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Abstract: The main objective of this paper is to construct and test fractional order derivatives for the
management and simulation of a fractional order disorderly finance system. In the developed system,
we add the critical minimum interest rate d parameter in order to develop a new stable financial
model. The new emerging paradigm increases the demand for innovation, which is the gateway to
the knowledge economy. The derivatives are characterized in the Caputo fractional order derivative
and Atangana-Baleanu derivative. We prove the existence and uniqueness of the solutions with fixed
point theorem and an iterative scheme. The interest rate begins to rise according to initial conditions
as investment demand and price exponent begin to fall, which shows the financial system’s actual
macroeconomic behavior. Specifically component of its application to the large scale and smaller scale
forms, just as the utilization of specific strategies and instruments such fractal stochastic procedures
and expectation.

Keywords: chaotic finance; fractional calculus; Atangana-Baleanu derivative; uniqueness of the
solution; fixed point theory

1. Introduction

Different parts of the financial sector are investigated through mathematical models, this article is
helpful in discussing advantages and drawbacks of mathematical models in the financial associations.
Different solutions for improving mathematical models and obstructions in the application zone is also
discussed. Mathematical modeling is the technique in which sensible and similar numerical expressions
from vertical frameworks are made which is used in translating different issues including drawing
systematic ideas. These systematic ideas are used in formulating strategy by choosing information
and understanding problem [1]. Mathematical models help in different fields of science such as
sociology and engineering. Mathematics have an important place in the field of finance. In the field of
finance, account related theory on assessment of exercises on the money related administrators [2].
Different parts of financial market types and different scientific and numerical systems are drawn by
using mathematical models [3].

Different types of genuine certified systems are derived through the device of fractional
calculus [4]. We establish some writing with the help of the research work and construct the hypothesis
of fractional calculus and exhibiting several utilizations. The recently presented Caputo Fabrizio
fractional derivative is used to examine the partial model of an adjusted Kawahara condition by
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Kumar et al. [5]. The Atangana-Baleanu partial administrator is used to formulate fragmentary
augmentation of a regularized long wave condition [6]. Arrangement of the fragmentary control
issues including a Mittag–Leffler non-specific piece is proposed by Baleanu et al. [7]. In another work,
the development of fractional analysis has been given in [8]. Fractional calculus is used by the scientist
named Jajarmi for separating a hyperchaotic financial system [9]. The fractional calculus operatives
including different functions have been derived effectively for mathematical modeling of various
complex issues in changed areas of science and engineering, for example, liquid elements, plasma
material science, astronomy, picture handling, stochastic dynamical framework, and controlled atomic
combination [1,10–12]. Recently, Caputo and Fabrizio [13] derived another fractional derivative for
some engineering and thermo dynamical systems, and this new derivation is better than the old style
of Caputo derivative. Another fractional derivative for observing the possibility of Fisher’s response
dispersion condition is derived by Atangana [14]. In this article [15], by using these two approaches,
we have defined a new contraction in one of the most extended abstract spaces known. In [16], we have
demonstrated a novel approximate-analytical solution method, which is called the Laplace homotopy
analysis method (LHAM) using the Caputo–Fabrizio fractional derivative operator. We investigated
in [17] existence and uniqueness conditions of solutions of a nonlinear differential equation containing
the Caputo–Fabrizio operator in Banach spaces. A solution method is coupled with a kind of integral
transformation, namely the Elzaki transform, and apply it to two different nonlinear regularized long
wave equations in [18]. In [19], time-fractional partial differential equations (FPDEs) involving singular
and non-singular kernel are considered. For more details, see [20–22].

In this paper, we need to use fractional parameters using the Caputo and ABC derivatives method
with fractional derivatives to build the model of complex nonlinear differential equations. Complex
financial system models of complex actions provide a new perspective as a result of patterns and
actual behavior of the financial system’s internal structure.

