (41,05.43.44.45.5) be an
equilibrium point of system (9). Next a non-negative term e(t)i.e.y,(t) =
: +ei(t) is added to the equilibrium point for desired perturbation.
Thus, we have

a* . % * * *
%(}‘i +&) =fily) T+t 0t a0+ €ays + €5,06 + €6),

d%e; N N N “
= dt“‘ :fi(yl + eyt €203+ 3,04+ €a,y5 + S5,96 + 56), an

The use of Taylor series expansion yields
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d's; v s e s w0 of; of; of;
dr® _ﬁ(yl 7/!/2’(;/37[;/4’;/5’/6) +6y1 chl +a/2 cq€2 +()y3 cq€3 +ar)’/4 eq
Jfi dfi .
e+ Y €5+ U €6 + higher ordered terms.
‘),5’5 eq Y6 leq
(12)

Since fi(s1.42.43.44:#5.76) = 0, then
da i 6,- o,' a[ di ai ai
jz % el+f eZ+f €3+ b E4+f 65+f s (13)
d* Ol Il sl Waleg sl Wsleg

Now Eq. (13) can be written as
d%e;

i 1
= e, (14)
where

G

ox dy 0dz Odu dv ow

ox dy 0z Odu v ow

. ox 0 0z Ou oJdv ow

€= (61752753,64.55756)T,J(S )= . y . .

Fo dFi G % B O

ox dy 0z Ou OJv ow

ox dy 0z Ou oJv ow

ox dy 0dz oOdu dv ow

(15)
Here J(3") satisfies the expression C1J(3')C = D,

A4 0 0 0 O O
0 4% 0 0 0 O

10 0 4 0 0 O
07000/1400 (16)

0 0 0 0 4 O
0 0 0 0 0 4

where 11,42, A3, 14,4sand ¢ denotes the eigen values of J, C is the
Eigen vector of J and D is a diagonal matrix.
The initial conditions (IC) for system (9) are

21(0) =41 +€1(0),,(0) = 43 + 2(0), 45(0) = 43 + <3(0)

24(0) = 13+ €4(0),45(0) = 45 + ©5(0), 5(0) = 5 + <6(0). a7

Using Egs. (14) and (16), we obtain

—e = -1 —_— -1 = -
Jac=(CDC e —o(Cle) =D(C'e)
d* —1 T
Henced—taé’: D E=C el =((1,05.05) . as)
Therefore,
d(lé‘_
Lo nG, i=1,2,3,4,5,6 19
dr b a9

The solutions of Eq. (19) are given by

Ci(t) = Ey(417)¢:(0), i=1,2,3,4,5,6

where {;(0),i=1,2,3,4,5,6 are arbitrary constants and Mittag-Leffler
functionE, (1;t*) = Zf:()l_((ﬂgﬁ) satisfies the equations %{i = A¢,i=1,
2,34,5.6.
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a . o d [ )
a [Ea(411)8,(0)] = ¢ (0)% [Znom]

Ll L 2 nre
I(

dr + C(3a+ 1)+"']

=¢,(0) at+1) Ta+1)

F(n+l)£"’”)

(-Caputo derivative of a constant is zero andD?t" = TatT)

s 2B

1+ 42 .
* NC T }

:Cl(o)ﬂl F(a+1)

= Cl(o)llEa(lllQ)

= MEa(411°),(0) = A,

Then £, (t),{5(t), £5(6), {4 (1), {5 (1), {6 (t) are decreasing and thus <, (),
e (t), e3(t), €a(t), es(t), €6(t), are decreasing.

Hence the equilibrium point I is termed as the point of locally
asymptotic stability if |arg(4;)| > a5,i = 1,2,3,4,5,6is fulfilled [68].
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(1—¢)0y + gy + oy
—(1— )0y +rz + 52
—pwy + tu+ du
—0Z — €U + KW

<’§, 0,0,0,0, O) are given by

and O(Y)= at DFE point Jp =

# H H

0 pB= Z pc

ﬁ5 ﬁu/5 Ur

Fotm| - o0 o of,_ .

