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Abstract: We present an analytic solvability of a class of Langevin differential equations (LDEs)
in the asset of geometric function theory. The analytic solutions of the LDEs are presented by uti-
lizing a special kind of fractal function in a complex domain, linked with the subordination theory.
The fractal functions are suggested for the multi-parametric coefficients type motorboat fractal set.
We obtain different formulas of fractal analytic solutions of LDEs. Moreover, we determine the max-
imum value of the fractal coefficients to obtain the optimal solution. Through the subordination
inequality, we determined the upper boundary determination of a class of fractal functions holding
multibrot function ϑ(z) = 1 + 3κ z + z3.

Keywords: analytic function; subordination and superordination; univalent function; open unit disk;
algebraic differential equations; complex fractal domain; fractional calculus; fractional differential operator

1. Introduction

The class of Langevin differential equations (LDEs) is considered indifferently in the as-
sessment of different categories of geometric investigations. The partial group is considered
by consuming the cramped geometries [1]. It is termed the evolution of physical events
in fluctuating situations [2–4]. For instance, Brownian motion is fit selected by the LDEs
while the arbitrary fluctuation force is reflected to be white noise. In the sample, the random
fluctuation force is not white noise, the motion of the particle is adapted by the improved
LDEs [5]. A fractional type of LDEs is considered in [6–9]. Additionally, the solvability
of LDEs is demonstrated by proposing the geometric ergodic and other geometry in [10,11].
Generally, the class of LDEs is employed to design the broader classes of polymer field
theory models. One of significant investigation in the area of polymer theory, systems
is the geometric representation of the polymer. Therefore, we focus the geometric analytic
univalent results of LDEs with a complex variable [12].

In this analysis, we investigate the upper bound result of a class of complex Langevin
differential equations (LDEs) in the aim of fractal theory. The result is an analytic univa-
lent solution in the open unit disk. The method of the proof is assumed by employing
a type of fractal function constructed by the subordination notion. The fractal functions
are suggested for the multi-parametric coefficients type motorboat fractal set.

2. Methods

A class of second order LDEs is formulated by the structure [13]

ϕ′′(z) + τϕ′(z) = S(ϕ(z)), z ∈ C, (1)

where τ > 0 presents the damping connection and S is the noise term. To investigate
the geometric properties of Equation (1), we assume that z ∈ ∪ = {z ∈ C : |z| < 1}
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and ϕ(z) is a normalized function achieving the series ϕ(z) = z+∑∞
n=2 ϕnzn. We reorganize

Equation (1) with complex connection, then we obtain the homogeneous equation

Φ(z) := τ(z)
(

z2 ϕ′′(z)
ϕ(z)

)
+

(
zϕ′(z)
ϕ(z)

)
, z ∈ ∪, (2)

where τ(z) is analytic function in ∪. Obviously, Φ(0) = 1, for all τ(z) ∈ ∪ (see the follow-
ing instruction)

Example 1.

• Suppose that k1(z) = z/(1− z), τ(z) = z, which implies Φ(z) = 1 + z + 3z2 + 5z3 +

7z4 + 9z5 + O(z6);
• Consider k2(z) = z/(1 − z)2, τ(z) = z, which yields Φ(z) = 1 + 2z + 6z2 + 12z3 +

18z4 + 24z5 + O(z6);
• Assume that τ(z) = 1− z and ϕ(z) = z/(1− z), which brings Φ(z) = 1 + 3z + 3z2 +

3z3 + 3z4 + 3z5 + O(z6)
• Suppose that τ(z) = 1 and k1(z) = z/(1− z), which yields Φ(z) = 1 + 3z + 5z2 + 7z3 +

9z4 + 11z5 + O(z6).

Moreover, we consider the following concepts.

Definition 2.

• A function ϕ, which is analytic in ∪, is subordinated to the holomorphic function χ, denoted
by ϕ ≺ χ, if an analytic function v with |v(z)| ≤ |z| exists, having ϕ = (χ(v)) [14].