2. Preliminaries

The fractional derivative of Liouville Caputo [13,23] is presented as

C
t0

Dκ
t {g(t)} =

1
Γ(1− κ)

∫ t

t0

d
dt

g(ψ)(t− ψ)−κdψ, (1)

where Γ(.) refers to the function of Gamma. Laplace transform of the above derivative is obtained
as [23,24]:

L{C
0 Dκ

t {g(t)}}(s) = SκG(S)−
m−1

∑
k=0

Sκ−k−1g(k)(0). (2)

Recently, Atangana and Baleanu proposed a fractional derivative with the Mittag–Leffler function
as the kernel of differentiation. This kernel is non-singular and nonlocal and preserves the benefits of
the above Liouville–Caputo derivative. The Atangana–Baleanu derivative has been defined as [25]:

ABC
t0

Dκ
t {g(t)} =

Z(κ)
1− κ

∫ t

t0

d
dt

g(ψ)Eκ [−κ
(t− ψ)κ

1− κ
]dψ, n− 1 < κ(t) ≤ n, (3)

where κε<, Z(κ) refers to the Z(0) = Z(1) = 1 and Eκ(.) refers to the equation Mittag–Leffler.
Equation (3) Laplace is defined as follows:

L{ABC
0 Dκ

t {g(t)}}(s) =
Z(κ)
1− κ

L[
∫ t

κ

d
dt

g(ψ)Eκ [−κ
(t− ψ)κ

1− κ
]dψ](s) =

Z(κ)
1− κ

sκL[g(t)](s)− sκ−1g(0)
sκ + κ

1−κ

(4)
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The fractional integral associated with the Atangana–Baleanu derivative with non-local kernel is
defined as

AB
t0

Dκ
t {g(t)} =

1− κ

Z(κ)
g(t) +

κ

Z(κ)Γ(κ)

∫ t

t0

g(ψ)(t− ψ)κ−1dψ, (5)

When κ is equivalent to zero, the initial function will be retrieved. κ = 1 will be retrieved from
the classical ordinary integral.

3. Liouville–Caputo Sense

The strategy is an experimental system dependent on the blend of homotopy analysis technique
and Laplace’s transformation with polynomial homotopy [23,26]. The primary steps of this strategy
are characterized as follows:

Step 1. We should take a look at the following condition:

Dκ
t {g(h, t)}+ Ξ[h]g(h, t) + ∧[h]g(h, t) = η(h, t), t > 0, hε<, 0 < κ ≤ 1, (6)

where Ξ[h] is a bounded linear operator in h. While the nonlinear operator ∧[h] in h is Lipschitz
continuous and satisfying | ∧ (g)−∧(φ)| ≤ θ|g− φ|, where θ > 0 and η(h, t) is a continuous function.
The boundary and initial conditions can be treated in a similar way.

Step 2. Applying the methodology proposed in [23,27], we get the following m-th order
deformation equation:

gm(h, t) = (Xm + h̄)gm−1 − h̄(1− Xm)
j−1

∑
i=0

tig(i−1)(0)

+h̄L−1(
1
sκ
L(Ξm−1[h]gm−1(h) +

m−1

∑
k=0

Pk(g0, g1, ...., gm)−Ψ(h, t))), (7)

where the Laplace transform is implemented in Caputo sense (1) and Pk is the homotopy polynomial
described by Odibat in [28].

Step 3. Regarding homotopy polynomials, the nonlinear term ∧[h]g(h, t) is extended as

∧[g(h, t)] = ∧(
m−1

∑
k=0

gm(h, t)) =
∞

∑
m=0

Pmgm (8)

Step 4. Expanding the nonlinear term in (6) as a progression of polynomials for homotopy, we can
compute the diverse gm(h, t) for m > 1 and Equation solutions (5) can be written as

g(h, t) =
m=0

∑
∞

gm(h, t). (9)

The classical form of the model first studied in [29] and we modify the model by adding d
as critical minimum interest rate. By using this methodology, a Liouville–Caputo fractional order
derivative was utilized to solve the using time-fractional funding model:

C
0 Dκ

t x(t) = z(t) + x(t)y(t)− ax(t), (10)

C
0 Dκ

t y(t) = 1− by(t)− x(t)x(t), (11)

C
0 Dκ

t z(t) = d− x(t)− cz(t), (12)
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where x, y, and z are the state variables representing interest rate, investment demand, and price index,
respectively, and we add the critical minimum interest rate d parameter in [30]. The parameter a is for
savings, b is to cost per investment and c is the elasticity of market demand, although the parameters
are non-negative constants i.e., a = 3, b = 0.1 and c = 1.