% 00 0 0

0 O 0 0
(1-¢)0+gw+6s 0 0 0

oy (1— )0 y+8 0 0| .,
V_an L o 0 145 o |0k=1234

0 —0 LS

Then the inverse of the transition matrix is also computed as

- 1 -

— 0 0 0
To obtain the fixed points of the model (5) equating the RHS of the (1-¢)0+¢w+6
model (5) to zero i.e. 50k + Okt — 30kp — Okt 1 o 0
d®x d*y d°z d®u d®v 0 d*w 0 vl = (r+0)k(6+7)(6+0(1 — @) +¢pw) y+6
die T e T Udie T U dee T U de T die rkp® + ko 0 1
iefi(x,y,2,u,v,w) =0, we get (y+0)k(6+7)(6+0(1 — @) + ¢pw) 746
s 0 600 + Oot — Gotp + yepw + Sepw 4 € 1
P Py o = 0 = LG+ o+ 0+ 001 —@) +d0) ok Frox ]
Bxz+ Pyxu+nxw — (1 — ¢)8y — powy — 5y =0 So
(I1—¢)0y—yz—56z2=0 A Ay A3 A
Fyi_]0 0 0 0
Py —tu—56u =0 ' 0 0 0 0
0O 0 0 O
yz+tu—ov=20 Hence,
Ro— 00k + Okt — 00kp — OkTdh P " n ykpw + Skpw p " " 606 + Oot — Ootp + yedpw + Sepw
T TG00 — g+ w) 6 r+OKGE+ D)6+ 0(1— )+ ) 5 (1 +OKE+ )6+ 01— )+ dw) 5
R, = PROOK(L = §) + Oxcefp(1 = ) + Oomnp(1 — ) + (1 + ) (kpwflyp + 0onp + edomp) + Sonp

Sy +6)k(6+1)(6+60(1 — @) + pw)

oz+eu—xkw=0

When y = 0, then J, = (%, 0,0,0,0, 0) which denotes adisease-free
equilibrium (DFE) point of the system (5).

Theorem 5.3. 3y = (%,0,0,0,0,0) is asymptotically stable (locally) if

Ry < 1 and became unstable if Ry > 1.

Proof. As considered model has DEF 3, = (%,0,0,0,0,0), Using next

generation matrix (NGM) method, the reproduction numberR, for the
COVID-19 model given by (5) can be calculated from the relation Ry =
g(F-V1), go stands for spectral radius of the NGMF-V~1[69-71]

Assume Y = (y,z,u,w) then the system can be rewritten as
4 — 7(Y) —0(Y), where .7 (Y) is transmission part which enunci-
ates the generation of novel infection and U(Y) is transition part i.e.
transfer of infection from one compartment to another.
pxz + pyxu + nxw
0
0
0

The Jacobian matrices of .7 (Y) =

The variational matrix J for the system determined at Jo

r Ho o H ot
6 0 Py b 0 -
H U H
(1= _ _ = = =
0 —(1-¢)f—gw—5 U Py 0y

JS)=1|0 (1—¢)o —y—96 0 0 0
0 20} 0 —-1—-6 0 0
0 0 y T -5 0
0 0 c € 0 —x

has the two Eigen values are negative i.e. —§ (twice) and other can
evaluated by given polynomial equation

PraP v+ +asd+a, =0 (20)

a={F+30+k+1+ (1 —@)0+ gw);
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1
B = (278% 4 38° + y660 + 2670 + Yok + 38°k + 86k + ¥t + 26°T + 66
+ 6kT — PO — Y50 — 25°0¢p — 50kp + pOuP — 560t + Yo + 25° pw
+ Skpw + Stpw — Pudyw);

%(}/(53 + 8" 4 78°0 + 870 + 275k + 38°Kk + y80k + 26%6k + ¥t + 81
+ 7861 + 501 + Yokt + 28°KkT 4 60KT + n6uc — POUT — Y5 0 — 5°0¢)
— y80kp — 28Ok + PSOUP + POxup — nbucep — yo0trp — 5* 01

— 80kt + POuT) + 18 P + 5 P + yokpw + 268*kdpw + enudo

+ 78t + 1w + Skrpw — Pyudwo — Poudyw — Prudyo — poOu
— pOxp);

a = é (y8K + 6*k 4 7520k + 50k — p6Oku — PoOI — SOk + 5nOuc
+ y8%KkT 4 8K + y60kT + 8% O0kT — POKUT + nOUCT — Y5 Ok — 5Ok
+ B8Ok — SnOucd — ysxtd — 5*0kr + POxutdh — nuoTd
+ y8kpw + 8 xpw + yenudw + denugw + ydxrdw + S krpw
= Preudyo — Boxudyo);
Using RH criteria [72,73] for the polynomial ) isa; > 0 fori=1,2,
3,4 and aj,a,, a3 > alas +a3 can be easily satisfied.

Theorem 5.4. The endemic equilibrium point 3" (x*,y", 2" u",v',w") of
the fractional model is asymptotically stable if Ry > 1.

