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Recently, Atangana-Baleanu fractional derivative has got much attention of the researchers due to its non-
locality and non-singularity. This operator contains an accurate kernel that describes the better dynamics of
systems with a memory effect. In this paper, we investigate the fractional-order tumour-immune-vitamin model
(TIVM) under Mittag-Leffler derivative. The existence of at least one solution and a unique solution has discussed

through fixed point results. We established the Hyres-Ulam stability of the proposed model under the Mit-
tag-Leffler derivative. The fractional Adams-Bashforth method has used to achieve numerical results. Finally, we
simulate the obtained numerical results for different fractional orders to show the effect of vitamin intervention
on decreased tumour cell growth and cancer risk. At the end of the paper, the conclusion has provided.

Introduction

Cancer is the uncontrolled development of abnormal cells (known as
cancer cells, malignant cells, or tumour cells) anywhere in the body.
Therefore, epidemiological studies used mostly to calculate the fre-
quency of the disease and to indicate potential causes of the disease.
Several epidemiological studies have shown that improved mortality
rates for multiple cancers are related to diet, lifestyle, climate, and other
alterations [1-3]. One of the pioneers in genomic researcher Venter
pointed out that with the presence of the hundreds of independent
factors, the anatomy of humans is much complicated than we imagined.
Everyone talks about the genes that they got some characteristics from
their parents, although, genes have little effect on the outcome of life.
Genes offer valuable information about the increased risk of a disease,
but they do not determine the precise cause of the disease or the actual
incidence of it in most cases. The dynamic interaction between all pro-
teins and cells that operate with environmental variables, not directly
determined by the genetic code, causes most biological problems [4].
Recently, the relation between nutrition (like vitamins A, B-group, C, D,
and E) and immunity got significant attention. The vitamins play a vital
role in regulating the immune system to protect tissues from injury
[5-7]. To describe the behaviour of the disease and to enhanced the
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methods of treatment, various mathematical models have been used.
Since 1994, researchers have started to study cancer behaviour mathe-
matically. Michaelis—-Menten function used to study tumour-immune
interaction [8,9]. In formulating a simple mathematical model, Mayer
and others used ODEs [10] to explain the response of the immune system
when pathogens attack the body. To formulate models of cancer and
investigate the effect of tumour growth mostly on dynamics of other
cells, the researchers used ODEs, PDEs, and delay differential equations
(DDEs) [11-17]. Numerous models have developed to determine the
primary risk factors. Mufudza proposed a mathematical model that uses
DEs to illustrate the impact of estrogen on breast cancer dynamics [11].
In the development of an obesity-cancer model [18], in tumour response
to chemotherapy, Roberto and others have used ODEs and discussed the
connection between obesity and cancer [19]. A model that follows a
balanced diet was introduced by Alharbi and Rambely in 2019. In the
model, they used normal cells, and immune cells aim to describe how the
immune system functions when abnormal cells appear in a tissue [20].
They also investigate the effects of the involvement of vitamins on
strengthening the immune system and regulating the spread of tumour
cells. They develop an ODE-governed tumour-immune-vitamin (TIVM)
model consisting of two classes, namely tumour cells, and immune cells.
They provided that the immune system is strengthened by a daily intake
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of 55% of vitamins per day to prevent tumour cell growth [21]. The
“tumour-immune-unhealthy diet model” (TTUNHDM) and TIVM dy-
namics lead to the study of the effect on immune and tumour cell dy-
namics of changes in the rate of vitamin intake. In 2018, the third WCRF
and AICR [22] report proposed a dietary source of vitamins from healthy
foods and beverages. However, because of their unexpected side effects,
especially in cancer patients, high doses of diet supplements are not
recommended. Recently, S. A. Alharbi and A. S. Rambely [23] proposed
(TIVM) as

T

% = 61T[1 — 62‘“’] — 63Tﬂ — (SIT\/,

dl pIT

— =0-—nl+_———plT + 51V 1
i 0)77+f+Tﬂ+27 (€]
dVv

Z :Klfkg\/,

The description of the parameters are given below:

e The growth limit of tumour cancer cells is represented by o,

o9 represents the tumour reduction due to the deformed tumour from
the body during dietary metabolisation

o3 is the rate of elimination or suppression of tumour cells due to the
immune cell response

o denotes a constant source of immune cells that are produced daily
in the body

e The natural death rate of immune cell is denoted by 5

e p describes the rate of the presence of tumour cells incites the
response of the immune system