From the above model (10)–(12) , we use the parameter d to modify the model, where d represents
critical minimum interest rate with initial conditions x(0) = n1 = 0.1, y(0) = n2 = 4, z(0) = n3 = 0.5.

Solution. We also implemented the Laplace transform (2) to the system’s first formula on (10):

sκx(s)− sκ−1x(0) = L{z(t) + x(t)y(t)− ax(t)} (13)

The initial conditions are taken and the above equation is simplified

x(s) =
x(0)

s
+ L{z(t) + x(t)y(t)− ax(t)} (14)

With inverse Laplace transform to Equation (14), getting

x(t) = n1 + L−1[
1
sκ
L{z(t) + x(t)y(t)− ax(t)}], (15)

For the other equations shown in Equations (11) and (12), we get

y(t) = n2 +
tκ

Γ(κ + 1)
−L−1 1

sκ
L{by(t) + x(t)x(t)}, (16)

z(t) = n3 +
dtκ

Γ(κ + 1)
−L−1 1

sκ
L{x(t) + cz(t)}, (17)

[j(t; p)] = L[φj(t; p)], j = 1, 2, 3 (18)

with feature (e) = 0 where e is constant. Let’s describe the following system as:

N[φ1(t; p)] = L[φ1(t; p)]− n1 +
1
sκ
L{φ3 + φ1φ2 − aφ1} (19)

N[φ2(t; p)] = L[φ2(t; p)]− n2 −
1
sκ
L{bφ2 + φ1φ1} (20)

N[φ3(t; p)] = L[φ3(t; p)]− n3 −
1
sκ
L{φ1 + cφ3} (21)

The equation of so-called zero-order deformation is given by

(1− p)[j(t; p)− u0(t)] = ph̄[φj(t; p)], j = 1, 2, 3 (22)

when p = 0 and p = 1, we have

φj(t; 0) = u0(t), φj(t; 1) = u(t), j = 1, 2, 3 (23)

The deformation equations of the mth-order are given

L{xm(t)− Pmxm−1(t)} = h̄Sm(x→m−1, t) (24)
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L{ym(t)− Pmym−1(t)} = h̄Sm(y→m−1, t) (25)

L{zm(t)− Pmzm−1(t)} = h̄Sm(z→m−1, t) (26)

Transforming the inverse Laplace into Equations (24)–(26). We’ve got this

xm(t) = Pmxm−1(t) + h̄Sm(x→m−1, t) (27)

ym(t) = Pmym−1(t) + h̄Sm(y→m−1, t) (28)

zm(t) = Pmzm−1(t) + h̄Sm(z→m−1, t) (29)

where

Sm(x→m−1, t) = L[xm−1(t)]− (1− Pm)(n1 +
1
sκ
L{zm−1 + Hm − a.xm−1}) (30)

Sm(y→m−1, t) = L[ym−1(t)]− (1− Pm)(n2 +
tκ

Γ(κ + 1)
− 1

sκ
L{b.ym−1 + Km}) (31)

Sm(z→m−1, t) = L[zm−1(t)]− (1− Pm)(n3 +
dtκ

Γ(κ + 1)
− 1

sκ
L{xm−1 + c.zm−1}) (32)

The mth-order deformation equation solution (24)–(26) is presented as:

xm(t) = (Pm + h̄)xm−1 − h̄(1− Pm)(n1) + h̄L−1{ 1
sκ
L{zm−1 + Hm − a.xm−1}} (33)

ym(t) = (Pm + h̄)ym−1 − h̄(1− Pm)(n2 +
tκ

Γ(κ + 1)
)− h̄L−1{ 1

sκ
L{b.ym−1 + Km}} (34)

zm(t) = (Pm + h̄)zm−1 − h̄(1− Pm)(n3 +
dtκ

Γ(κ + 1)
)− h̄L−1{ 1

sκ
L{xm−1 + c.zm−1}} (35)

where

Hm =
1

Γm + 1
[

dm

dpm N[(pφ1(t; p))(pφ2(t; p))]]p=0′ (36)

Km =
1

Γm + 1
[

dm

dpm N[(pφ1(t; p))(pφ1(t; p))]]p=0′ (37)