Proof. The variational matrix of the system (5) at " written as

—p — Py’ —nqw’ =5 0 —p —pyx
Bz + Py’ +nqw’ ~(1-9)0—gpo—5 px pyx’
IE) = 0 (1—¢)0 —y—6 0
- 0 ) 0 76
0 0 y T
0 0 o €

has the one Eigen value is negative i.e. —§ and other can evaluated by
given polynomial equation

B 4012+ 0,27 4 b2+ by +bs =0 @1n

where,

b=y +46+0+k+17—0p+ po+ pyu” +nw' + ")

by = (3yd + 68% + y0 + 360 + yk + 4k + Ok + yT + 35T + Ot + kT — YO
—360¢p — Ok — 0t + ypw + 35w + kpw + 1w + Py (y + 35+ 6
+k4+7—0p+ o) +ny +35+0+k+7—0p + po)w' — pox
+pOPx” — Ppwax + fyz + 3P0 + pOr + Pz’ + iz’ — pogz
+ ppwz’)
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by = (3y8° + 48° + 2760 + 36%0 + 3k + 66%k + y0k + 360k + 2yt + 35T
+ 767 + 2807 + yx7 + 36kT + OkT — 2Y80¢p — 3570 — YOk — 360K
— y0rp — 280rh — Oxtp + 275w + 36w + yxpw + 35k + yrdhw
+ 281w + ktpw + Py (36* 4 Ok + Ot + kT — Okp — Ot + Kpw + Thw
+ 7284+ 0 +x + 17— 0 + po) + 5(20 + 3k + 21 — 20¢ + 2¢w))u’
+1(38° + Ok — Okp — Otp + ko + T + y(26 + 0 + k — O + Pw)
+ 6(20 + 3k — 200 + 2¢w))w" — 2p50x" — pOxx" — nbox” — pOrx’
+2p60px" + POxpx’ + nogpx” + pOrpx’ — endox” — Pydywx”
— 2psppax’ — Prdwax” +2py57 +365°2" + Proz’ + 2607 + Pyxz’
+3p6kz" + pOxz + Pyt +2p6t7 + POtz + prr — Progz
—2B80¢p7" — POk — POtz + Pydwz + 2psdwz + prpwz
+ propwz’)

by = (y8° + 8 + 7520 + 6°0 + 3y6*k + 48°k + 2780k + 360k + 8T + 81
+ 7801 + 801 + 2y6kT + 365°KT + yOKT 4 260KT — 570 — 50
— 2y80kp — 36°0kp — Y60t — 5°0tp — yOKTh — 280KTh + Y6 PO
+ 8 pw + 2ok + 38 kpw + yordw + 51w + yrrdw + 26kThw
+ (8 +k1(0 + o) + 8% (0 + 3k + 7 — 0 + pw)
+6(—0(2« +17)(—1 4 ¢) + 1w + 2&(7 + Ppw)) + y(6* + kT
—0(x +7) (=1 + @) + kpw + 1¢pw + 50 + 2k + 7 — O + Ppw)))u’
— p520x" — 2p60kx" — 26n00x" — PoOTx" — Poxtx’ — nborx’ + p520¢px"
+ 2p60kpx" + 26n00¢px" + PS0tx” + pOxTdx” + nborpx” — yendox”
— 28endox” — Pydpyax’ — P8 pyox” — Pyrpyox’ — 2pdkpyox”
+Py8*7 + ST + Pro6z + p5t0z + 2pydkz’ + 357k + Prokz
+2B80k7 + Pydrz + P8tz 4 PyOrz + PoOtz + Pyxrr + 2pbkrz
+ POkt — Pyobpz” — P5POdz — PyOkdz — 2P0z’ — Pybrgpz
— p8Otpz — pOxtpz + Pydpwz’ + p5 oz’ + Prrdwz + 2pskpwr’
+ predpoz’ + pordwz” + prrpwz +nw' (8 + 620 + 367k + 260k + 8t
+ 801 + 26k7 — 520 — 260k — 801 — OkTp + 5 Ppw + 25kPw
+ 61w + k1w + y(8 + kT — O(k +7) (=1 + @) + kpw + 1w + 5(0
+2k+ 17— 0 + pw)) + OxZ))
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bs = —y + 8K+ 6k + 78O0k + 80k + y5 k4 8 kT + y80KT + 52 OKT
— y8*0kp — 5 Okp — Y60kt — 52OkTh + Y5 KW 4 Ko + YIKTPO
+ 8kt + By + 6)k(5 + 1)y (5 + 0 — 0 + pw)u”
+ (7 +6)x(5 + 1) (8 + 6 — 0 + pw)w” — p5*0kx" — 5*nfox’ — poOkx’
— 8nlotx” + 5 Okpx” + 5 nlopx” + poOktpx” + dnbordx” — ydendwx”
— Senpax’ — Pydcdywaox” — P& kpywaox” + Pysikz + p5kz + Pyoxz
+ B8Oz + Pyoxtz’ + potkts + PyOkrz’ + Pobkz — PyoOkpz
— 2820z — Pybtps” — PoOktz” + Pydxpwz + P8tk
+ pyxrgpoz + poxtwr

Using RH criteria for the polynomial is b; > 0 fori = 1,2,3,4,5,
bybybs > b2b, +b% and  (byby —bs)(b1bybs — b2by + b2) > bs(byby — bs)*
+b;b? can be easily satisfied.

