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In this article, we use some fixed point theorems to discuss the existence and uniqueness of solutions to a coupled system of a
nonlinear Langevin differential equation which involves Caputo fractional derivatives of different orders and is governed by new
type of nonlocal and nonseparated boundary conditions consisting of fractional integrals and derivatives. The considered
boundary conditions are totally dissimilar than the ones already handled in the literature. Additionally, we modify the Adams-type
predictor-corrector method by implicitly implementing the Gauss—Seidel method in order to solve some specific particular cases

of the system.

1. Introduction

The fractional calculus is the ramification of mathematics
concerning the integrals and derivatives of functions with
arbitrary orders. It has a long history that goes back to more
than three hundred years. Nonetheless, researchers dis-
covered the importance and effectiveness of this calculus just
a mere in the last few decades. It turned out that the
fractional integrals and derivatives are very good tools in
modeling some phenomena. This was concluded simply
because of the amazing results obtained when some of the
researchers used the implements in the fractional calculus
for the sake of understanding real world problems hap-
pening in the environment surrounding. Recently, differ-
ential equations of fractional order have been applied in
various fields like physical, biology, chemistry, control
theory, electrical circuits, blood flow phenomena, and signal
and image processing; for more details, see [1-3] and ref-
erences cited therein.

In 1908, Langevin [4] formulated his famous equation
containing derivative of integer order. This equation de-
scribes the evolution of certain physical phenomena in
fluctuating environments [5]. The Langevin equation was
used in large part to describe some phenomena such as
anomalous transport [6]. The Langevin equation has been
recently extended to the fractional order by Lim et al. [7].
They acquainted a new form of Langevin equations in-
volving two different fractional order for the sake of de-
scribing the viscoelastic anomalous diffusion in the complex
liquids. We refer the reader to Subsection 2.1 in [3] and the
references cited therein for further details. Uranagase and
Munakata [8] discussed the generalized Langevin equation
with emphasis on a mechanical random force whose time
evolution is not natural due to the presence of a projection
operator in a propagator. Lozinski et al. [9] discussed the
applications of Langevin and Fokker-Planck equations in
polymer rheology and stochastic simulation techniques for
solving this equation. Laadjal et al. [10] presented the


mailto:q.almdallal@uaeu.ac.ae
mailto:fahd@cankaya.edu.tr
https://orcid.org/0000-0003-1627-2898
https://orcid.org/0000-0002-2853-9337
https://orcid.org/0000-0002-3303-0623
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3058414

existence and uniqueness of solutions for the multiterm
fractional Langevin equation with boundary conditions.
Using the tools in mathematical analysis and the theory
of fixed points, discussing the qualitative specification en-
capsuling the behaviors of solutions of differential equations
in fractional derivatives settings has attracted the attention
of many scientists. To get an update about the works in the
literature, we ask the readers to investigate [11] and the
references cited there. On the top of this, classes of systems of
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fractional differential equations with separated (or non-
separated) boundary conditions have been studied inten-
sively in literatures [12-14].

Motivated by what are mentioned above and the recent
development on Langevin equations, in this paper, we
discuss the existence and the uniqueness of solutions to a
coupled system of fractional Langevin equations in the form
as follows:

DU (DP + M)y, (1) = f(ty, (D9, (D), te],0<a <1<p <2,
‘DD +k)yy (1) = g(t.v, (1,9, (1)), te],0<a<1<p,<2,

subject to a new type of nonlocal nonseparated boundary
conditions as follows:

¥, (0) = ag, ¥, (0) = by, ¥ (0) = y,(0) =0,
v, (&) = a(chllfz)(!‘l)>g € (0,1, 4y € J,0<p<p,,
vy () = b(Iy,] (4], m € (0,1], 4, € 1,920,

(2)

where J = [0, 1], A, k, a, by, a, b are real constants, D’ where
i=a, B, B, p are the Caputo fractional derivatives of
order «;,f,,a,, 35, and p, respectively, f,g: J x Rx
R — R are given functions, and I is the Rie-
mann-Liouville fractional integral of order q. By using the
Banach contraction principle and Leray-Schauder alterna-
tive fixed point theorem, we investigate the existence of
solutions for problems (1) and (2). We remark that the
boundary value problem discussed here is distinctive of the
ones discussed in literatures [12-14].

This article is organized as follows. In Section 2, we
present some definitions, theorems, and related lemmas
used in next sections. Section 3 discusses the existence and
uniqueness of the system under consideration. In Section 4,
we furnish some numerical examples. Section 5 is devoted to
our concluding remarks.