Finally, the solutions of the Equations (10)–(12) are

x(t) = x0(t) + x1(t) + x2(t) + ....... =
∞

∑
m=0

xm(t) (38)

y(t) = y0(t) + y1(t) + y2(t) + ....... =
∞

∑
m=0

ym(t) (39)
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z(t) = z0(t) + z1(t) + z2(t) + ....... =
∞

∑
m=0

zm(t) (40)

Through combining the Laplace transform (2) and its inverse, another model (10)–(12) solution
can be obtained. The iterative scheme is given through

xn(t) = n1 + L−1{ 1
sκ
L{zn−1(t) + xn−1(t).yn−1(t)− a.xn−1(t)}(s)}(t) (41)

yn(t) = n2 + L−1{ 1
sκ
L{1− b.yn−1(t)− xn−1(t).xn−1(t)}(s)}(t) (42)

zn(t) = n3 + L−1{ 1
sκ
L{d− xn−1(t)− c.zn−1(t)}(s)}(t) (43)

where n1, n2, and n3 are the initial conditions. If n tends to infinity, it is assumed that the solution is
a limit

x(t) = lim
n→∞

xn(t), y(t) = lim
n→∞

yn(t), z(t) = lim
n→∞

zn(t)

Theorem 1. Equations recursive forms (41)–(43) are stable.

Proof. We are going to assume the following. There are five positive constants D, E, and F can be
found such that for all 0 ≤ t ≤ T ≤ ∞,

‖ x(t) ‖< D; ‖ y(t) ‖< E; ‖ z(t) ‖< F. (44)

Now, we consider a subset of L2((e, f )(0, T)) defined as follows:

Ξ = {β : (e, f )(0, T)→ Ξ,
1

Γ(κ)

∫
(t− β)(κ−1)v(β)u(β)dβ < ∞} (45)

We have

ϑ(x, y, z) = z(t) + x(t)y(t)− ax(t)

= 1− by(t) + x(t)x(t) (46)

= d− x(t)− cz(t)

Then,

=< ϑ(x, y, z)− ϑ(x1, y1, z1), (x− x1, y− y1, z− z1) >,

< (z(t)− z1(t)) + (x(t)− x1(t))(y(t)− y1(t))− a(x(t)− x1(t)), (x(t)− x1(t)) >, (47)

< 1− b(y(t)− y1(t)) + (x(t)− x1(t))(x(t)− x1(t)), (y(t)− y1(t)) >,

< d− (x(t)− x1(t))− c(z(t)− z1(t)), (z(t)− z1(t)) >,

where

x(t) 6= x1(t); y(t) 6= y1(t); z(t) 6= z1(t) (48)
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We obtain

< ϑ(x, y, z)− ϑ(x1, y1, z1), (x− x1, y− y1, z− z1) >,

< { ‖ z(t)− z1(t) ‖
‖ x(t)− x1(t) ‖

+ ‖ y(t)− y1(t) ‖ −a} ‖ x(t)− x1(t) ‖2, (49)

< { 1
‖ y(t)− y1(t) ‖

− b− ‖ x(t)− x1(t) ‖2

‖ y(t)− y1(t) ‖
} ‖ y(t)− y1(t) ‖2,

< { d
‖ z(t)− z1(t) ‖

+
‖ x(t)− x1(t) ‖
‖ z(t)− z1(t) ‖

− c} ‖ z(t)− z1(t) ‖2,

where

< ϑ(x, y, z)− ϑ(x1, y1, z1), (x− x1, y− y1, z− z1) >,

< A ‖ x(t)− x1(t) ‖2,

< B ‖ y(t)− y1(t) ‖2, (50)

< C ‖ z(t)− z1(t) ‖2,

with

A =
‖ z(t)− z1(t) ‖
‖ x(t)− x1(t) ‖

+ ‖ y(t)− y1(t) ‖ −a

B =
1

‖ y(t)− y1(t) ‖
− b− ‖ x(t)− x1(t) ‖2

‖ y(t)− y1(t) ‖
(51)

C =
d

‖ z(t)− z1(t) ‖
+
‖ x(t)− x1(t) ‖
‖ z(t)− z1(t) ‖

− c

Additionally, if we find a non-null vector (x1, y1, z1) using a certain routine as above, we get

