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A B S T R A C T   

Recently, Atangana-Baleanu fractional derivative has got much attention of the researchers due to its non- 
locality and non-singularity. This operator contains an accurate kernel that describes the better dynamics of 
systems with a memory effect. In this paper, we investigate the fractional-order tumour-immune-vitamin model 
(TIVM) under Mittag–Leffler derivative. The existence of at least one solution and a unique solution has discussed 
through fixed point results. We established the Hyres-Ulam stability of the proposed model under the Mit-
tag–Leffler derivative. The fractional Adams–Bashforth method has used to achieve numerical results. Finally, we 
simulate the obtained numerical results for different fractional orders to show the effect of vitamin intervention 
on decreased tumour cell growth and cancer risk. At the end of the paper, the conclusion has provided.   

Introduction 

Cancer is the uncontrolled development of abnormal cells (known as 
cancer cells, malignant cells, or tumour cells) anywhere in the body. 
Therefore, epidemiological studies used mostly to calculate the fre-
quency of the disease and to indicate potential causes of the disease. 
Several epidemiological studies have shown that improved mortality 
rates for multiple cancers are related to diet, lifestyle, climate, and other 
alterations [1–3]. One of the pioneers in genomic researcher Venter 
pointed out that with the presence of the hundreds of independent 
factors, the anatomy of humans is much complicated than we imagined. 
Everyone talks about the genes that they got some characteristics from 
their parents, although, genes have little effect on the outcome of life. 
Genes offer valuable information about the increased risk of a disease, 
but they do not determine the precise cause of the disease or the actual 
incidence of it in most cases. The dynamic interaction between all pro-
teins and cells that operate with environmental variables, not directly 
determined by the genetic code, causes most biological problems [4]. 
Recently, the relation between nutrition (like vitamins A, B-group, C, D, 
and E) and immunity got significant attention. The vitamins play a vital 
role in regulating the immune system to protect tissues from injury 
[5–7]. To describe the behaviour of the disease and to enhanced the 

methods of treatment, various mathematical models have been used. 
Since 1994, researchers have started to study cancer behaviour mathe-
matically. Michaelis–Menten function used to study tumour-immune 
interaction [8,9]. In formulating a simple mathematical model, Mayer 
and others used ODEs [10] to explain the response of the immune system 
when pathogens attack the body. To formulate models of cancer and 
investigate the effect of tumour growth mostly on dynamics of other 
cells, the researchers used ODEs, PDEs, and delay differential equations 
(DDEs) [11–17]. Numerous models have developed to determine the 
primary risk factors. Mufudza proposed a mathematical model that uses 
DEs to illustrate the impact of estrogen on breast cancer dynamics [11]. 
In the development of an obesity-cancer model [18], in tumour response 
to chemotherapy, Roberto and others have used ODEs and discussed the 
connection between obesity and cancer [19]. A model that follows a 
balanced diet was introduced by Alharbi and Rambely in 2019. In the 
model, they used normal cells, and immune cells aim to describe how the 
immune system functions when abnormal cells appear in a tissue [20]. 
They also investigate the effects of the involvement of vitamins on 
strengthening the immune system and regulating the spread of tumour 
cells. They develop an ODE-governed tumour-immune-vitamin (TIVM) 
model consisting of two classes, namely tumour cells, and immune cells. 
They provided that the immune system is strengthened by a daily intake 
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of 55% of vitamins per day to prevent tumour cell growth [21]. The 
”tumour-immune-unhealthy diet model” (TIUNHDM) and TIVM dy-
namics lead to the study of the effect on immune and tumour cell dy-
namics of changes in the rate of vitamin intake. In 2018, the third WCRF 
and AICR [22] report proposed a dietary source of vitamins from healthy 
foods and beverages. However, because of their unexpected side effects, 
especially in cancer patients, high doses of diet supplements are not 
recommended. Recently, S. A. Alharbi and A. S. Rambely [23] proposed 
(TIVM) as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= σ1T[1 − σ2T] − σ3TI − δ1TV,

dI

dt
= ω − ηI +

ρIT

f + T
− μIT + δ2IV,

dV

dt
= κ1 − κ2V,

(1) 