2. Preliminaries

Definition 1. (see[1,2]).Leta,b € R (—co<a<b<o00). The
Riemann-Liouville fractional integral of order « € R* for a
function f € L![a,b] is defined by

Iif(t) = ﬁ Jt (t—5)"""f(s)ds, fora>0,andI’f () = f(t),
(3)

where T is the Euler Gamma function.

Definition 2 (see [1, 2]). The Caputo fractional derivative of

order « € R™ for a function f € C"[a,b] is defined by
Dif(t) =1,"D"f (), fora>0,and Dy f (1) = f(t),

(4)

(1)

where n—1<a<n, neN, and D" = d"/dt".

Proposition 3 (see [2]). For>0anda>0and f € L'[a,b],
we have the following properties:

LIff (1) = BI5f (1) = 15 £ (1),

It —ay =L@+

a —m(t-ﬂ)oﬁ‘u, ‘Ll> - 1. (5)

‘DULEF®) =1 (1), (herefza>0).

Proposition 4 (see [2]). Let >0 with n—1<a<n and
f € C"[a,b]. Then,

n-1
EFDEF 0] = F() - Y e (t-a), )
k=0

where ¢, = f® (a)/k!. In particular, when 0 < a < 1, we have

LD f (0)] = f (B - £ (0). (7)

Proposition 5 (see
n—-1<a<n. Then,

[2]). Let u>0 and «a>0 with

r
CDZ(t —a) !t = l(l‘—a)"_o‘_l, yU>n,
I'(p—a)
(8)
‘Di(t-a)=0k=0,1,...,n-1.
Theorem 6 (Leray-Schauder alternative [15]). Let

T: X — X be a completely continuous operator (i.e., a map
that is restricted to any bounded set in X is compact). Let
M(T) = {u € X: u = mT (u) forsome 0 < m < 1}. Then, either
the set M (T) is unbounded or T has at least one fixed point.

For the sake of simplicity, henceforwards we will write I¢
and °D® instead of I§ and °Dyj, respectively.
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3. Main Results

In this section, we will discuss the existence and uniqueness
of the solution to systems (1)-(2).

Lemma 7. Let v,w € C([0,1],R), 0<a,a,<1,
1<B,B,<2, q=0, 0<p<f,, (@ =0+ +q 0 =0,
+B, - p), and
A 551}1/32 ~ ab‘ull;z—Py/;ﬁq 0
LB+ 1)T(B,+1) T(B+q+1)T(B,-p+1)
9

Then, the solution of the following coupled system of
fractional Langevin equations is as follows:

‘DD + M)y, (1) = v (D), (10)
‘D%(“D +k)y, (1) = w(b), (11)

equipped with the boundary condition (2) which is equivalent
to the coupled system of the following integral equations:

yy (1) = 1P (6) = APy (8) + 1A, [al™w (i) — ak I Py, (uy) = 1P (8) + APy, (8)]

_ (12)
+ Ay [bIM v () — AT Ty, () — T P2 (i) + kTP, ()] + As} + g,
Yo (6) = 1P (1) = K1y () + 5B, [bI () = AT Ty, (y) = 1w () + K12y, ()] (13)
+ B, [al™w () - akI® Py, () = 1P (&) + A1y, (9] + Bo} + by,
where
L 1 e
VAT ) TRy v 1)
A= 1 a/,t/fz_P
PN B ) T(B-pr 1)
. ap _ am’ ( bayi )
’ AT(By+1)| T(By+1) T(B-p+1)\I'(g+1) °)
(14)
B _ 1 fﬁl
VAT ) TR+ 1)
q+B,
B, 1 by,

B AT(B,+1) T(q+p, +1)

B. - 1 baoyg%1
’ _Ar(ﬁz"' 1)| T(q+B, +1)

Proof. Applying the operator I%*1 and I**f: on (10) and
(11), respectively, we get

Eﬂl bao.“g
T8+ 1>(r<q+ 1>‘b°)]'
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B B
_ By b 6ot Wb gy b c,¢ _
y () = I9"Pry () = APy (1) i e Al Iy (§) = APy (§) rg At al“w(u,)
(15)
= B-p
- ac,u
B —ak1?" Py, (u,) +ﬁ’
Uy (1) = 1P (1) — kTP, (1) + —2 4t 45, 27 P
2 2 rig,+1) ° (17)
(16)
ﬁ _
where ¢;,¢; € R (i =0, 1,2). From the boundary conditions %%w(ﬂ) kI’ () + F(ﬁ ) +by = bI"v (u)
Y1 (0) = a0, (0) =by, and ](0) = y3(0) =0, we get ™ g
Co = > €y = by, and ¢; = €| = 0, respectively. Next, using the _AP My, () + c,buy! bayu,
nonlocal integral conditions v, (§) = a(‘DPy,)(y;) and 1\ (B, +q+1) T(q+1)
v, () = b(I%y,) (4,), we obtain that (18)
Solving the above system, we find that
1 rlﬁz ) B a+p, B
Cy =K m[al W(‘Ul)—akl pl//2 ([11)—1 V(f)‘i‘AI l//l (f)]
B.-p
L ) Bi+q _ 7%+B, B2
+ T (B, +1-p) [bI v(uy) = BAIM My (1) = I2w (1) + kI 1//2(’7)]
_agn auy” ( baw )
L(B,+1) F(ﬂz P+1) T(g+1)
(19)
& s }
¢ = r(; [bI W () = AT Ty, () = I P () + kTP, ()]
1
b‘l/lq-'—ﬁl o) Bo-p a+py By
+r(q+/31+1) [al w(/’ll)_akI 1(/2([/!1)—1 V(E)"')LI 4} (5)]
_ agbui™® & ( bayy; _b )]
Tg+B+1) T +D\Tq+) )