• The classes S∗(σ) and K(σ) of starlike and convex functions, respectively, are satisfied(
zϕ′(z)
ϕ(z)

)
≺ σ(z) and

(
1 + z ϕ′′(z)

ϕ′(z)

)
≺ σ(z), where <(σ(z)) > 0, σ(0) = 1, σ′(0) > 1.

• The class P(α, β) contains functions of the form

σ(z) =
1 + α v(z)
1 + β v(z)

≺ 1 + α z
1 + β z

,

where v is the Schwarz function and −1 ≤ β < α ≤ 1. Then P(α, β) ⊂ P( 1−α
1−β ) is the class

of Janowski functions.

The σ ∈ P is used to construct the class in Definition 3.

Definition 3. For the normalized analytic function

ϕ(z) = z +
∞

∑
n=2

ϕnzn, z ∈ ∪,

the class Mτ(σ) is a set of all functions of the form (2)

τ(z)
(

z2 ϕ′′(z)
ϕ(z)

)
+

(
zϕ′(z)
ϕ(z)

)
≺ σ (z), (3)

where τ(z) is analytic in ∪.

Multibrot Fractal Set Generator

A multibrot set in the complex plane satisfies that the absolute value remains a finite
value, taking the formula

Pn(z) = anzn + an−1zn−1 + . . . + a0, an 6= 0,
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where ai, i = 0, . . . , n are constant coefficients. Additionally, a multibrot set Figure 1
is presented by parametric connections such as the full cubic connected locus, which maps
the complex number z ∈ ∪ into ϑ (z) = z3 + 3κ z + 1 (see [15]).

Figure 1. The plot of ϑ(z) and the relation with κ; the fractal constant κ = −1/3.

Define a function with the parameter κ, taking the construction

σκ(z) = 1 +
z
κ

(
κ + z
κ − z

)
= 1 +

z
κ
+

(2z2)

κ2 +
(2z3)

κ3 +
(2z4)

κ4 +
(2z5)

κ5 + O(z6), |κ| > |z|.
(4)

Furthermore, a computation implies that

<
(

z
( z

κ

(
κ+z
κ−z
))′

z
κ

(
κ+z
κ−z
) )

> 0

whenever
κ > 0, κ −

√
2κ2 < <(z) < κ.

3. Results

In this section, we illustrate our computational results by utilizing the function ϑ(z).

Proposition 4. Let ϕ ∈ ∧ . Define the functions Φ(z) = τ(z)
(

z2 ϕ′′(z)
ϕ(z)

)
+

(
zϕ′(z)
ϕ(z)

)
,

σκ(z) = 1 + z
κ

(
κ+z
κ−z
)

and ϑ(z) = 1 + 3κ z + z3. If

1 + κ

(
z Φ′(z)
[Φ(z)]k

)
≺ σκ(z), k = 0, 1, 2,

holds then
Φ(z) ≺ ϑ(z) = 1 + 3κ z + z3, z ∈ ∪

where κ ≥ max κk, and

• κ0 = 1.07044;
• κ1 = 1.27994;
• κ2 = 1.5895.

Proof. Step (i): let k = 0⇒ 1 + κ (z Φ′(z)) ≺ σκ(z).
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Define a function Xκ : ∪ → C with the formula

Xκ(z) = 1 +
2
κ

(
log
(

κ

κ − z

)
− z

2κ

)
, z ∈ ∪ .

Clearly, for the analytic function Xκ(z) with Xκ(0) = 1, we have

1 + κ
(
z Xκ

′(z)
)
= σκ(z), z ∈ ∪ . (5)

Define a function

U(z) :=
z
κ

(
κ + z
κ − z

)
which is starlike in ∪ (see [16]). Therefore, for G(z) := U(z) + 1, we get

<
(

zU′(z)
U(z)

)
= <

(
zG′(z)
U(z)

)
> 0.