The description of the parameters are given below:  

• The growth limit of tumour cancer cells is represented by σ1  
• σ2 represents the tumour reduction due to the deformed tumour from 

the body during dietary metabolisation  
• σ3 is the rate of elimination or suppression of tumour cells due to the 

immune cell response  
• ω denotes a constant source of immune cells that are produced daily 

in the body  
• The natural death rate of immune cell is denoted by η  
• ρ describes the rate of the presence of tumour cells incites the 

response of the immune system  
• f is the threshold rate of the immune system  
• μ represents rate of suppression of the immune cells  
• δ1 denotes the rate of the effect of vitamins on tumour cells  
• δ2 is the rate of the effect of vitamins on immune cells  
• κ1 is a regular rate of vitamins from natural sources of food and 

beverages  
• κ2 describes the rate of vitamins which are attracted by cells 

Fractional calculus is one of the potential areas in which different 
properties of various materials hold more accurately than integer-order. 
Many researchers, extended classical calculus to fractional calculus and 
introduced different fractional order mathematical models [24–26]. 
Fractional calculus has been investigated qualitatively and numerically 
in [27–30]. The researcher implemented numerous effective methods to 
figure out the solution of linear and nonlinear FDEs, some of which are 
numerical FDEs [35,36] and some are analytical [31–34,37,38]. 
Recently, different types of fractional-order or nonlocal derivatives have 
been introduced by Riemann–Liouville based on the power-law. After 
that, Caputo-Fabrizio proposed a new fractional derivative using the 
exponential kernel [39–42], which faces problem to the locality of the 
kernel. To handle this problem, Atangana and Baleanu (AB) [43] pro-
posed Mittag–Leffler function (MLF) of the nonsingular and nonlocal 
kernel. For more details see [44–47]. 

In this paper, we extend the model (1) by ABC derivative because of 
the performance of this operator in modelling infectious diseases and 
inspired by the above useful applications of some fractional operators in 
the epidemic model. Under ABC fractional derivative of order ϖ, we 
consider the model as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ABC D 0
ϖT
(
t
)

= σ1T[1 − σ2T] − σ3TI − δ1TV,

ABC D 0
ϖI
(
t
)

= ω − ηI +
ρIT

f + T
− μIT + δ2IV,

ABC D 0
ϖV
(
t
)

= κ1 − κ2V,

(2)  

along with initial conditions: 

T(0) = T0; I(0) = I0; V(0) = V0. (3) 

The manuscript is structured as: the introduction and motivation part 
of the manuscript is given in Section ‘Introduction’. Section ‘Pre-
liminaries’ is devoted to basic definitions of fractional calculus. Section 
‘Main work’ provides the existence, uniqueness and HU-stability of the 
model (2) and gives the numerical results via fractional 
Adams–Bashforth method. Section ‘Numerical simulations’ presents the 
simulations of the numrical results for various fractional orders. The 
conclusion of the article is presented in Section ‘Conclusion’. 

Preliminaries 

. 

Definition 0.1. [43] For fractional order 0 < ϖ ≤ 1 and Θ ∈ H1(0,T), 
the left-sided ABC fractional derivative is defined as: 

ABC D
ϖ
0 Θ
(

t
)

=
N(ϖ)

(1 − ϖ)

∫ t

0
Eϖ

( − ϖ
ϖ − 1

(t − Θ)
ϖ
)

Θ′

(

Θ
)

dΘ, t > 0.

where N
(

ϖ) = ϖ
2− ϖ denotes normalization function with the property 

N(0) = N(1) = 1 and Eϖ represents Mittag–Leffler function given 
below: 

Eϖ

(

ζ

)

=
∑∞

k=0

ζk

Γ(ϖk + 1)
,

where Re(ϖ) > 0. 

Definition 0.2. [43] For fractional order 0 < ϖ ≤ 1 and Θ ∈ H1(0,T), 
the left-sided ABC fractional integral is defined as: 

ABC I
ϖ
0 Θ
(

t
)

=
(1 − ϖ)

N(ϖ)
Θ
(

t
)

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1Θ
(

Θ
)

dΘ, t

> 0.