where A is the determinant of the matrix associated with
systems (17)-(18) in the two variables ¢, and ¢,, and it is
given by (9).

Substituting the values of ¢, ¢, ¢;, ¢y, ¢5, and ¢, in (15)
and (16), we obtain the system of the integral equations (12)
and (13). The proof is completed. O

The Banach space E = C([0,1],R) is defined with the
norm [y, = supyeyly, (£)1.

So, the space E x E = {(y, ¥,),s.t (¥, ¥,) € E x E} with
the norm [|(v, ¥,)llgxe = |l llg + Iy, |l is Banach space.

Now, let us define the operator M: E x E — E X E, by

N (v, v,) (1) = (N (v, ¥,) (1), N, (v, ) (), where
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t t
R (v 92) (0= £ ﬁl)j (£ =P F (5,91 (), (9))ds (ﬁl)j £- 9P 1y, (s)ds

My @
+th {Al<% Jo (1= 9) g (5w, (9), ¥, (s))ds -

X rl (1, - s) “ly, (s)ds -
0

o
T(B+4q

T8

1 t o
R, (v y2) () = m JO (t - 5)%*: g (s v, (8), y, (9))ds —

b H x—
' tﬁlh(ﬁ J (=) (591 (9 92 (9)ds -

H -
[P s -

"T(B,)
ak
T(B,-p)

(ﬂ1

Note that the couple (y,,v,) is a fixed point of the

operator N if only if (y,, y,) is a solution of systems (1)-(2).
Consider the following hypotheses:

(H1). f,g: ] x R x R — R are continuous functions,

and there exist real positive constants ¢;,7; (i =0, 1,2)
such that
If (t.{, 0)[ <0g + 0y]C] + 0, |kl
(21)
|g(t’ () K)l S TO + T1|(| + T2|K|)
for all (t,{,x) € Jx RxR.
(H2). There exist constants K, L >0 such that
|f(ta()K)_f(t)Z’R)ng(lf_zl+|K_%|)) (22)

|g(t$ (a K) _g(t>z’%)| SL(|(—Z| +|K_R|)>
for all (¢,¢, %), (£,(,%) € Jx Rx R.

(H3).  There exist F;,Gy>0 such that
Fy = sup,;| f (£,0,0)| and G, = sup,;|g(t,0,0)]|.

1
r(“l + B

f Bitg-1
)JO (4 =) ¥y (s)ds — e

I'(a /32)J

k “ T
) J (’7_5)132 v, (s)ds + B, (r( ) J (‘ul _S) ’ 19(5’1//1 (S)’V/Z(S))ds

J (41— ) fp_l‘/’z (s)ds - (o,

ak
T(B,-p)

&
) [ @9 f s 9w 9)ds

[, -o w1<5>d5)+Az( | = 9 s 9y )
F(ﬂl) I'(ar;)

ﬂz)J (1= 9= g (5,9, (), ¥, (9))ds

k )
) JZ (n-sP"ly, (s)ds) N A3} ray,

(20)
(/3 ) j (t = $)F 1y, (s)ds
2

bA
L' (B, +9q)

(=) g (5,9, (5), ¥, (5))ds

ﬁl)J (=9 f (5,9, (), v, (5))ds

) J (- s)fly, (s)ds)+B3} + by

Remark 8. From conditions
(yy,v,) € EXE, we get

|f &y (0,9, O)| < K| (v1 ¥2)l| s + Foo
|9 (& v, ), v, )| < L (w15 ¥,)| s + Go-

For computation convenience, we set the following
constants:

(H1) and (H2) for all

(23)

LA EP | Al
P (o + B+ 1) T, + 1)
i (24)
Q, = |aA, |uy? . | A,y
2TT(@+1) T(ay+py+1)
_ [pBiuy B
PTT( +1) T(a+p+1) (25)

B 1+|Bl|11“2+ﬁ2 leaiy?z
T T(a+By+1) T(@+1)




C(1HAJEY (A, IbALh

> F(ﬁ1+1_) T(Bi+q+1) (26)
O 1 S P L

© T(B-pt+1) T(B+1)
o (B [oAB ™

TOT(B+1) T(B+q+1) (27)

Bk (e[l Yk
IR -pr) T(B1)
p; = max{Qs, Q4}, (28)

P2 = max{Q7,Q8}.