f is the threshold rate of the immune system

u represents rate of suppression of the immune cells

61 denotes the rate of the effect of vitamins on tumour cells

8- is the rate of the effect of vitamins on immune cells

k1 is a regular rate of vitamins from natural sources of food and
beverages

k2 describes the rate of vitamins which are attracted by cells

Fractional calculus is one of the potential areas in which different
properties of various materials hold more accurately than integer-order.
Many researchers, extended classical calculus to fractional calculus and
introduced different fractional order mathematical models [24-26].
Fractional calculus has been investigated qualitatively and numerically
in [27-30]. The researcher implemented numerous effective methods to
figure out the solution of linear and nonlinear FDEs, some of which are
numerical FDEs [35,36] and some are analytical [31-34,37,38].
Recently, different types of fractional-order or nonlocal derivatives have
been introduced by Riemann-Liouville based on the power-law. After
that, Caputo-Fabrizio proposed a new fractional derivative using the
exponential kernel [39-42], which faces problem to the locality of the
kernel. To handle this problem, Atangana and Baleanu (AB) [43] pro-
posed Mittag-Leffler function (MLF) of the nonsingular and nonlocal
kernel. For more details see [44-47].

In this paper, we extend the model (1) by ..4#'¢ derivative because of
the performance of this operator in modelling infectious diseases and
inspired by the above useful applications of some fractional operators in
the epidemic model. Under .«/#¢ fractional derivative of order w, we
consider the model as:

Py T(t) =Tl —6T] -6 TI— 8TV,

- IT

S G o) =@ — gl + L — uIT + 8,1V, 2
271() Mt L= T+, @

R :/fjgm\/(t) =Kk — KV,

along with initial conditions:

T(0) = To; 1(0) = Io; V(0) = Vo. 3)
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The manuscript is structured as: the introduction and motivation part
of the manuscript is given in Section ‘Introduction’. Section ‘Pre-
liminaries’ is devoted to basic definitions of fractional calculus. Section
‘Main work’ provides the existence, uniqueness and HU-stability of the
model (2) and gives the numerical results via fractional
Adams-Bashforth method. Section ‘Numerical simulations’ presents the
simulations of the numrical results for various fractional orders. The
conclusion of the article is presented in Section ‘Conclusion’.

Preliminaries

Definition 0.1. [43] For fractional order 0 < w < 1 and © € H'(0,T),
the left-sided .2/#¢ fractional derivative is defined as:

7 N(w) [ —w ,
ABC _ (+ — @
,,/0®<t) - )/O[Em(l 71\1‘ 0) >® (@)d@, t>0.

where sﬁ(w) = 5= denotes normalization function with the property

N(0)=N(1)=1 and E, represents Mittag-Leffler function given
below:

0 Ck
Ex @ =2 Fwk T 1)

where Re(w) > 0.

Definition 0.2. [43] For fractional order 0 < w <1 and ® ¢ Hl(O,T),
the left-sided .«/#¢ fractional integral is defined as:

70 (:) = (:Jtz;),) ) (r) + gaZp) % /0 (—e) e (®> e, i

> 0.

Lemma 0.3. [43] The solution to </#¢ FDE given by
ARBC g/m(_) —_ R )
ro() =% () @
0(0) = 6y,

is equivalent the integral equation as follows:

@(z) = fﬁ%%@ +ﬁ ﬁ/ﬂ (t*@))'""%(@)d@

Main work
Existence and uniqueness theory

In this section, we will derive the existence and uniqueness results of
the system (2). We can write the proposed model (2) as

PGSty = 7,1, T,L,V),
EGIM(L) = %L T,LV), (5)
IV (L) = %5(LT,LV),

where

7,(6,T,LV) =0Tl —6,T] —63TI =5, TV,

pIT
—w— _ 6
® ’7”+ﬂ+T ulT + 6,1V, (6)

= K] — Kz\/‘

?/2(ﬂa Tv ”7 \/)
75(t,T,1,V)

We can write simply the proposed model as:
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{,’///M jow@() — ([73:)([))7 %)
9(0) = 920,
where
9@ =(T,1,V),
Do = (To, lp, V)T, ®)
C(LO) = (1, %2 73)".

Applying .#% ¢ fractional integral to (7) and using initial conditions,
we obtain the equivalent form of (7) as

o(r) =0+ G €00 +

w 1 ! w—1 o~
W )@/o (1- )" 6(0,5(0))do.
(C))

[0,.77] with the

Now define a Banach space #=C(X,R®) on X=
following norm

191 = sup{©(r) : & € 2}
1€,

Suppose that for each $ € Z and t € [0,.7
fulfill the conditions given below.