Lemma 0.3. [43] The solution to ABC FDE given by 
{

ABC D
ϖ
0 Θ
(
t
)
= P

(
t
)
,

Θ(0) = Θ0,
(4)  

is equivalent the integral equation as follows: 

Θ
(

t
)

= f0 +
(1 − ϖ)

N(ϖ)
P

(

t
)

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
P

(

Θ
)

dΘ.

Main work 

Existence and uniqueness theory 

In this section, we will derive the existence and uniqueness results of 
the system (2). We can write the proposed model (2) as 
⎧
⎪⎪⎨

⎪⎪⎩

ABC D
ϖ
0 S
(
t
)

= U 1(t,T, I,V),

ABC D
ϖ
0 M

(
t
)

= U 2(t,T, I,V),

ABC D
ϖ
0 V
(
t
)

= U 3(t,T, I,V),

(5)  

where 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U 1(t,T, I,V) = σ1T[1 − σ2T] − σ3TI − δ1TV,

U 2(t,T, I,V) = ω − ηI +
ρIT

f + T
− μIT + δ2IV,

U 3(t,T, I,V) = κ1 − κ2V.

(6) 

We can write simply the proposed model as: 
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{
ABC D

ϖ
0 H
(
t
)
= E(t,H(t)),

H(0) = H0⩾0,
(7)  

where 
⎧
⎨

⎩

H(t) = (T, I,V)
T
,

H0 = (T0, I0,V0)
T
,

E(t,H(t)) = (U 1,U 2,U 3)
T
.

(8) 

Applying ABC fractional integral to (7) and using initial conditions, 
we obtain the equivalent form of (7) as 

H

(

t
)

=H0 +
(1 − ϖ)

N(ϖ)
E(t,H(t))+

ϖ
N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
E(Θ,H(Θ))dΘ.

(9) 

Now define a Banach space B =C
(
X,R3

)
on X= [0,T ] with the 

following norm 

‖H‖ = sup
t∈X

{H(t) : H ∈ B }.

Suppose that for each H ∈ B and t ∈ [0,T ], the function E(t,H(t))
fulfill the conditions given below.  

• ∃ two constants λE and ρE such that 

|E(t,H(t)) |⩽λE|H| + ρE. (10)    

• ∃ a constant LE > 0 such that 

|E(t,H1(t)) − E(t,H2(t)) |⩽LE|H1 − H2|. (11) 

Now we define the operators P1 and P2 such that: 

P1H

(

t
)

= H0 +
(1 − ϖ)

N(ϖ)
E(t,H(t)),

P2H

(

t
)

=
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
E(Θ,H(Θ))dΘ,

where P1 + P2 = B . 

Theorem 0.4. If the following conditions along with (10) and (11) hold. 

(i) (1− ϖ)

N(ϖ)
LE < 1. 

(ii) ∇1 =

[
(1− ϖ)

N(ϖ)
+ Tϖ

N(ϖ)Γ(ϖ)

]

ρE < 1. 

(iii) ∇2 =

{
(1− ϖ)

N(ϖ)
+ Tϖ

N(ϖ)Γ(ϖ)

}

λE < 1. 

Then the system (2) posses at least one solution. 

Proof. Let us define a closed and convex set asB τ =

{H ∈ B : ‖H‖⩽τ }. First we have to prove that P1H1 + P2H2 ∈ B τ, for 
H1,H2 ∈ B τ. For this use Eq. (10), we have 

‖P1H1+P2H2‖⩽

⩽ sup
t∈[0,T ]

{

|H0|+
(1− ϖ)

N(ϖ)
|E(t,H(t))|+

ϖ
N(ϖ)

1
Γ(ϖ)

∫ t

0
(t− Θ)

ϖ− 1
|E(Θ,H(Θ))|dΘ

}

⩽
{

|H0|+
(1− ϖ)

N(ϖ)
(λE‖H‖+ρE)+

ϖ
N(ϖ)

1
Γ(ϖ)

∫ t

0
(t− Θ)

ϖ− 1
(λE‖H‖+ρE)dΘ

}

=|H0|+

{
(1− ϖ)

N(ϖ)
+

Tϖ

N(ϖ)Γ(ϖ)

}

ρE+

{
(1− ϖ)

N(ϖ)
+

Tϖ

N(ϖ)Γ(ϖ)

}

λEτ

=∇1+∇2τ⩽τ.