The family of Voltera type Lyapunov function

6
Llyygazss = o06) = D tf(,;/,- 4 i l"j)
i=1 S

In 2014, Aguila-Camacho and co-workers [74] showed an important
result to estimate the quadratic Lyapunov functions in terms of LC
fractional operator when a € (0,1).

Lemma 5.1. Consider 4(t) € R*be a continuous and differentiable func-
tion then

ﬁ /,(t) -4 7(*1’11;/(1‘) <(1- %* ﬁ/,(I) s €R", € R"Va
aw\P\V Ty T ) S S0 ) ae?\V 7

Theorem 5.5. ((Uniform Asymptotic Stability Theorem)) [75]

Let," be a equilibrium point for the system (5) and Qc.%% be domain
involving ,". Let L[t,4(t)] : [0, 00]—% be a continuously differentiable
function such that

w1(p) SLts(0)] < wnly) and ELlt,f(6)] < —unly), where 1)),
«3(y) and «3 () are continuous and posmve definite function on Q. Then
the equilibrium opoint of the system (6) with I. C. (10) is uniformly
asymptotically stable.

Let us assume the subsequent Voltera type Lyapunov function

L(x,y,2,u,v,w) = A, (x—x* —xﬁn%) +A, (y_y* _y*znyy_*)
+A; (Z -7 —z*lni*) + Ay (u —u - u*lnl,)
z u
+As (va* 7v*ln%) +A¢ (wfw* 7w*lniﬁ>
v w
then

d* d* % da° «

FL(X Yy 2, Uy VW) = 1% (xfx —x lnxi) +A2% (yfy -y lnyl)
d* P d* e e, U

+A%3<z—z -z ln;) +A4ﬁ (u—u —u ln;)

da° eV d oW
+A5%(V7v —v ln;) +A6% (wfw —w lnm)

using Lemma 5.1, we get
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d” X\ d% dy
L) aa(1-2) (-2
dr Lo BV w) < ‘( x(t)) d 2( y(t)) di
z d’z u” du
A1) CEa (1L
" < z(r)) dr < u<>) ar

v d®v w d’w
+A5(1 77) —+A6(1 7W) o

<A 17% (1 — Pxz — Pyxu — nxw — x|

=

—_

— ¢)0y — pwy — dy]
(1 —#)8y —yz— 2]

)
y—) [Bxz + Pwxu+ nxw — (1

7)-

i)

(
( ¥()
(-
(1= Yo =l s (1= 2 Vet

+A6(1 7%) {az + eu — kw)

Using the relations at the steady state u = fx"'z" + pyx'u" + nx'w’ +
8x", fxz + Pyxu + npxw =
(1-¢)0+ o+ 38y

(r+90)z",pwy = (t+ S)u',yz = 6v', 02 + eu = kw'.

o

%L(x7y7za M,V,W) <A (1 -

%) P+ pux’u” 4w+ ox" — pz

— Pyxu — nxw — 8x]

(1=p)0+ ¢ +8)(y" —y)

(B — g’ + paz’ 4 pux’u’ — Py’ + pyxu’ +px'w’

— w4 naew” +6x” — Pz — Py — nxw — 6x]

(1225 ) (= o+ g+ )0 -y)
+A4(1—£>(T+5)(u —u)+A5(1 %)5@ )
+A6(1—% K =)

AL

—2) +Bypu’ (x —x) + Py’ —u) +pw' (x" —x) +px(w —w) +8(x"—x)]
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z(2)
+A4(17u”—t) (t+6)(u fu)+A5(1 %)5@ —v)
A

< - D) [(Bx"+px) (x —x")(z — )Py’ +qw +8)(x —x)?

= 2) (=) +nx(w — w) ]

A

- D)0+ +5)(" -y’
+%(7 +8)( 2
+% (t+0)( —u)’ +%5(V*W)Z
+%K(W* w)’
Clearly ¢ L(x.y,z,u,v,w) is negative definite when a € (0,1), in view

of the Theorem 5.5, the endemic equilibrium point is uniformly
asymptotically stable in the interior of Q, when it exists.