], the function €(t, H(t))

e 3 two constants A and p such that

€@, H(1)) <4619 + pes- (10)

e Ja constant Lg > 0 such that

(€1, £1(1)) — C(t, 9:(1)) I<Le D1 — 9. an

Now we define the operators %5; and 3, such that:

M(z) 0+ (IR( “)’)@(, (),

w(r) - N e |, - O "C@. D).

+ B, = 2.
Theorem 0.4. If the following conditions along with (10) and (11) hold.

.
where %5,

(1) sy‘ (@) LC <1
() Vi = [9«5’))+W}/’@ <1

(iii) V2 = {(:}:fw)) + T }’1@ <1

Then the system (2) posses at least one solution.

Proof. Let us define a closed and
{H € #: ||D||<r}. First we have to prove that 3, 9,
91,9, € A;. For this use Eq. (10), we have

8,9, +%,9, <

(1-=) w 1 ! eVl
e o) s [ e s@.00@) e )

+ B9, € F, for

< sup {|sz>0\+

1€(0,.7

(1—m=) w 1 ! _—
<o G elwlre g [ -0 Gellnede |

(l-m) 17 (l-w) 17 .
‘SZ)O|+{ N(w) N(o)(w) }p@+{ N(w) W(W)F(w)}/mr
=V+V,y1<1.

This shows that 5,9; + B,H, € #,. Next we show that %3, is
contraction. For any ©,,9, € #, and using Lipschitz condition, we
have:

convex set as.%; =
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“pol= s LD 9,0

3, = C(r,D,(t
19,9, o N () (t,92(0)) |
(1 ) ¢
< ~g—Le sup [9(1) — D,(1)]
( ) IEU /
(1-w)
N(w) 57— Lell9r — 9.
where e LL < 1. Hence, we proved that ¥, is a contraction. Next, we

need to prove that 3, is relatively compact. Let $ € .%,, consider

2,5 7 1 [ e
pols s g [ 0-0ree. () e

w 1 ! ol
< gy ), (O s el +oce0
w 1 ! ol
S W) m/o (t = 0)" e[|l +p¢ Jd®
< () (w) et + Pl

Hence, %3, is uniformly bounded on .%,. Lastly, we prove that 3, is
equicontinuous. For this let $ € %, and t;,t; € [0,.7 | such that t; < ta.
Then

1329 (n)— 'Bz@(fz)u\ﬁ( )r(l )/lz(zz—e)mf‘|@(@,@(®))\d@

w 1 " w1 @—1
it -0 =(-0)"]
|€(0,9(0))|de
2[/1¢T+ﬂ ] @
T2

Thus, [|B9(t1) — BrH(t2)||»0 as ta—t;. Hence the operator %3, is
relatively compact by Arzela-Ascoli theorem, so i3, is equicontinuous.
Thus the integral Eq. (9) has at least one solution. Therefore the
consequent model (14) has at least one solution []

Theorem 0.5. Suppose that the condition (11) holds. Then the Eq. (9)
posses at most one solution if

(1—m) ™
{ N(m) +%<w)r<w>}“ <l

Proof. Fort e [0,.7], and 9,9" € % we have

(1-o)
0.7 N (w)

[RSIGERENGIS max € (1.9(1)~C(1.9 (1))

e / (1-0)" ' |E(1.5(1))

(1-m)
(@)
™

W)L@H@f@ u

SS9 >)|d@\(

+

N(w)
contraction condition. By Banach fixed point theorem the integral Eq.
(9) posses at most one solution. Hence the model (2) has at most one
solution. []

Since {Q’”M—W}LL <1, thus the operator %3 satisfies the
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HU-stability

In this section, we will explore the HU-stability of (7).

Definition 0.6. The nodel (2) is HU-stable. If for any { > 0 and 85 € %,
we have

i (1) - e (n5(1) <z a2

then 39 € .7 satisfying system (2) with initial conditions $(0) = 35(0)
= $y, such that H§> - @Hsy*{, for u* > 0. where

8(r) - (719)"

§u= (R 70),

¢(:5() = (77 7)
C=max()", i=1,2,--,5,

U= max(ui)r7 i=1,2,-,5

Remark 0.7. Let us take a small perturbation A € C[0,.7] such that
A(0) = 0 along with following properties:

@ |A(t)|g¢, fort € [0,.7] and ¢ > 0,
(ii) For t € [0,.77], we have

75 (1) = (15 (1)) +A(:).

where A(t) = (A1(t), Az (t), As(t))T.

Lemma 0.8. The solution .Stgh(t) to the following perturbed system

{W%@(,) =¢(1.5(r)) +A(r).