< A ‖ x(t)− x1(t) ‖‖ x(t) ‖
< B ‖ y(t)− y1(t) ‖‖ y(t) ‖ (52)

< C ‖ z(t)− z1(t) ‖‖ z(t) ‖

We conclude from the results of Equations (50) and (52) that the iterative method used is stable.
Then, we obtain the same in [31]:

x(t) =
n−1

∑
u=0

δu
1

tu

u!
+

1
Γ(κ)

∫ t

0
(t− ψ)κ−1[z(ψ) + x(ψ)y(ψ)− ax(ψ)]du, (53)

y(t) =
n−1

∑
u=0

δu
2

tu

u!
+

1
Γ(κ)

∫ t

0
(t− ψ)κ−1[1− by(ψ) + x(ψ)x(ψ)]du, (54)

z(t) =
n−1

∑
u=0

δu
3

tu

u!
+

1
Γ(κ)

∫ t

0
(t− ψ)κ−1[d− x(ψ)− cz(ψ)]du, (55)
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4. Atangana–Baleanu–Caputo Sense

Considering the system with an ABC fractional order derivative according to the methodology
mentioned in [23,26]:

ABC
0 Dκ

t x(t) = z + xy− ax (56)

ABC
0 Dκ

t y(t) = 1− by− xx (57)

ABC
0 Dκ

t z(t) = d− x− cz (58)

with initial conditions x(0) = n1 ≥ 0, y(0) = n2 ≥ 0, z(0) = n3 ≥ 0

Solution: We apply the Laplace transformation (4) to Equation (56), we have

R(κ)
1− κ

sκ x̃(s)− sκ−1x(0)
sκ + κ

1−κ

= L{z(t) + x(t)y(t)− ax(t)}

Simplifying the above equation with taking initial conditions

x̃(s) =
x(0)

s
+

(1− κ)sκ + κ

R(κ)sκ
L{z(t) + x(t)y(t) + ax(t)}, (59)

Then, we have

x(t) = n1 + L−1{ (1− κ)sκ + κ

R(κ)sκ
L{z(t) + x(t)y(t) + ax(t)}}, (60)

Similarly to Equations (57) and (58), we have

y(t) = n2 +
(1− κ)

R(κ)s
+

κ

R(κ)s(κ)
−L−1{ (1− κ)sκ + κ

R(κ)sκ
L{by(t) + x(t)x(t)}}, (61)

z(t) = n3 +
(1− κ)

R(κ)s
+

κ

R(κ)s(κ)
−L−1{ (1− κ)sκ + κ

R(κ)sκ
L{x(t) + cz(t)}}, (62)

Here, we select a operator that is of linear type as

[j(t; p)] = L[φj(t; p)], j = 1, 2, 3. (63)

Next, we describe the model below:

N[φ1(t; p)] = L[φ1(t; p)]− n1 −
(1− κ)sκ + κ

R(κ)sκ
L{φ3 − φ1φ2 + aφ1} (64)

N[φ2(t; p)] = L[φ2(t; p)]− n2 −
(1− κ)sκ + κ

R(κ)sκ
L{bφ2 + φ2

1} (65)

N[φ3(t; p)] = L[φ3(t; p)]− n3 −
(1− κ)sκ + κ

R(κ)sκ

1
sκ
L{φ1 + cφ3} (66)

This is the so-called zeroth-order deformation is presented by:

(1− p)[j(t; p)− u0(t)] = ph̄N[φj(t; p)], j = 1, 2, 3 (67)
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φj(t; 0) = u0(t), φj(t; 1) = u(t), j = 1, 2, 3 (68)

The equations of the mth-order deformation are presented by

L{xm(t)− Pmxm−1(t)} = h̄Sm(x→m−1, t) (69)

L{ym(t)− Pmym−1(t)} = h̄Sm(y→m−1, t) (70)

L{zm(t)− Pmzm−1(t)} = h̄Sm(z→m−1, t) (71)

Use the inverse Laplace to transform the Equations (69)–(71), and we obtain

xm(t) = Pmxm−1(t) + h̄Sm(x→m−1, t) (72)

ym(t) = Pmym−1(t) + h̄Sm(y→m−1, t) (73)

zm(t) = Pmzm−1(t) + h̄Sm(z→m−1, t) (74)

where

Sm(x→m−1, t) = L[xm−1(t)]− (1− Pm)n1 +
(1− κ)sκ + κ

R(κ)sκ
L{zm−1 + Hm−1 − axm−1} (75)