Solution by qg-HASTM

Applying the ST on the system (5), we have
S x(t)] — 7 "x(0) = S [u — Pxz — Pyxu — nxw — 6x]
”—aey[y(t)] — /f"y(O) =

/liu,][Z(t) ] — lliuZ(O)

S Pxz + Pyxu + nxw — (1 — §)0y — pwy — 8y]

=1 - )0y —yz— 57

oS u(t)] =« *u(0) = . [pwy — tu — Su]

/liaeY[V([)] — /f"v(O) = ,]T}’Z +Tu — 5V]
//’“,Y[W(t) ] — MiaW(O) = ,7[0'2 + eu — KW] (22)

On simplification

I x(1)] —x(0) = 2" [u — Pxz — Pyxu — nxw — x|

T (0)] = (0) = o7 [xz + pyxu + mxw — (1 — $)by — poy — &)

Tz(t)] =2(0) = (1 — )by — vz — 57

Flu(t)] - u(0) = o*. [pary — tu — 5u]

FW(t)] = v(0) = " Flyz + Tu — 5]

Fw(t)] - w(0) = S0z + eu — kw] (23)

Consider the nonlinear operator as
A[@i(t,q)] = Z[@i(t,q) | —x0 — " [u — pO1 (2, q)P3(t, q)

- ﬂW‘DI (t7 q)¢4(t’ q) —nP, (tv q)q)ﬁ(t> Q) — 69, (ta q)]
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N[ @2(t,q) | = F[@o(t,9) | —yo — T [pD1 (2, ) D5 (t, q)
+ Py @i (t, q)Pa(t, q) + 1P (1, 9)Ps (1, ) — (1 — $)0Ds(2, )
- ¢a)(1)2 (tv q) - 5(]‘"2 (t7 q)}

A3[@s(t,q) | = S [@s(t,9) | =20 — S [(1 = )0P(t,q) — yP3(t, )

= 6®s(,q)]]

[ @4(t,q)] = S [®a(t,q)] — o — T [p®s (1, q) — (z + 6)@4(t, q)]

5| @s(t,q) ] = T [®@s(1,q) ] —vo — T [yD@s(t, q) + @4 (t, q)u — 5Ds(t, q)]

S s[®s(t.) ] = F[@s(1,9)] — wo — o [o®s(1,) + eDy(1,q) — kD (1, 9)]
(24

Where ®;(t, q) are real function of t, q.
Now construct a homotopy as

(1 =ng).L[@1(1,q) —x0(1) ] = RA ()41 [@1(1, ) ]

(1 =ng) (@21, q) = y0(1) ] = RA ()4 2[Da(1, ) ]

(1 =ng)-L[@3(1,q) —20(t) | = AA (1)13[Ds(1, ) ]

(1—ng) (@4 (t.9) — uo()] = A7 (1).14[®s(1,q)

(1 =ng).[@s(1,q) =vo(1) ] = hA ()4'5[Ds(1, ) ]

(1= ng).7 [e(t, ) — wo(1)] = h7 ()45 o1, q) 25)

In Eq. (25) #(t) # 0 denotes the auxiliary function, # is auxiliary
parameter.

Hence embedding parameter g enhances from zero to 1 then solution
varies from the initial guess to the needed solution.

Next the expansion ®;(t,q) in Taylor’s series w.r.t. ¢, we have

(D(t q)—X() +qum (DZ(I q)_yo +Zq ym
m=1 m=1

Ds(t,q) = 20(t +Zqzm s 4(1,q) = uo(t) + Y q"u(t)

m= m=1

®s(1,9) = volt +qum s @6 (1,9) = wo(t +qum

m=1

If the auxiliary linear operator, the initial guesses, # and /7 (t) are
selected in appropriate manner, the above series at ¢ =1,

U

(—) () = o) + S (1) (%)

m=1
(1) m (27)
n

InbZm = {20,21,22, ", 2n }

we have

1+ sz

m=1

W) = v+ 3 vt G)m w(t) = wo(r) + ﬁ: W (1)

Define the vectors
— —
Xm = {x[]7x17x27 "'«xn}v Ym = {yo,yhy27

Vit W = {wo, wi, wa, -, w, }
(28)

-_— _ e
Up = {u()-,ulvu27"'7un}7 Vm = {V(J7V17V27"'7

Differentiating the Eq. (25) m times w.r.t. q and take ¢ = 0 and divide
the resultant by m!, we achieve the mthorder deformation equations