5(0) - 5 o
fulfills the following relation
80) - 80) <" mrm ) as)

Proof. Upon using fractional integral Eq. (14) gets the form

S () - {3 el50) v [ o
)

(@,6(@))d@+ (%( 1? A(t) +W/{) (t—@)“"lA(G))d@,
(16)

also

35(:) B0 (\Jltzw)) (+9(1)) SJ“I(I;) (;) / (-0)7'¢(0.5(0))de
17)

Using remark (i), we reach

w 1

8(1) - 8()|< G0l + g s [ -0 @)l

< [ “tarim )¢
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Hence Sf)h(t) fulfill the condition (15). [J

Theorem 0.9. If presumptions of theorem (3.1) hold, then system (2) is
HU-stable.

Proof. Suppose that 35 € .% be another solution of (12) and $ € .% be
at most one solution of model (2) with initial condition $(0) = 50.

w

0(r) =80+ Gy C(000) 45 s [ - 07 s(@.0(0))de.

Using Lemma (3.5), we reach

[B(1)-2()|<[ou() -9 (1) [ +[ou(r) ()
<2{“Tﬁ§f<’§ﬂ% ’@(”‘5 (1))-¢

+%ﬁ/o(t 0" |¢ ( 3(t>) Lts;)(t)‘d@

5(1.5(0)|

(1—@)(w)+T" (1-w)[(w)+T" =
<[ o (e ) l-o]
which means that
2§C as)
where
(1 —w)(w)+T"
N(w)C ’
(@)'(w) (19)
g (L=@@) £ 77
- N(@) (@) ¢
Eq. (18) becomes H%f@HQfC for 4 = {%;. Hence, our proposed

model (2) is HU-stable. []
Numerical scheme

Here, the numerical results of the system (2) are obtained through
the fractional Adams-Bashforth method. Consider the model (2) as

DEgET() = F(, (),
@I = Fale 1), 0
ABTC Ejg’\/(t) = &5(1, V(1)),

where
(6, T@) =aT[l-—0T]-06Tl-6TV,
~ pIT
t, (¢ =0 -l +———plT + 61V,
82 (8, 1(1) w—=n T H 2 IV,
831, V() =K — V.

The equivalent form of (20) is given by
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(1 - m)w

10 =7(0) + G2 0)

w ! ' w—1cy
Nw) m/o (t—©)" " %,(0,1(0))do,

() = u(o) +%&(z7 (1))

@1
@ 1 ' w—lcy
M) @/O (t—©)""',(8,1(8))de,

V() = \/(0) + (;Jwﬁ)’)&(t, V(1)

) ﬁ/ (1= )7 F3(0, V(©))d®,

We take the first equation of (21) to deduce an iterative scheme, and
for the remaining equations of (21) we will write only the main results

T(r) = w(o) + (}JJW’?)%](;, T(t))

. (22)
w 1 o1y
+W @/0 (t-0)"'%,(0,T(0))do,
Att = ty;q, forb =0,1,2,---, Eq. (22) becomes
1—
T(tp1) = T(O) +%2§n(mﬁ(n))
w 1 i o1y
+m @/0 (o1 —©)7 ' 5,(0,T(0))do,
1 —
T(m 1) = T(0> + %3’1(%7“%))
(23)

w 1 b T741 o
—_ = —-0)" F,(0,T(0))do.
+9?(w) (@) ;/ (to41 )7 81(0,7T(0))
Now, we use the following interpolation polynomial to approximate
the function ¥, (0, T(®)) on the interval [t,, t,.1].

:,\\’l(tz:T(tz)) C,\S’l(l‘zfls—[r(l‘zfl))
St ) Ot Bl

So Eq. (23) gets the form

$1(0,T(0)) = (t—t)+

T(tp) = T(O) +%

w 1 q %’1(&7—[(1‘:)) Iy N
+mm;{f/ (t=tea)(tpsr — )7 dt

e T [y -]

&1, T(1))

h
24
Without the loss of generality, let
Loiw= / (t —t.1)(tpsr — )™ dt,
1:1 (25)
Lo= / (t— 1) (tpsy — 1) dt.
Eq. (24) becomes
1 —w).
(1) = 7(0) + G 0, T0)
(26)

w \ %l(tu-”—(t:)), ?’l(tzflv-u—(trl))
DY e e

m

Next, we evaluate the integrals I, ; ,, and I, ,, as follows
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L1
szl.,w = / (t - tzfl)(llﬂrl - t)mildt
.