This shows that P1H1 + P2H2 ∈ B τ. Next we show that P1 is 
contraction. For any H1,H2 ∈ B τ and using Lipschitz condition, we 
have: 

‖P1H1 − P1H2‖ = sup
t∈[0,T ]

(1 − ϖ)

N(ϖ)
|E(t,H1(t)) − E(t,H2(t)) |

⩽
(1 − ϖ)

N(ϖ)
LE sup

t∈[0,T ]

|H1(t) − H2(t)|

⩽
(1 − ϖ)

N(ϖ)
LE‖H1 − H2‖.

where (1− ϖ)

N(ϖ)
LE < 1. Hence, we proved that P1 is a contraction. Next, we 

need to prove that P2 is relatively compact. Let H ∈ B τ, consider 

‖P2H‖⩽ sup
t∈[0,T ]

ϖ
N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
|E(Θ,H(Θ)) |dΘ

⩽
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1 sup
t∈[0,T ]

[λE|H| + ρE ]dΘ

⩽
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
[λE‖H‖ + ρE ]dΘ

⩽
Tϖ

N(ϖ)Γ(ϖ)
[λEτ + ρE].

Hence, P2 is uniformly bounded on B τ. Lastly, we prove that P2 is 
equicontinuous. For this let H ∈ B τ and t1, t2 ∈ [0,T ] such that t1 < t2. 
Then 

‖P2H(t1)− P2H(t2)‖⩽
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t2

t1
(t2 − Θ)

ϖ− 1
|E(Θ,H(Θ))|dΘ

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t2

0

[
(t1 − Θ)

ϖ− 1
− (t2 − Θ)

ϖ− 1]

|E(Θ,H(Θ))|dΘ 

⩽
2[λEτ+ρE]

N(ϖ)Γ(ϖ)
[(t2 − t1)

ϖ
].

Thus, ‖P2H(t1) − P2H(t2)‖→0 as t2→t1. Hence the operator P2 is 
relatively compact by Arzela-Ascoli theorem, so P2 is equicontinuous. 
Thus the integral Eq. (9) has at least one solution. Therefore the 
consequent model (14) has at least one solution □ 

Theorem 0.5. Suppose that the condition (11) holds. Then the Eq. (9) 
posses at most one solution if 
{
(1 − ϖ)

N(ϖ)
+

Tϖ

N(ϖ)Γ(ϖ)

}

LE < 1.

Proof. For t ∈ [0,T ], and H,H
*
∈ B we have 

‖PH(t)− PH
*
(t)‖⩽ max

t∈[0,T ]

(1− ϖ)

N(ϖ)
|E(t,H(t))− E(t,H*

(t))|

+ max
t∈[0,T ]

ϖ
N(ϖ)Γ(ϖ)

∫ t

0
(t− Θ)

ϖ− 1
|E(t,H(t))

− E(t,H*
(t))|dΘ⩽

(
(1− ϖ)

N(ϖ)

+
Tϖ

N(ϖ)Γ(ϖ)

)

LE‖H− H
*
‖

Since 
{

(1− ϖ)

N(ϖ)
+ Tϖ

N(ϖ)Γ(ϖ)

}

LE < 1, thus the operator P satisfies the 

contraction condition. By Banach fixed point theorem the integral Eq. 
(9) posses at most one solution. Hence the model (2) has at most one 
solution. □ 
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HU-stability 

In this section, we will explore the HU-stability of (7). 