S n(0) = Z¥n-1(0)] = BT (1) 2, [50 1 (1))
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S nl0) = Lyyms (1)) = BT ()., 7 (1)
L lent) = oz (1)) = BT (O, o (1)]
It (£) = Fontimr (£) ] = BT (0). . i1 (1))
S (1) = Zumer (0] = B ()52, 50 (0]

S Wn(1) = LWt (1) ] = BT (1), [ (1)] (29)

Operating inverse ST on both sides and settingq = 1,.7(t) = 1, we
obtain

(1) = Lt (1) + 1S (A, [0 (1)] )
Y(0) = L (6) + 17 (A, 51 (1)] )
2(t) = Ynzm s () + 2T (Z T (0])

(1) = it 1(6) + 57 (22 (1))
vnl0) = 2w (1) + 17 (T 0)

Wn1) = 2y Wnr (1) + B~ (A ()]

oom<1 :
Where, y,, = {n;m 21 and %, [Xm1(t)] = (m}w (Da@;ﬁf‘f))qzo.
So,

R ()] = S [%o (1) ] = X0(2) (1 J@)

m—1
ﬂ/ 1]ﬂ</< Xk Zm k— 1 )
k=0

—py.s ( mZxk(t)u,,,,k,l (1) ) —ns ( mixk(t)wm,k,l (1) )

=07 P (t)]}

%;;Lmv)]—y[yml(t)]yo(o(l)zﬂ{ﬁ ( 2(1) 2t )

m—1 m—1
+ﬁy/<7”<2xk(t)umk 1 >+77/< X5 (E) W1 ( )
=0

=~

=0

—(1=9)07 1y, (1) = g0 1y, 1 ()] = 8.7 [ym—1 (1)) }

2, Bt (0] = STz (0] = 20(0) (1-22) = (1
= )OSy, ()] = (r +6) [zm-1(1)]]

%;[m@)] = 1 (8)] — uo(t) (1 7)%)
— P07y, (1) = (T4 8)- [um_1 (1)]]

ATt ()] = ST (0] = o) (1=52) = Sz (1)
— T (U1 (1) ] = 8.5 [V (1)] ]

Tt (1] = Tt (0] = wo(0) (1 =22) = 0.7 (21 (1)
+ e [t (1) ] = &S [Waner (1)]] (30)

Therefore, we have
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(1) = 2, 5mr (£) + T <,7[xml ()] = xo(t) (1 - )%) — {,Mm

_ ﬂ,] ( mi:xk(t)zm,k,] (t) ) — ﬁl[/y < mz::xk(t)u,,,,k,l (t) )

_ ﬂJ( ”1: xk(l‘)kal(t)> - 5'y)[xm1(t)]} )

(/[ ()] =yo(r) (1 -%2)
iy {/3/( S w0z (1) > + /sy/y( S kO () )

+’7/<Exk Wik 1()) — (1 =)0y, . (1)]

k=0

— o7y, (0] = 87 Ty (t)}} )

2(t) = 2w (8) + 1T (,,‘/[z,,,,l ()] - 2(1) (1 - %) (1

~ DOS 1 (0] = (74 8) w1 (1)])

(1) = Lyt (1) 07 (L Tinr (0] =0 0) (1 =22) = g0 Iy, 1 (1)

— (e +8) S Tun1(0]] )

n(0) = Zun 1 (0 +07 (S 1 (0] =v0(0) (1 =22) =l 2 (1)

e L U1 (1)] = 8 s ()] )

Wm(t) :mem—l(t) + fl-(/71 (
= L 5. &
= W1 (] = wo(0) (1 - ;) — 0 [2m1 (1) + €7 [t 1 (1)]
ki (0]])
€30

Therefore, the solution of the fractional model is given as follows
(withn=1and 7 =-1)

Table 1
The fitted and estimated values of parameters for the COVID-19 model with
fractional order derivative.

Parameter  Description Value

u Birth rate 0.0018

I} Natural mortality rate or death rate 0.01439

B Disease transmission coefficient 0.05

73 Transmissibility multiple of u(t) to y(t),y € [0,1] 0.02

n Disease transmission coefficient from w(t) to x(t) 0.000001231

3 Proportion of asymptotic infection 0.01243

[ Transmission rate after finishing the incubation 0.1923
period becomes infected and joining the class y(t)

® Transmission rate after finishing the incubation 0.1923
period becomes infected and joining the class u(t)

7 Recovery rate z(t) to v(t) 0.1724

T Recovery rate u(t) to v(t) 0.07

4 Infected symptomatic contribution on the values into 0.1
w(t)

e Asymptotically infected contributing the virus into 0.05
w(t)