Sm(y→m−1, t) = L[ym−1(t)]− (1− Pm)(n2 +
(1−κ)
R(κ) + κtκ

Γ(κ+1) )−
(1−κ)sκ+κ

R(κ)sκ L{bym−1 + Km−1} (76)

Sm(z→m−1, t) = L[zm−1(t)]− (1− Pm)(n3 +
d(1−κ)

R(κ) + dκtκ

Γ(κ+1) )−
(1−κ)sκ+κ

R(κ)sκ L{xm−1 + czm−1} (77)

The mth-order deformation of the system is specified as

xm(t) = (Pm + h̄)xm−1 − h̄(1− Pm)n1 + h̄L−1{ (1− κ)sκ + κ

R(κ)sκ
L[zm−1 + Hm − axm−1]} (78)

ym(t) = (Pm + h̄)ym−1 − h̄(1− Pm)(n2 +
(1− κ)

R(κ)
+

tκ

R(κ)Γκ + 1
)−

h̄L−1{ (1− κ)sκ + κ

R(κ)sκ
L[bym−1 + Km]} (79)

zm(t) = (Pm + h̄)zm−1 − h̄(1− Pm)(n3 +
d(1− κ)

R(κ)
+

dκtκ

Γκ + 1
)

−h̄L−1{ (1− κ)sκ + κ

R(κ)sκ
L[xm−1 + czm−1]} (80)

where

Hm =
1

Γ(m + 1)
[

dm

dpm N[(pφ1(t; p))(pφ2(t; p))]]p=0′ (81)
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Km =
1

Γ(m + 1)
[

dm

dpm N[(pφ1(t; p))(pφ1(t; p))]]p=0′ (82)

Finally, the solutions of Equations (56)–(58) are given as

x(t) =
∞

∑
m=0

xm(t), y(t) =
∞

∑
m=0

ym(t), z(t) =
∞

∑
m=0

zm(t) (83)

Models (56)–(58) solution can be obtained with Equation (4). Systems (56)–(58) are similar to the
Volterra form in the Atangana–Baleanu sense. With the iterative scheme, we get

xn+1(t) =
1− κ

R(κ)
{zn(t) + xn(t)yn(t)− axn(t)}+

κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1{zn(ψ) + xn(ψ)yn(ψ)− axn(ψ)}dψ, (84)

yn+1(t) =
1− κ

R(κ)
{1− byn(t)− xn(t)xn(t)}+

κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1{1− byn(ψ)− xn(ψ)xn(ψ)}dψ, (85)

zn+1(t) =
1− κ

R(κ)
{d− xn(t)− czn(t)}+

κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1{d− xn(ψ)− czn(ψ)}dψ, (86)

Theorem 2. We prove the existence and uniqueness of the solution using a Picard–Lindelof approach.

Proof. The following operator is considered:

Ξ1(t, ς) = z(t) + x(t)y(t)− ax(t)

Ξ2(t, ς) = 1− by(t)− x(t)x(t) (87)

Ξ3(t, ς) = d− x(t)− cz(t)

Let

Ω1 = sup ‖ γε,k1 Ξ1(t, ς) ‖; (88)

Ω2 = sup ‖ γε,k2 Ξ2(t, ς) ‖; (89)

Ω3 = sup ‖ γε,k3 Ξ3(t, ς) ‖; (90)

where

γε,k1 = |t− a, t + a| × [ϑ− k1, ϑ + k1] = ε1 × k1 (91)

γε,k2 = |t− a, t + a| × [ϑ− k2, ϑ + k2] = ε1 × k2 (92)

γε,k3 = |t− a, t + a| × [ϑ− k3, ϑ + k3] = ε1 × k3 (93)
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Considering the Picards operator, we have

ϑ : γ(ε1, k1, k2, k3)→ γ(ε1, k1, k2, k3) (94)

defined as follows:

ϑΩ(t) = Ω0(t)∆(t, Ω(t))
1− κ

R(κ)
+

κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1∆(ψ, Ω(ψ))dψ, (95)

where

Ω(t) = {G(t), X(t), I(t)} = {g1, g2, g3}, and∆(t, Ω(t)) = {Ξ1(t, ϑ(t)), Ξ2(t, ϑ(t)), Ξ1(t, ϑ(t))}. (96)

Now, we presume that all solutions are bound in a certain amount of time

‖ Ω(t) ‖∞≤ max{k1, k2, k3},

‖ Ω(t)−Ω0(t) ‖=‖ ∆(t, Ω(t))
1− κ

R(κ)
+

κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1∆(ψ, Ω(ψ)dψ ‖ (97)

≤ 1− κ

R(κ)
‖ ∆(t, Ω(t)) ‖ + κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1 ‖ ∆(ψ, Ω(ψ) ‖ dψ (98)

≤ 1− κ

R(κ)
X = max{k1, k2, k3}+

κ

R(κ)
ξϑκ ≤ ϑξ ≤ k = max{k1, k2, k3} (99)

Here, we request that ϑ < k
ξ Then, we obtain

‖ ϑΩ1 − ϑΩ2 ‖∞= sup ‖tεε |Ω1 −Ω2|, (100)

‖ ϑΩ1 − ϑΩ2 ‖=‖ {∆(t, Ω1(t))− ∆(t, Ω2(t))}
1− κ

R(κ)
(101)

+
κ

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1{∆(ψ, Ω1(t))− ∆(ψ, Ω2(t))}dψ ‖, (102)

≤ 1−κ
R(κ) ‖ ∆(ψ, Ω1(t))− ∆(ψ, Ω2(t)) ‖ + κ

R(κ)Γ(κ)

∫ t
0 (t− ψ)κ−1{∆(ψ, Ω1(t))− ‖ ∆(ψ, Ω2(t))} ‖ dψ, (103)

≤ 1− κ

R(κ)
ω ‖ Ω1(t)−Ω2(t) ‖ +

κω

R(κ)Γ(κ)

∫ t

0
(t− ψ)κ−1 ‖ Ω1(t)−Ω2(t))) ‖ dψ, (104)

≤ {1− κ

R(κ)
ω +

κωϑκ

R(κ)Γ(κ)
} ‖ Ω1(t)−Ω2(t) ‖ dψ, (105)

≤ ϑω ‖ Ω1(t)−Ω2(t) ‖, (106)

with ω less than 1. Since Ω is a contraction, we obtain θω < 1, so the specified ϑ operator is also
a contraction. The Atangana–Baleanu fractional integral numerical approximation [27] using the
Adams–Moulton rule is given by

ψκ
t [g(tn+1)] =

1− κ

R(κ)
g(tn+1 − g(tn))

2
+

κ

Γ(κ)

∞

∑
k=0

[
g(tk+1 − g(tk))

2
]bκ

k , (107)

where bκ
k = (k + 1)1−κ − (k)1−κ . Hence, it shows that existence and uniqueness of the solution for the

dynamical finance system. We have the following generalized solution with the iterative method:
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x(n+1)(t)− x(n)(t) = xn
0 (t) + {

1−κ
R(κ) [(

z(n+1)(t)−z(n)(t)
2 ) + (

x(n+1)(t)−x(n)(t)
2 )

(
y(n+1)(t)−y(n)(t)

2 )− a(
x(n+1)(t)−x(n)(t)

2 )]}+ κ
R(κ) ∑∞

k=0(k + 1)d1− κ[(
z(k+1)(t)−z(k)(t)

2 )

+(
x(k+1)(t)−x(k)(t)

2 )(
y(k+1)(t)−y(k)(t)

2 )− a(
x(k+1)(t)−x(k)(t)

2 )]

y(n+1)(t)− y(n)(t) = yn
0 (t) + {

1−κ
R(κ) [1− b(

y(n+1)(t)−y(n)(t)
2 )− (

x(n+1)(t)−x(n)(t)
2 )

(
x(n+1)(t)−x(n)(t)

2 )]}+ κ
R(κ) ∑∞

k=0(k + 1)1−κ [1− b(
y(k+1)(t)−y(k)(t)

2 )− (
x(k+1)(t)−x(k)(t)

2 )