In the following step, we present the following result
about the uniqueness of solutions for problems (1)-(2) by
applying the Banach contraction principle.

1<R+F0

|§R (‘/’1’W2)(t)|— + B,

) J (= )i 1ds 4

I'(@)

KR+FO J zx+ﬁ—1
Ty | (-9t ds
F(‘xl +B1)

I'(a)

Myl
I(B)

+tP {|A1|<|a| (LR + Go) le (1, - s)af ds +

Dl (€ ey,
F(ﬁl) JO(E ) d)

KR F o
lal (G [ -7t
0
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Theorem 9. Assume that (H2) and (H3) hold. If
[(Q+Q3)K +(Q + Q)L +py +p,] <1, (29)

where Q,,Q,,Qs, andQ, and p, andp, are, respectively,
defined by (24), (25), and (28), then the boundary value
problems (1)-(2) have a unique solution.

Proof. Choose a positive real constant R where

(Q) +Q3)Fy +(Q, + Q)G +|A;| +|Bs] +]a| +|b0|.

R>
5T 1-[(Q + QK +(Q + Q)L +p, +p1]

(30)

Let By = {(y1, ¥,) € E x Es.t.[(yy, ¥,) g < R}. First, we
prove that 9t (Bg) < Bg.
For all (y,,y,) € B, we have

t
J (t - s)f1ds
0

akllvaly e
(g Jo (0=

ZIANE Brg-1
fy g |, (e s

LR+Gy (T~ a1 |k|"W2HE J" Y
71,(“2 ¥B) J (n-ys) ds +4I‘([32) . (n—sy*ds +|A3| +|a0|
__ KR+F,  |aA|(LR+Goluy |A |(KR + )8 |bA,| (KR + Fy)u5’ (31)
“T(a + B, +1) I(a,+1) [(a, +f, +1)  I(a +1)
|4, (LR + Go)n®™~F- (1 +]A, ) [bAA, |y
[(a, - B, +1) +Asl+lal + r(B, +1) ' (B +q+1) "%"E
N |kA2|77ﬁ2 . |akA1|‘u[ffp “‘l/ ”
[(By+1) T(B,-p+1) 2IE

) <1<(1 A, |gh) . |ad, WL . |bA_2|‘u§1K
I(a, +1)

[(ay+p+1) T(a,+1)

+F0(1 +|A, g ) . |ad, 4G, |bA2|y2 F,

|A2|,7‘Xz+ﬂzL )>R

T(ay+p,+1

|A2|na2+ﬁ

[(a,+pB+1) I(a,+1)

l"(oc1 +1)

+F(oc +B, +1)+lA3l+|“0|+P1"(V/1’W2 ”ExE

<Q,F, + Q,G, +|As| +|ag| + (QK + Q,L + p;)R.

On the other hand, we have
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LR +G, |bB |45 (KR + Fy) N |B,| (LR + Gy)y*:

|§722 (v, v2) (t)l £

l"(oc2+/32+1) I(a, +1) [(ay+p,+1)
|aB,| (LR + Go)l> | B,| (KR + Fy)& |bAB, |5 |)LB2|£
M Y CIFS TR | rwn I L A R S ey s v o L1
(32)
+ K| + |kB |'7 lakB |.“1 ”W ”
I(B,+1) T(B,+1) F(ﬁ -p+1) 2iE
<Q,Gy + Q5F, +|33| +|b0| +(Q4L + Q;K)R +P2(”‘/’1"E +”‘/’2"5)
<Q,Gy + Q3F +|Bs| +|by| + (QuL + Q;K + p,)R.
Consequently,
“m (%’V/z)" < (Q; +Q3)Fy +(Qy + Q)G +|A3| +|Bs| +|a0| +|b0| +[(Q +Q3)K +(Q, + Q)L +p; +p,]R, (33)
<R
Therefore, 9 (Bg) € Bg. Next, we prove that N is a con-
traction. Let (v, y,), (¥,,¥,) € Ex E. Forall t € ], we have
o K(lvs =l v = ¥oll) s, W1 = 9l
1R (v v2) = R (¥, 1) ()] < T + B, + 1) W
B “L(”‘/’l ~ Vil + v - ‘/’2"5), 5, _ lakl|y, - %”E, Br-p
o {'A1'< fwme) M- pr )
K(lvs = ¥ills +1v2 = Valle) s, Mllx = Xl
T(a, +p,+1) N 11(/-;1‘*1)S
bK(|ly, -7 ~wl.) - _v
+|A2|<| | (”% l“lé;"E:l”)% V2 "E)Hgl + Illi)éllller 41 "E ’f‘m
1  tq+1)
L(||1//1 ~Vilp v - g ) aytB, +|k|||‘/’2 %"E o +|Ay|
Tl +fv1) T, +1)
(34)
KN =90 vs =)l Wlvs =¥
R LBy +1)
el vy = vs =)l 7 lakAdlva = Vol pior
(@ +1) S (" F Y
S (Nl 708 7 79) PP Y0 | 7Stz P
T(a, +p,+1) ; T(B +1)
|A2b|K||(‘/’1 Vi Vs = V)| & lAzb’\HWl Villg g
(@ +1) M T B g 1)
Ny =90 v =Wl ap, Akl v2 = ol 5,
ul +
T(a+pB,+1) T(B,+1)