Definition 0.6. The nodel (2) is HU-stable. If for any ζ > 0 and H̃ ∈ B , 
we have 
⃒
⃒
⃒ABC D

ϖ
0 H̃
(

t
)
− E

(
t, H̃
(

t
)) ⃒
⃒
⃒⩽ζ, (12)  

then ∃H ∈ B satisfying system (2) with initial conditions H(0) = H̃(0)

= H̃0, such that 
⃦
⃦
⃦H̃ − H

⃦
⃦
⃦⩽μ*ζ, for μ* > 0. where 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̃

(

t
)

=
(

T̃, Ĩ, Ṽ
)T

,

H̃0 =
(

T̃0, Ĩ0, Ṽ0

)
,

E
(

t, H̃
(

t
))

=
(

Ũ 1, Ũ 2, Ũ 3

)T
,

ζ = max(ζi)
T
, i = 1, 2,⋯, 5,

μ* = max
(
μ*

i

)T
, i = 1, 2,⋯, 5.

(13)   

Remark 0.7. Let us take a small perturbation Λ ∈ C[0,T ] such that 
Λ(0) = 0 along with following properties: 

(i) |Λ(t)|⩽ζ, for t ∈ [0,T ] and ζ > 0, 
(ii) For t ∈ [0,T ], we have 

ABC D
ϖ
0 H̃
(

t
)
= E

(
t, H̃
(

t
))

+Λ
(

t
)
,

where Λ(t) = (Λ1(t),Λ2(t),Λ3(t))T . 

Lemma 0.8. The solution H̃h(t) to the following perturbed system 
⎧
⎨

⎩

ABC D
ϖ
0 H̃
(

t
)
= E

(
t, H̃
(

t
))

+ Λ
(

t
)
,

H
(

0
)
= H̃0,

(14)  

fulfills the following relation 
⃒
⃒
⃒H̃h

(
t
)
− H̃

(
t
)⃒
⃒
⃒⩽
[
(1 − ϖ)Γ(ϖ) + Tϖ

N(ϖ)Γ(ϖ)

]

ζ. (15)   

Proof. Upon using fractional integral Eq. (14) gets the form 

H̃h

(

t
)

=

{

H̃0 +
(1 − ϖ)

N(ϖ)
E
(

t, H̃
(

t
))

+
ϖ

N(ϖ)Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
E 

(
Θ, H̃

(
Θ
))

dΘ +
(1 − ϖ)

N(ϖ)
Λ
(

t
)

+
ϖ

N(ϖ)Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1Λ
(

Θ
)

dΘ,

(16)  

also 

H̃

(

t
)

=H̃0+
(1− ϖ)

N(ϖ)
E
(

t,H̃
(

t
))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t− Θ)

ϖ− 1
E
(

Θ,H̃
(

Θ
))

dΘ

(17)  

Using remark (i), we reach 
⃒
⃒
⃒H̃h

(
t
)
− H̃

(
t
)⃒
⃒
⃒⩽

(1 − ϖ)

N(ϖ)
|Λ(t)| +

ϖ
N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
|Λ(Θ)|dΘ

⩽
[
(1 − ϖ)Γ(ϖ) + Tϖ

N(ϖ)Γ(ϖ)

]

ζ.

Hence H̃h(t) fulfill the condition (15). □ 

Theorem 0.9. If presumptions of theorem (3.1) hold, then system (2) is 
HU-stable. 

Proof. Suppose that H̃ ∈ B be another solution of (12) and H ∈ B be 
at most one solution of model (2) with initial condition H(0) = H̃0. 

H

(

t
)

= H̃0 +
(1 − ϖ)

N(ϖ)
E(t,H(t)) +

ϖ
N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
E(Θ,H(Θ))dΘ.

Using Lemma (3.5), we reach 
⃒
⃒
⃒H̃
(

t
)
− H
(

t
)⃒
⃒
⃒⩽
⃒
⃒
⃒H̃h

(
t
)
− H̃
(

t
)⃒
⃒
⃒+

⃒
⃒
⃒H̃h

(
t
)
− H
(

t
)⃒
⃒
⃒

⩽2
[
(1− ϖ)Γ(ϖ)+Tϖ

N(ϖ)Γ(ϖ)

]

ζ+
1− ϖ
N(ϖ)

⃒
⃒
⃒E
(

t,H̃
(

t
))