(
x(k+1)(t)−x(k)(t)

2 )]

z(n+1)(t)− z(n)(t) = zn
0 (t) + {

1− κ

R(κ)
[d− (

x(n+1)(t)− x(n)(t)
2

)− c(
z(n+1)(t)− z(n)(t)

2
)]}+ (108)

κ

R(κ)

∞

∑
k=0

(k + 1)1−κ [d− (
x(k+1)(t)− x(k)(t)

2
)− c(

z(k+1)(t)− z(k)(t)
2

)]

5. Numerical Results and Discussion

The ABC derivative has been used to present the theoretical solution of the fractional-order model
consisting of a nonlinear system of the fractional differential equation. In this model, we represent
x(t), y(t) and z(t) are interest rate, investment demand, and price exponent with initial conditions
x(0) = 0.1, y(0) = 4 and z(0) = 0.5, while the parameter a is for savings, b is to cost per investment,
and c is the commercial markets demand elasticity with a = 3, b = 0.1, and c = 1 are given in [30,32].
By utilizing Caputo and ABC fractional derivative, the numerical results of interest rate, investment
demand, and price exponent for various fractional estimations of η are acquired. Figures 1–3 refer to
the graphical solution of the finance system with the Caputo derivative of the finance system. Within
this figure, we noticed that interest rate, investment demand, and the price exponent have more degree
of freedom as contrasted with ordinary derivatives. From Figures 4–6, we use ABC fractional-order
derivative of the financial system, we effectively have seen that interest rate, investment demand,
and price exponent rates are the better estimations compared with ordinary derivatives. Figures 7–10
present the comparison of Caputo derivative and ABC derivative for the finance system. It should be
observed that the behavior of the finance system is almost the same but ABC derivative presents more
convenient and comfortable behavior in a system for closed-loop design. Caputo and ABC fractional
derivatives are increasing or decreasing in the relationship between these variables. From Figures 1–10,
remarkable responses are obtained from the developed model for compartments by taking non-integer
fractional parameter values. Numerical results show that the system keeps the η chaotic motion. The
interest rate begins to rise according to initial conditions as investment demand and price exponent
begin to fall, which shows the financial system’s actual macroeconomic behavior. It is observed here
that a complex chaotic fractional system provides more appropriate and reliable results compared to
time integer parameters for non-integer time-fractional parameters. In this system, we add parameter
d to develop the new financial stable model which is the critical minimum interest rate. In order to
observe the impact of factors on the mechanics of the fractional-order model, different numerical ways
can be observed in Figures 11–13. These simulations reveal a change in the value of a critical minimum
interest rate of the model. We see that decreasing the critical minimum interest rate decreases the price
of the exponent and the investment demand becomes high. Due to increasing the investment demand,
our economy will become stronger.
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Figure 7. x(t) interest rate with Caputo and ABC derivative.
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Figure 8. y(t) investment demand with Caputo and ABC derivative.
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Figure 11. Impact of critical minimum interest rate with x(t).
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Figure 13. Impact of critical minimum interest rate with z(t).

6. Conclusions

This paper uses a dynamic chaotic fractional order model with an ABC derivative to conduct the
economic system. The basis of this fractional model consists of exponentially decreasing non-singular
kernels that appear in the derivation of the ABC. The financial model is presented with theoretical
and numerical investigation. This demonstrates the regulation of the economic system’s critical
minimum interest rate. In order to control the economic system, we are discussing a fractional order
financing model. The modified model with ABC derivative shows a good financial system control
agreement. The model offers the effect of evaluating numerical results on a critical minimum interest
rate. Graphical representation shows the impact on the amount of critical minimum interest rate for
variables with time. We can observe κ = 1 revealing more absorbing characteristics by numerical
simulation using ABC non-integer order derivative. For interest rate, investment demand and price
exponent, the concept of this research provides important results. Therefore, we conclude that the
ABC derivative is useful to control and maintain the finance system to overcome the risk factors. The
interest rate begins to rise according to initial conditions as investment demand and price exponent
begin to fall, which shows the actual macroeconomic behavior of the financial system. It is observed
here that the complex chaotic fractional system provides more appropriate and reliable results as
compared to time integer parameters for non-integer time-fractional parameters.
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