< (QIK +Q,L +P1)" Y ‘/’2) - (Wh?z)"EXE'
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|9, (v1,v2) () =, (91, 92) ()] <
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L(HWI -V "E +”‘/’2 B WZHE) k"% - %HE
T(ay+p,+1) I'(,+1)
N |Blb|K("1/’1 -1 +]ve _%HE), G-l R A Bi+a
(@ +1) < T(B +q+1) 2
N BL(ly: = il +v2 - 9al) ahy |B.K|K]y, - 9,
[(o +, +1) ! (B, +1)

R P L A P e A P
I'(a,+1) . L(B,-p+1) !
N |BZ|K(“V’1 ~ Y1 p + v - %"E);alml N 1B, - v, "EEﬁ1
l"(0‘1*'/31*’1) ; r(ﬁ1+1) ’
- L .\ |Bb|K 3. . |B,|L
S\ + B +1) T@+1)2 "T(ay+p,+1)

s

(35)

a+p,

|B,a|Lu  |B, K& B B
[+ 1) Tla 4 o) I P v Pl

L(By+q+1) T(B +1)

BbAS ™ |BA|ER _
(' | [B:AE )uwl—wlnE

<|k|(1 +BiKA") |Byakluy?

LB, +1)

< (QL+ Q3K + Pz)"(V/p ¥,) - (W1’¢2)"Ex5'

Consequently,
190 (v1, 92) - R (E D) < [(Q1 + QK +(Q + Q)L

+pp+ Pz]”(‘//la ¥,) = (WI’WZ)“ExE'
(36)

Therefore, the operator 9 has a unique fixed point. Thus,
we conclude that problems (1)-(2) have a unique solution on
[0,1]. The proof is complete.

Now, we apply the Leray-Schauder alternative theoerm
to obtain the following result about the existence of solutions
for problems (1)-(2).

Theorem 10. Assume that (H1) holds. If

S<1,andS<1, (37)

where
S=Q,0, +Q,7y + Q30; + Q7 + Q5 + Qy, (38)
S=Q,0, +Q,7, + Q30, + Qu7, + Qg + Qs (39)

then the boundary value problems (1)-(2) have at least one
solution on [0, 1].

Proof. First, we show that the operator N is completely
continuous.

Because f and g are continuous functions, M is con-
tinuous operator as well. Let A be any nonempty bounded
subset of E x E. Then, there exists r >0 such that for any
(v1,v,) € A, I(y, vy)llpeg < 7. Notice that from the con-
dition (H1) for all (y,y,) € A, we have

|f (& vy (1), 2 (D)| < 0 + 1]y, ()] + 0y, (1),
<oy + max{oy, 0} |(¥1, ¥,)| pp

<0, +rmaxjo;, 0,}

|9 (£, y1 (£), v (1))] < 7 + r max{z,, 7,}.

Next, we prove that 9 (A) is uniformly bounded. Let
(v, ¥,) € A. Indeed, for any ¢ € [0, 1], we have
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g +r max{oy, 05} [ a1 W"‘Vl"E ! _aBi-1l
9 (92 0] T Jo(t 9 as + p jo(t o~ 1ds

+ tﬁl ‘{|A1|<|a| (TO + rmax{Tl’TZ}) JZI (Ml _ S)szlds + |ak|"1//2"E J’IA1 (Ml _ S)/Bzfpflds