1 o @
= _g [(ZZ+] - [zfl)([bﬂ - tz+l) - (tz - tzfl)(tbﬂ - tz) ]

1

71D(T+1) [(thrl — )" =ty — 1)

w+1 }
Put t, = zh,we get

hw+l

Liw= — [(G+1—z+1)(b+1-2-1)"
T

—(z—z+1D)(b+1-2)7]

_1‘_](}1’;711)[(1;-&-1—1—1)“’“ —(+1-2""]
- Sl 1) = (b))

+(b+1—-2)"(w+1+b+1-7)],

thus, we obtain

hm+l .
Sy :m[(b—z-i-]) b-—z4+2+w) @7
—(b—2)"(b—z+2+2w)]
and

le1
L= / (t—=t)(toys —1)" 'dt
[1'
1 w
= *;[(tzﬂ — 1) (tpr — 141)" ]

ooy [ =)™ = o = 1)

Put t, = zh, we get

o= = : (c+1=2)(b+1-2z-1)7]
7%[(}7+1*Z*1)w+17(b+1fz)w+l]7
- %Kbidm(i’w*1*b+z)+(b+lfz)1ﬂ+l}.

Thus, we get

hm+l

o g [(b+1-2)7" -

(b-2)"(b-z+1+w)]. (28)
Upon substituting Egs. (27) and (28) into the Eq. (26), we get

T(tpr1) = T(’o) +%5\Y1(%T(fk))

| w b %l(tl’-ﬂ—(tl))hm -
() Zo{ [(w+2) (b+1-2)"(b—z+2+w)

(b—2)"(b—z+2+2w)]

_%l (tzflv -ﬂ—({tz—l))
INw+2)

—b-2)"(b—z+1+w)]}.

B [(b+1—2)"""

(29)

Similarly for the remaining equations, we have



%]

. Ahmad et al.

Wtpr1) = ”(%) + (92( ?)(Sz(fb»"(fb))

(b=2)"(b—z+2+2w)]

8’2(tz4a U( 7—1 )) @ w+1

—b-2)"(b—z+1+w)]}.

(30)
Vo) = (10) + i o vw)

o Bl V), .
'SE(W);{(F(erﬁ a2t
(b—2)"(b—z+2+2m)]
e RS
—b-2)"(b—z+1+@)]}.

(€29)

Numerical simulations

Here we present the simulation of the numerical results for different
fractional-order via Matlab. We take the initial conditions from ([23]) as
T(0) =1,10(0) =1.22, V(0) = 5. The parameter values of the Table 1
are used for the simulations of the numerical results. Since the fractional
differential derivative has a great deal of freedom that offers a full
spectrum of geometry, thus a few fractional orders have been taken to
interpret the model’s complex behaviors under consideration. From the
figures, we have observed that strengthening immune cells through
vitamin intervention can tend to slow tumour cells growth and division.
The tumor cells and vitamin intervention is decreasing while the im-
mune cells are increasing as shown in the figures. It is noticed that the
smaller the fractional-order, the faster the process of decay or growth;
thus, stability on smaller fractional orders occurs quickly. Also, we have
analyzed that, as the fractional order approaches 1, then the fractional-
order solution tends to the integer-order solution. Thus, the arbitrary
order model of the TIVM model generalizes the integer-order model and
provide global dynamics of the opposite relation between immune cells
and the intervention of vitamins and tumour cells growth and division.
see Fig. 1-3.

Table 1
Values of the parameters for simulation.
Name Parameters values
o1 0.4426
[ 0.4
o3 0.5140
w 0.7
0.57

p 0.7829
f 0.8620
" 0.1859
5 0.6142
8 0.3628
K1 0.5463

K2 0.9757
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Proposed Method
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Fig. 1. Dynamical behavior of tumour cells at w = 1.0,0.95,0.90,0.85.

Proposed Method
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Fig. 2. Dynamical behavior of immune cells at w = 1.0,0.95,0.90,0.85.
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Fig. 3. Dynamical behavior of intervention of vitamin at w =
1.0,0.95,0.90,0.85.
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Conclusion

In this paper, the tumour-immune-vitamins model is generalized by
Atangana-Baleanu fractional derivative. The proposed model has stud-
ied with two aspects: qualitatively and quantitatively. The existence of
at least one and a unique solution has explored by the fixed point theory.
The stability of the solution has carried out through HU-stability. Nu-
merical results have obtained for the proposed model through the
Admas-Bashforth method. Numerical simulations have provided for the
numerical results: showing the global dynamics of the TIV model. Also,
the simulations showed that the fractional-order curves approach an
integer-order when w—1. Thus, the fractional-order TIV model provides
better results than the integer-order model. In future, we will study the
considered model under fractal-fractional operators.
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