− E(t,H(t))
⃒
⃒
⃒

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t− Θ)

ϖ− 1
⃒
⃒
⃒E
(

t,H̃
(

t
))

− E(t,H(t))
⃒
⃒
⃒dΘ

⩽2
[
(1− ϖ)Γ(ϖ)+Tϖ

N(ϖ)Γ(ϖ)

]

ζ+
(
(1− ϖ)Γ(ϖ)+Tϖ

N(ϖ)Γ(ϖ)

)

LE

⃦
⃦
⃦H̃− H

⃦
⃦
⃦

which means that 
⃦
⃦
⃦H̃ − H

⃦
⃦
⃦⩽

2ςζ
1 − Ψ

, (18)  

where 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ς =
(1 − ϖ)Γ(ϖ) + Tϖ

N(ϖ)Γ(ϖ)
,

Ψ =

(
(1 − ϖ)Γ(ϖ) + Tϖ

N(ϖ)Γ(ϖ)

)

LE.

(19)  

Eq. (18) becomes 
⃦
⃦
⃦H̃ − H

⃦
⃦
⃦⩽μ*ζ for μ* = 2ς

1− Ψ. Hence, our proposed 

model (2) is HU-stable. □ 

Numerical scheme 

Here, the numerical results of the system (2) are obtained through 
the fractional Adams–Bashforth method. Consider the model (2) as 
⎧
⎪⎪⎨

⎪⎪⎩

ABC D
ϖ
0 T
(
t
)

= F1(t,T(t)),
ABC D

ϖ
0 I
(
t
)

= F2(t, I(t)),
ABC D

ϖ
0 V
(
t
)

= F3(t,V(t)),

(20)  

where 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F1(t,T(t)) = σ1T[1 − σ2T] − σ3TI − δ1TV,

F2(t, I(t)) = ω − ηI +
ρIT

f + T
− μIT + δ2IV,

F3(t,V(t)) = κ1 − κ2V.

The equivalent form of (20) is given by 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(t) = T

(

0
)

+
(1 − ϖ)

N(ϖ)
F1(t,T(t))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
F1(Θ,T(Θ))dΘ,

I(t) = I

(

0
)

+
(1 − ϖ)

N(ϖ)
F2(t, I(t))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
F2(Θ, I(Θ))dΘ,

V(t) = V

(

0
)

+
(1 − ϖ)

N(ϖ)
F3(t,V(t))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
F3(Θ,V(Θ))dΘ,

(21) 

We take the first equation of (21) to deduce an iterative scheme, and 
for the remaining equations of (21) we will write only the main results 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T(t) = T

(

0
)

+
(1 − ϖ)

N(ϖ)
F1(t,T(t))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ t

0
(t − Θ)

ϖ− 1
F1(Θ,T(Θ))dΘ,

(22) 

At t = tb+1, for b = 0,1,2,⋯, Eq. (22) becomes 

T(tb+1) = T

(

0
)

+
(1 − ϖ)

N(ϖ)
F1(tb,T(tb))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∫ tb+1

0
(tb+1 − Θ)

ϖ− 1
F1(Θ,T(Θ))dΘ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T

(

tb+1

)

= T

(

0
)

+
(1 − ϖ)

N(ϖ)
F1(tb,T(tb))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∑b

z=0

∫ tz+1

tz
(tb+1 − Θ)

ϖ− 1
F1(Θ,T(Θ))dΘ.

(23) 

Now, we use the following interpolation polynomial to approximate 
the function F1(Θ,T(Θ)) on the interval [tz, tz+1]. 

F1(Θ,T(Θ)) ≅
F1(tz,T(tz))

h
(t − tz− 1)+

F1(tz− 1,T(tz− 1))

h
(t − tz)

So Eq. (23) gets the form 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(tb+1) = T

(

0
)

+
(1 − ϖ)

N(ϖ)
F1(tb,T(tb))

+
ϖ

N(ϖ)

1
Γ(ϖ)

∑q

z=0

[
F1(tz,T(tz))

h

∫ tz+1

tz
(t − tz− 1)(tb+1 − t)ϖ− 1dt

−
F1(tz− 1,T(tz− 1))

h

∫ tz+1

tz
(t − tz)(tb+1 − t)ϖ− 1dt

]

.