I'(a,) LB, -p) Jo
0, + rmax{o,,0,} (¢ B M, (¢ Y )
] s [ o
b R Ha o |b)L| Hy o
To + rmax{z;, 7,} (7 a1 |k|"W2“E T e
+—F(oc2 B Jo (n-ys) ds + r(5,) JO (n—s)y* "ds +|A3| +|a0|,
. (1 +|A1|£“1+ﬁ1) (04 + r max{o,, 0,}) N laA,|(t + r max{r,, 12});1?2
- [(a,+p;+1) [(@,+1)

|bA2| (0o + r max{o, 02})#? |A2| (1o +r max{z,, Tz})’7%+ﬁ2

I(a, +1) [(ay,+p,+1)

IM(1+]A,[E7)  |bAa,|uf KA. KA PP
(P L N (fo e

+|As] +|a|

Ti+1)  T(Bi+q+1) T(B+1) T(B,-p+1)

(T+AJEP)  |bA,[ud
< < TS + '@ +21) (0o + r max{o}, 0,})

a, oa+p,
+<|aA1Iu1 S s

[(@+1) T(a+p,+ 1)) (7o + rmax{r;, 7o}) +|43] +]ao| + prr

< + 00.

Similarly,

(1 +|Bl|11“2+ﬁ2) (1o +rmax{r,, 7,}) |bB, |45 (0 + r max{o,, 0,})

|9, (1, v2) (B)] = T(ay+p,+1) " [(@ +1)

|“Bz| (7o +rmax{r,, Tz}).“?z 'le (09 + r max{oy, 02})5a1+ﬂ1
I(@,+1) [(a,+B,+1)

+|Bs| +bo|

bAB, £ |AB,|P Ikl +|kBy |7 |akB,|uf "
+<| |es |AB,| >"%"E+< |kB, |1 +| e ) 1w,

F(/51+q+1)+F(/31+1) [(B,+1) T(B-p+1

< 6B, 15 |B, g
< +
F(a,+1) T(a+p,+1)

) (0o + r max{o,,0,})

N laBzw?z +(1+|B1|’10¢z+ﬁ2)
F(@,+1) T(ay+B,+1)

>(TO +rmax{7,7,}) +|B3| +|b0| +p,r

< + 0Q.

(41)

(42)
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Consequently, [|(y;, ¥;) g < + 0o forany (v, y,) € A. Now, we show that M is equicontinuous on A. Let
Therefore, M (A) is uniformly bounded. (y,,v,) € A. For any t,,t, € ], where t, >t,, we have

|2)21 (Vi v2) (t2) = Ny (v, v2) (tl)l
t t,
Ot rmax{o,, ,} (J [(tz _ S)aﬁﬁl*l —(t - S)%*ﬁl*l]ds + L (t, - 5)“1+ﬁ11ds>

I(a +p;) 0
v “r||l‘[/2|)|}s (J; [(ts - 9" = (6, - 5P Jds + ﬁ (t - s)ﬂllds)
(i e (et [ gt PRl [
g e i [l o)

(oot rmestonesd) [, gage e [, g
+“}+W [ - +% K s)ﬁzlds> +|A3|]»

[0’0 + rmax{al, 02}] o+, a+p; o+, o +p
[(a+B,+1) (_(tz_tl) +HT T+ (G- t) )

QAR Biy B B B o (P _ B
+m(—(1‘2—t1) +th =+t —t)) + () 1)) )

A @ A O+,
{<| L'lal#l + [ Aol )>(T0+rmaX{T1,T2})

F(@,+1) T(ay+p,+1

|A |lak|u> ™" |A |1kl ], + |4, ||/\|fﬁ |A ||b/1|”ﬁ +q v |
TB-p+1) TR+ NPT\ T (g v 1) " TT(8 +q+1) IV

a+p,
<|A ||b|[12 + |A |E )(o’o+rmaX{0'1,02})+|A3|}

F(a,+1) T(a;+p,+1)

0o + 7 max{o}, 05} / a4p, By [Alr Bi _ 4B
= F((X1+ﬁ1+1) (tz g )+r(:81+1)(t tl )

@ o +f;
(4 -f}){("‘“_““'”l L )<ro+rmax{n,rz}>

F(@+1) T(a+p,+1)
N | A, |laklu>? . | A, |1kl |A,|IAIEP . | A,|1bA 15
TG 1) T ) AT ) Tt gt )

A o +hy
+<|A2_||b|[42 + |A1|£ ))(ao+rmax{01>‘72}) +|A3|}

(@ +1) T(a+p+1

— 0, ast, — 1.