Thus, Miller–Mocanu Lemma (see [14], p. 132) admits that

1 + κ
(
z Φ′(z)

)
≺ 1 + κ

(
zX′κ(z)

)
⇒ Φ(z) ≺ Xκ(z).

To finish this conversation, we must show that Xκ(z) ≺ σκ(z) under the necessary condition
κ < −1 or κ > 1 such that

1 +
2
κ

(
log
(

κ

κ + 1

)
+

1
2κ

)
= Xκ(−1) ≤ Xκ(1) = 1 +

2
κ

(
log
(

κ

κ − 1

)
− 1

2κ

)
.

Moreover,

1− 1
κ

(
κ − 1
κ + 1

)
= σκ(−1) ≤ σκ(1) = 1 +

1
κ

(
κ + 1
κ − 1

)
whenever −1 < κ < 0 and κ > 1. Hence, we obtain

1− 1
κ

(
κ − 1
κ + 1

)
≤ Xκ(−1) ≤ Xκ(1) ≤ 1 +

1
κ

(
κ + 1
κ − 1

)
whenever κ > 1. Finally, we have that

Xκ(z) ≺ ϑ(z) = 1 + 3κ z + z3

when
−3κ ≤ Xκ(−1) ≤ Xκ(1) ≤ 2 + 3κ

which is provided
κ ≥ κ0 = 1.07044 > 1.

This implies the relations

Xκ(z) ≺ ϑ(z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Step (ii): assume that k = 1⇒ 1 + κ
(

z Φ′(z)
Φ(z)

)
≺ σκ(z).

Define a function Yκ : ∪ → C by

Yκ(z) = exp

2 log(
κ

κ − z
)− z

κ

κ

.
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Obviously, the analytic function Yκ(z) achieves Yκ(0) = 1 and

1 + κ

(
z Yκ

′(z)
Yκ(z)

)
= σκ(z), z ∈ ∪ . (6)

By considering U(z) = σκ(z)− 1, which is starlike in ∪ and W(z) = U(z) + 1, we attain

<
(

zU′(z)
U(z)

)
= <

(
zW′(z)
U(z)

)
> 0, z ∈ ∪ .

Thus, the Miller–Mocanu Lemma yields

1 + κ

(
z Φ′(z)
Φ(z)

)
≺ 1 + κ

(
zY′κ(z)
Yκ(z)

)
⇒ Φ(z) ≺ Yκ(z).

Proceeding, we have the following inequality

exp

2 log(
κ

κ + 1
) + 1

κ

κ

 = Yκ(−1) ≤ Yκ(1) = exp

2 log(
κ

κ − 1
)− 1

κ

κ


when κ > 1 or κ < −1. In addition, we have Yκ(z) ≺ σκ(z) provided that for κ > 1,
the inequality

σκ(−1) ≤ Yκ(−1) ≤ Yκ(1) ≤ σκ(+1)

holds. Thus, for κ ≥ κ1 = 1.27994, we get

Yκ(z) ≺ ϑ(z) = 1 + 3κ z + z3

when
−3κ ≤ Yκ(−1) ≤ Yκ(1) ≤ 2 + 3κ

This yields the following subordination

Yκ(z) ≺ ϑ (z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Step (iii): Let k = 2⇒ 1 + κ
(

z Φ′(z)
Φ2(z)

)
≺ σκ(z), then we obtain the following construction.

Define a function Dκ : ∪ → C formulated by the design

Dκ(z) =
(

1− 2
κ

(
log
(

κ

κ − z

)
− z

2κ

))−1
.

Clearly, for the analytic function Dκ(z), we have that Dκ(0) = 1 and

1 + κ

(
z Dκ

′(z)
D2

κ(z)

)
= σκ(z), z ∈ ∪ . (7)

By considering the functions U(z) = σκ(z)− 1, which is starlike in ∪ and W(z) = U(z) + 1,
we receive

<
(

zU′(z)
U(z)

)
= <

(
zW′(z)
U(z)

)
> 0, z ∈ ∪ .