(24) 

Without the loss of generality, let 
⎧
⎪⎪⎨

⎪⎪⎩

Iz− 1,ϖ =

∫ tz+1

tz
(t − tz− 1)(tb+1 − t)ϖ− 1dt,

Iz,ϖ =

∫ tz+1

tz
(t − tz)(tb+1 − t)ϖ− 1dt.

(25) 

Eq. (24) becomes 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T

(

tb+1

)

= T

(

0
)

+
(1 − ϖ)

N(ϖ)
F1(tb,T(tb))

ϖ
Γ(ϖ)N(ϖ)

∑q

m=0

[
F1(tz,T(tz))

h
Iz− 1,ϖ −

F1(tz− 1,T(tz− 1))

h
Iz,ϖ

]

.

(26) 

Next, we evaluate the integrals Iz− 1,ϖ and Iz,ϖ as follows 

Iz− 1,ϖ =

∫ tz+1

tz
(t − tz− 1)(tb+1 − t)ϖ− 1dt

= −
1
ϖ
[(tz+1 − tz− 1)(tb+1 − tz+1)

ϖ
− (tz − tz− 1)(tb+1 − tz)

ϖ
]

−
1

ϖ(ϖ + 1)
[
(tb+1 − tz+1)

ϖ+1
− (tb+1 − tz)

ϖ+1 ]
.

Put tz = zh,we get 

Iz− 1,ϖ = −
hϖ+1

ϖ
[(z + 1 − z + 1)(b + 1 − z − 1)ϖ

− (z − z + 1)(b + 1 − z)ϖ
]

−
hϖ+1

ϖ(ϖ + 1)
[
(b + 1 − z − 1)ϖ+1

− (b + 1 − z)ϖ+1 ]

=
hϖ+1

ϖ(ϖ + 1)
[(b − z)ϖ

( − 2(ϖ + 1) − (b − z))

+ (b + 1 − z)ϖ
(ϖ + 1 + b + 1 − z) ],

thus, we obtain 
⎧
⎪⎨

⎪⎩

Iz− 1,ϖ =
hϖ+1

ϖ(ϖ + 1)
[(b − z + 1)ϖ

(b − z + 2 + ϖ)

− (b − z)ϖ
(b − z + 2 + 2ϖ) ]

(27)  

and 

Iz,ϖ =

∫ tz+1

tz
(t − tz)(tb+1 − t)ϖ− 1dt

= −
1
ϖ
[(tz+1 − tz)(tb+1 − tz+1)

ϖ
]

−
1

ϖ(ϖ + 1)
[
(tb+1 − tz+1)

ϖ+1
− (tb+1 − tz)

ϖ+1 ]

Put tz = zh, we get 

Iz,ϖ = −
hϖ+1

ϖ
[(z + 1 − z)(b + 1 − z − 1)ϖ

]

−
hϖ+1

ϖ(ϖ + 1)
[
(b + 1 − z − 1)ϖ+1

− (b + 1 − z)ϖ+1 ]
,

=
hϖ+1

ϖ(ϖ + 1)
[
(b − z)ϖ

( − ϖ − 1 − b + z) + (b + 1 − z)ϖ+1 ]
.

Thus, we get 
{

Iz,ϖ =
hϖ+1

ϖ(ϖ + 1)
[
(b + 1 − z)ϖ+1

− (b − z)ϖ
(b − z + 1 + ϖ)

]
. (28) 

Upon substituting Eqs. (27) and (28) into the Eq. (26), we get 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(tb+1) = T

(

t0

)

+
(1 − ϖ)

N(ϖ)
F1(tb,T(tb))

+
ϖ

N(ϖ)

∑b

z=0

{
F1(tz,T(tz))

Γ(ϖ + 2)
hϖ [(b + 1 − z)ϖ

(b − z + 2 + ϖ)

(b − z)ϖ
(b − z + 2 + 2ϖ) ]

−
F1(tz− 1,T(tz− 1))

Γ(ϖ + 2)
hϖ[(b + 1 − z)ϖ+1

− (b − z)ϖ
(b − z + 1 + ϖ) ] }.