Analogously,
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To trmax{Ty o} ety oty ey

T(ay +p,+1) ' T(B,+1) >

o o +hy
+(t§2 - t%){( 1B, + Bt >(00 +rmax{oy,0,})

F(@ +1) T(a+p+1)

By Pi+q B—p B,
Hmax{( [BAE™ | [bABy |, ))) (IBzaklm , |Biklr )} (44)

TBi+1) T(B+q+1) S \T(B-p+1) T(B+1)

o+, =
+<r(lBll’7 + |Bza|/41 > (1o + rmax{z,, 7,}) +|B3| }

oa+Py+1) T(a,+1)

lmz (v v2) (t2) = M, (v, v2) (tl)l <

— 0, ast, —1t,

which imply that |3 (v, v,) (t,) = N (v, v,) (F)] — 0 as Finally, we will verify that the set M(N)
t, — t,. Thus, the operator N is equicontinuous. Hence,by = {(y,v,) € EXE: (y,,y,) = mN(y,,y,) for some 0 <m
Arzela-Ascoli theorem, we deduce that the operator N is < 1} is bounded. For all (y,,y,) € M (N) and for any ¢ € J,
completely continuous. we have mMN (v, y,) = (mN, (v, v,), mN, (v, v,)). Then,

[ 0 +h,
SN S AT T

[(a,+pB+1) (@ +1) T(a,+pB,+1)

A, |laklgh> P | A1kl
(ool o Fle s Ll ),

(45)
AN [AfibAl ™
+<F(/31+1)+F(ﬁ1+q+1)+F(/31+1) I¥:le
A Ibl.ual A £“1+ﬂ1
‘ ('r(;'l e AR ol v el 1 o)
This yields that
lvalle = m|9 (vio )| )
<Qi(00 + aillwils + aalalle) + Qoo + millwally + Tallvall) + Qsllvill + Qallvall . +1As] +aol-
In the same way, we deduce that
lvall =m0, (w1, vs)] 47)

s Q4(To + 74y + 72||‘//2||E) + Qs(% + oyl + ‘72”‘//2"5) + Q|2 + Qsflwn || +1B5] +[ol-

Hence, we have



12

[Cvis v )l =yl + vl
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<Qy[og + oyl + oyl + Qz(To + 71y + 72"%“5)
+ Qs |y |+ Qsfl v + Q4(To + 71|yl + 72”%”5) + Q3("0 + oy + ‘72"‘/’2"5)
+ Q[ + Qsfl vl +14s| + 1Bsl +|ao| +[bol,

which yields
[CZR73)] P

Q300 +Qu7p +Qu0p + Qy7p + |A | +|B | +la0l +|b |
1 — max{S, S}

(49)

where S and S are given by (36) and (38), respectively, which
proves that M (M) is bounded. Thus, as a consequence of
Leray-Schauder alternative theorem, 9t has more than one
fixed point. Hence, the boundary value problems (1)-(2)
have one solution at the very least on [0, 1].

4. Applications and Numerical Examples

In this section, we solve the integral equations (12) and (13)
using the Adams-type predictor-corrector method with step
size h = 0.01 (for details, see [16-18] and the references
therein). Briefly, we aim to approximate the solution of the

(48)
1 m
(tn) =Y (t) =y(to)+@j;Rm,jfj, (51)
where
WO,.0, if j=0,
R, ;=4 WL, ;1 +W0,,  ifl<j<m-1,
Wl if j=m.
W1 . < (—a+j—-m)(h(—j+m—1)*+(m- j)(h(m- j))*
] alo+1)
(a+j-m+1)(h(m=- )" +(h(-j+m- 1))/
WO, = :
> a(a+1)
(52)

To measure the accuracy of the present algorithm, we
calculated the residual function as follows:

following fractional initial value problem: R(t):= DY (1) - f (1Y (1)), (53)
DYy () = £ty (1), y(ty) = yor t € (£, T], € (0,1), at the grid points t,, for m>0, i.e.,
(50)
at the grid points t,, = t, + mh, m=>0, with h is a uniform
step size. It is found that
1 fm -
R() =t LO (b = 7)Y (DT = (6 (£,)),
m-1 o,
g 5 L Y @dr = f Y () (54)
o m-l
“arti=a (7m0 () = om0 () F Y )

j=0

after using the trapezoidal rule.

Consider the following coupled system of fractional
Langevin equations:

v, (t)

8

|y, (0]

(pefeph v Ny o 02O
D <Dﬁ + )Wl(t)_7(1+t2)(1+|1//2(t)|) 5

+In(1+1t), tel0,1],

(55)

~3siny, (1) )

-1-t"

(D" )wz (1) =

| 1441 =t + 97 (t)

5+t



Journal of Mathematics

Equipped with the nonlocal nonseparated fractional
integral and fractional derivative boundary conditions,

[ ¥1(0) = Ly, (0) =3,y (0) = y,(0) = 0,
9\ 1, 1
(i) =3 (" )(5) (56)

| v (D) = 2(15/“!//1)(%)-

Here, A=1/8,k=1/7,a=1/4,b=2,a,=1,b,=3,p =
1/4,q =5/4,& =9/10,5 = 1,4, = 1/5, u, = 1/8, and
|y, W
1+t2)(1 +|1//2|)

+In(1 +1),

ftyny,) = 7(

(57)
|1//1| _3siny,

9ty y,) =
VN PR

On the other part, for (t,{,«), (t,{,%) € [0,1] x R x R,
we get

|f(ts (’ K) - f(tj»?ﬂ <

1-£.