K Rate of removing the virus from w(t) 0.01
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Fig. 2. Plots of x(t), y(t),2(t),u(t), v(t) vs. t with initial conditions xo = 0.6,yo = 0.25,2¢ = 0.20,uy = 0.05,vy = 0.02,w, = 0.01 and parameter values given in table

for(@)a=08MB)a=09(c)a =1.
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Fig. 3. Plots of x(t), y(t), z(t), u(t), w(t) vs. t with initial conditions xo = 0.6,yo = 0.25,2 = 0.20,1p = 0.05,vy = 0.02,wy = 0.01 and parameter values given in table
for(@ a=08MB)a=09()a=1.
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0.508

0.5061

0.5041
~=--- a=0.8

— a=0.9

v |

Fig. 4a. Plots of x(t) vs. t with initial conditions xo = 0.6,yo = 0.25,29 = 0.20,uy = 0.05,v¢ = 0.02,w, = 0.01 and parameter values given in table fora = 0.8,0.9,1.

a 2a 3a

t
—0.00033 ———+40.00032 = ——~ _
F2a+1) TGa+1) w(t) = 0.01 +0.0672m

a 2a 3a

t
+0.00182F7 —0.00105

x(1) = 0.6 —0.00926
Qa+1) rFGBa+1)

(a+1)
rQa+1) r@

+0.00000605 ——— ——— (32)
M(a+ 1) TBa+1)
, Numerical approximation method
3(E) = 0.24999 — 013693 — 4 0.02897 ——_
Cla+1) F2a+1) We interpret the solution of the COVID-19 model numerically,
3a (2 1 3a . . . N
—0.002302 — 0.0000065 (2a+ 2) ! eml‘nlo}(lng an extension of the ABM method with the Caputo’s
rBa+1) C(a+ 1) TGBa+1) derivative.
By applying the generalization of Adams-Bashforth-Moulton
I e 3 method the system can be discretised as
1) =0.2-0.02540 ——0.01151 =——~+0.00379 ——~
) Ta+1) TRat1) TGat1) o
p . " Xnt1 :Xo+mw—ﬂxﬁ+1zﬁ+l = PRy — X Wy — X ]
t) = 0.05-0.01 —+0. —+0. 4 ————
u(r) =0.05-0.0 0866F(a+1)+0000591"(2a+1)+0000006 [Gat 1) - )
n — Briz; — U — NXW: — OX;
. i . +l—~(a1 ) jzzo:al,/, w1[u — Pz — Py — nxw; — 8]
t a a
t) =0.024+0.11308 — =+ 0.00285 ——~ — 0.00182 ——
V() + NCESI T2at1) TGat 1)

0.20

-eees 0208
0.10

— =09

s gzl

Fig. 4b. Plots of y(t) vs. t with initial conditions xo = 0.6,y = 0.25,2¢ = 0.20,uy = 0.05,vy = 0.02,w, = 0.01 and parameter values given in table when a = 0.8,
0.9,1.

12



S. Yadav et al. Results in Physics 24 (2021) 104017

meees =(.8
=09
s =]

Fig. 4c. Plots of z(t) vs. t with initial conditions xo = 0.6,yo = 0.25,2¢ = 0.20,uy = 0.05,vy = 0.02,w, = 0.01 and parameter values given in table fora = 0.8,0.9,1.

0.045

0.040

-e=es @=0.8

a=0.9

v =1

Fig. 4d. Plots of u(t) vs. t with initial conditions xo = 0.6,yy = 0.25,2¢ = 0.20,uy = 0.05,vy = 0.02,w, = 0.01 and parameter values given in table fora = 0.8,0.9,1.

h Q
il = Yo+ = + + W = h*
Yut1 = Yo M@ +2) (B 12r Byt 1 W Visl = vo+m[y1ﬂﬂ +al,, — v, ]
—(1 =)0V, — oy, — Y]
hs
s n +7Za5 w1 [z + Tu; — Suj)
ha,. as + 2 J A J J
+m /:ZO jn [P + Byxius + nxpw; — (1 — @)8y; — pwy; — 8] res
) u
. Wap1 = Wo + oz +euy, —xwp ]
T(as +2
Znt1 = 20 er (11— (P)eypnﬂ - }’Zﬁﬂ - &ZH ] (@ )
h
F— 6jn+1(0Z + EUj — KW
Za [(1 - ¢)6y; — 7 — 8] F(oz(erZ)Z sanii[05 &ty =]
a3 T 2 3. n+] j 9 i
In which

ha4 up l n
1 =ty +———— [y’ — (146
Upyy u0+1“(a4+2) [y, — (7 +6)u,] A= j ZBIJ',VIH[;'{_ﬂijj_ﬂWXjuj_ﬂx]'Wj_(sx/']