(29) 

Similarly for the remaining equations, we have 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(tb+1) = I

(

t0

)

+
(1 − ϖ)

N(ϖ)
F2(tb, I(tb))

+
ϖ

N(ϖ)

∑b

z=0

{
F2(tz, I(tz))

Γ(ϖ + 2)
hϖ [(b + 1 − z)ϖ

(b − z + 2 + ϖ)

(b − z)ϖ
(b − z + 2 + 2ϖ) ]

−
F2(tz− 1, I(tz− 1))

Γ(ϖ + 2)
hϖ[(b + 1 − z)ϖ+1

− (b − z)ϖ
(b − z + 1 + ϖ) ] }.

(30)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(tb+1) = V

(

t0

)

+
(1 − ϖ)

N(ϖ)
F3(tb,V(tb))

+
ϖ

N(ϖ)

∑b

z=0

{
F3(tz,V(tz))

Γ(ϖ + 2)
hϖ [(b + 1 − z)ϖ

(b − z + 2 + ϖ)

(b − z)ϖ
(b − z + 2 + 2ϖ) ]

−
F3(tz− 1,V(tz− 1))

Γ(ϖ + 2)
hϖ[(b + 1 − z)ϖ+1

− (b − z)ϖ
(b − z + 1 + ϖ) ] }.

(31)  

Numerical simulations 

Here we present the simulation of the numerical results for different 
fractional-order via Matlab. We take the initial conditions from ([23]) as 
T(0) = 1, I(0) = 1.22, V(0) = 5. The parameter values of the Table 1 
are used for the simulations of the numerical results. Since the fractional 
differential derivative has a great deal of freedom that offers a full 
spectrum of geometry, thus a few fractional orders have been taken to 
interpret the model’s complex behaviors under consideration. From the 
figures, we have observed that strengthening immune cells through 
vitamin intervention can tend to slow tumour cells growth and division. 
The tumor cells and vitamin intervention is decreasing while the im-
mune cells are increasing as shown in the figures. It is noticed that the 
smaller the fractional-order, the faster the process of decay or growth; 
thus, stability on smaller fractional orders occurs quickly. Also, we have 
analyzed that, as the fractional order approaches 1, then the fractional- 
order solution tends to the integer-order solution. Thus, the arbitrary 
order model of the TIVM model generalizes the integer-order model and 
provide global dynamics of the opposite relation between immune cells 
and the intervention of vitamins and tumour cells growth and division. 
see Fig. 1–3. 

Table 1 
Values of the parameters for simulation.  

Name Parameters values 

σ1  0.4426 
σ2  0.4 
σ3  0.5140 
ω  0.7 
η  0.57 
ρ  0.7829 
f 0.8620 
μ  0.1859 
δ1  0.6142 
δ2  0.3628 
κ1  0.5463 
κ2  0.9757  

Fig. 1. Dynamical behavior of tumour cells at ϖ = 1.0,0.95,0.90,0.85.  

Fig. 2. Dynamical behavior of immune cells at ϖ = 1.0,0.95,0.90,0.85.  

Fig. 3. Dynamical behavior of intervention of vitamin at ϖ =

1.0,0.95,0.90,0.85. 
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Conclusion 

In this paper, the tumour-immune-vitamins model is generalized by 
Atangana-Baleanu fractional derivative. The proposed model has stud-
ied with two aspects: qualitatively and quantitatively. The existence of 
at least one and a unique solution has explored by the fixed point theory. 
The stability of the solution has carried out through HU-stability. Nu-
merical results have obtained for the proposed model through the 
Admas-Bashforth method. Numerical simulations have provided for the 
numerical results: showing the global dynamics of the TIV model. Also, 
the simulations showed that the fractional-order curves approach an 
integer-order when ϖ→1. Thus, the fractional-order TIV model provides 
better results than the integer-order model. In future, we will study the 
considered model under fractal-fractional operators. 
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