(I = ¢l +1x = %),

v =

989 - g (TRl <2 (Tl +lx -,
(58)

1 1
If (8.6l <ag +< 15T + 2k,

1 3
t) > < +— += >
988 <o+ KT+ 21

so 0,=1/50,=1/7,7, = 1/14,7, = 3/5,K = 1/5, and
L = 3/5.

Case i. In order to illustrate Theorem 9, we take
ay = 1/2,B, = 3/2,a, = 3/4, and B, = 7/4. Thus, &, = 13/4,
and @, = 9/4. By using the Matlab program, we found that

A=0.399301327423794,
A;=1.171331813010056,
A,=0.031689241829108,
Ay = —1.262241885268691,
B, =1.000100634730081,
B, ~0.002312772254050,
B; = —2.871400693622515,
Q; =00.974398268143493,
Q, =0.043889448160305,
Q;=0.001217044521056,
Q,=0.601838570591574,
Q5 =0.188078540898721,

13

Qg =0.005629381698062,
Q,; =3.713645478256922 x 1074
s =0.177657802566698,
p; =0.188078540898721, (59)
p, =0.0.177657802566698,

(Q) +Q3)K +(Qu + Q)L +p, +p,
=0.948296217249456 < 1.

Thus, the hypothesis of Theorem 9 holds. Then, problems
(55)-(56) have a unique solution on [0, 1]. The behavior of
the solutions v, (t) and y, (t) for Case i is presented in
Figure 1. Table 1 displays the residuals R, (t,,) and R, (t,,)
for the couple of equations given in (55) which clearly in-
dicates the accuracy of the present algorithm.

Case ii. In order to illustrate Theorem 10, we take
o, =1/4,3, =5/4,a, =1/2, and B, = 2.

Thus, &; = 11/4 and @, = 5/4.

By using the Matlab program, we found that

A =0.386787685580080,
A, =1.140949096832007,
A, =0.021215616584967,
Az = —1.201812441154092,
B, ~1.000159825315441,
B, ~0.004297601923856,
By = —2.873555329197462,
Q, =1.485098417429794,
Q, =0.056422691832900,
Q; =0.004245829991826, (60)
Q4 =0.601861587859298,

5 =0.220678979659357,

s =0.003030802369281,

Q; =8.31262586410917 x 1074,

Qg =0.142874266998083,

p1 =0.220678979659357,

P, =0.142874266998083,
S$=0.708442401834063 < 1,

§=0.611596096688384 < 1.

Thus, all the conditions of Theorem 10 are satisfied.
Then, problems (55)-(56) have one solution at the least
[0, 1]. In addition, both solutions v, (¢) and v, (¢) for Case ii
are sketched in Figure 2.
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25f ¥ ()

2.0 F

02 04 0.6 08 L

FIGURE 1: Graphs of the approximated solutions v, (t) and v, (t)
for Case i.

TaBLE 1: Residuals R, (t,,) and R, (t,,) for example 1.

t, R, (t,) R, (t,)
0.2 0.64265 x 1074 2.33263 x 1074
0.2 3.61491 x 1073 1.51331 x 1074
0.6 2.96055 x 1073 7.53023 x 1073
0.3 5.12564 x 1073 2.02533 x 1073
1.0 3.69052 x 1073 5.32055 x 1073

301

v, (1)

25F

2.0 F

15F

1.0

0.5

02 04 0.6 08  —+o

FIGURE 2: Graphs of the approximated solutions v, (t) and v, (f)
for Case ii.

5. Conclusion

The most important features of differential equations subject
to either initial or boundary conditions are the existence and
uniqueness of their solutions. In this paper, we discussed the
existence and uniqueness of solutions of specific type of the
couple system of the Langevin differential equation in the
framework of Caputo fractional derivatives and under the
suzerainty of nonlocal and nonseparated boundary condi-
tions. The boundary value problem we studied contained 6
different parameters. Because of the complexity, we were
forced to use computer programs in order to find examples
that would support our results. We discussed these examples
from the theoretical point and solved numerically using the
Adams-type predictorcorrector method by implicitly
implementing the Gauss-Seidel method.

It is recommended to consider the same problem in the
frame of other fractional derivatives especially the ones with

Journal of Mathematics

no singular kernels and compare their results to the ones
discussed in this paper.
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