=0

e
_° E . o S
+ F(a4 + 2) =0 ot [(pwyj (T * )u]]
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Fig. 4e. Plots of v(t) vs. t with initial conditions xo = 0.6,yo = 0.25,29 = 0.20, 1y = 0.05,vy = 0.02,w, = 0.01 and parameter values given in table when a = 0.8,

0.9,1.

wit)
012+

0.10

0.08

----- ¢=0.8

‘ =y =09

0.2 04 0.6

038 1.0
N s |

Fig. 4f. Plots of w(t) vs. t with initial conditions x¢ = 0.6,yo = 0.25,2¢ = 0.20,u = 0.05,v9 = 0.02,wy, = 0.01 and parameter values given in table when a = 0.8,

0.9,1.

1 n
Yoe1 = X0 +m ; Bajui1 [Pz + Pyxiu; + nxiw; — (1 — @)0y; — pwy;

— &yj]

|
=20+—— Bsn[(1 — @)y — vz — Oy,
2 O ) ;:0 st (1= @)0y; — yz; — 6]
1 n
W =uy+=— Y Bujuiilpwy — (1 + 6y
1 0 T(as) o= a1 [P0y — ( )]

1 n
NV - Bs., ) R
w1 = Vo +F(a5) 12:0: st (12 + TU; — 5]

Wz+l =wo+

l n
Bejni1]0z + €u; — kw;
F(aﬁ) ,Z:o: 6,/ +1[ “J J /]

14

n%t — (n—a;)(n+1)"iff =0
Wjur =% (M=j+2)" = (=) =2 —j+ 1) f0<j<n
Lifi=1

Bijnn =2 (n—j+1)" —(n—j)"),0<j<nandi =1,23,4,5,6.

a
Numerical results and discussion

We provide remarkable outcomes to demonstrate the usefulness of
the acquired results. The values of various parameters are given in
Table 1.

Case. ((i))  Firstly, fix parameter values, the eigen values at DFE point
arel; = —0.23261,

Az = —0.16087,43 = —0.08439,14 = —0.01439,15 = —0.0139

and 1¢ = —0.00999with Ry = 0.037897 < 1,via theorem 5.3, DFE point is
locally asymptotically stable and disease demises out.
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Using Rough-Hurtwiz criteria for the characteristic polynomial (20)
is @y = 0.48787 > 0, a; = 0.075404 > 0, as = 0.00386 > 0 and a4 =
0.00032 > 0 and (a;,az,a3)—(a?as +a3) = 0.00012 > 0 can be easily
satisfied.

Case. ((ii)))  fix parameter values, the Eigen values at endemic equilibrium
point are 4; =—0.38987

,A2 = —0.084432,13 = —0.03921, 44 = 0.03520, 45 = —0.01439

and A¢ = —0.01we get one eigen value A4 is positive and using Rough-Hurtwiz
criteria for the characteristic polynomial (21) is by = 0.48831,

by = 0.03822,b3 = —0.00019,bs = —5.06 x 107>, bs = —4.5 x 1077
and (b1babs)— (b3bs +b3) =—1.6 x 10°° < 0 and [(by

by — bs)(bibabs — b2by + b2)] — [bs(b1by — b3)* + byb2]
= —456x101 <0

, S0 by theorem 5.4, the endemic equilibrium is unstable.

Numerical results of susceptible x(t), exposed y(t), symptomatic
infected z(t), asymptotically infected u(t), recovered v(t) populationsand
reservoir or the seafood place or market class w(t) for diverse fractional
order o = 0.80,0.90 and for the integer order a = 1 are calculated. The
outcomes are presented graphically through Figs. 2-4.

Conclusions

This article presents an application of a hybrid analytical method g-
HASTM for the accomplishment of numerical solutions of COVID-19
model with fractional operator. The important goal of this method is
that it can be directly used without linearization or any other restrictive
conventions. Besides, two crucial aims have been achieved in the present
work.

The initial one is the stability analysis of the Covid-19 model per-
taining to fractional operator with the aid of the NGM and fractional RH
stability criterion. It shows that the model presents two types of equi-
libriums, viz, DFE and the endemic equilibrium. The DFE point is
asymptotically stable (locally) for Ry < 1. If Ry > 1, a unique endemic
equilibrium point exists and is asymptotically stable under certain lim-
itations within the feasible region.

The other one is that using a generalized ABM method for the nu-
merical solution of the COVID-19 model involving fractional derivative.
The concerned fractional Covid-19 model can also be analysed through
other new numerical techniques in future with novel outcomes and
conclusions in the context of numerical simulation.
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