Hence, the Miller-Mocanu Lemma yields

1 + κ

(
z Φ′(z)
Φ2(z)

)
≺ 1 + κ

(
zD′κ(z)
D2

κ(z)

)
⇒ Φ(z) ≺ Dκ(z).
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Accordingly, for κ < −1 or κ > 1.50957, we obtain(
1− 2

κ

(
log
(

κ

κ + 1

)
+

1
2κ

))−1
≤ Dκ(−1) ≤ Dκ(1) =

(
1− 2

κ

(
log
(

κ

κ − 1

)
− 1

2κ

))−1
.

Moreover, the subordination Dκ(z) ≺ σκ(z) when κ = 1.7723 > 1.50957 such that

σκ(−1) ≤ Dκ(−1) ≤ Dκ(1) ≤ σκ(1).

Thus, for κ = 1.5895 > 1.50957, we have

−3κ ≤ Dκ(−1) ≤ Dκ(1) ≤ 2 + 3κ.

Consequently, this implies that

Dκ(z) ≺ ϑ(z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Proposition 4 can be generalized by assuming an analytic function ρ(z), z ∈ ∪ such
that ρ(0) = 1. The proof is similar to the proof of Proposition 4; therefore, we omit it.

Proposition 5. Let ρ ∈ H (the set of analytic functions in the open unit disk) such that ρ(0) =
1, ρ′(0) > 1,<(ρ(z)) > 0 and let

σκ(z) = 1 +
z
κ

(
κ + z
κ − z

)
, z ∈ ∪,

where κ is a real parameter. If one of the differential inequalities hold

1 + κ

(
z ρ′(z)
[ρ(z)]k

)
≺ σκ(z), k = 0, 1, 2,

then
ρ(z) ≺ ϑ(z) = 1 + 3κ z + z3, z ∈ ∪, κ > 1.5895.

In the next result, we consider two different parameters κ and β.

Proposition 6. Consider ϕ ∈ ∧ such that

1 + κ

(
z Φ′(z)
[Φ(z)]k

)
≺ σκ(z), k = 0, 1, 2,

where Φ(z) = τ(z)
(

z2 ϕ′′(z)
ϕ(z)

)
+

(
zϕ′(z)
ϕ(z)

)
and σκ(z) = 1 + z

κ

(
κ+z
κ−z
)
, z ∈ ∪ . Then

Φ(z) ≺ ϑ(z) = 1 + 3β z + z3, z ∈ ∪

when β ≥ max βk, k = 0, 1, 2 such that

• β0 = max
{−κ − 1

κ
− 2 log(

κ

κ + 1
)

3κ
,
−κ − 1

κ
+ 2 log(

κ

κ − 1
)

3κ

}
, κ > 1;

• β 1 = max
{
− 1

3
e(1/κ2)

(
κ

κ + 1

)(2/κ)

,
1
3

(
e(−1/κ2)

(
κ

κ − 1

)(2/κ)

− 2

)}
, κ > 1;

• β2 = max
{ −κ2

3(κ2 − 2κ log(
κ

κ + 1
)− 1)

,
1
3

 κ2

κ2 − 2κ log(
κ

κ − 1
) + 1

− 2

}, κ > 1.
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Proof. Step (i): suppose that k = 0⇒ 1 + κ (z Φ′(z)) ≺ σκ(z).
Define an analytic function Xκ : ∪ → C constructed as follows:

Xκ(z) = 1 +
2
κ

(
log
(

κ

κ − z

)
− z

2κ

)
, z ∈ ∪ .

Thus, we obtain Xκ(0) = 1 and

1 + κ
(
z Xκ

′(z)
)
= σκ(z), z ∈ ∪ . (8)

Define a function

U(z) :=
z
κ

(
κ + z
κ − z

)
,

which is starlike in ∪ (see [16]). Therefore, for G(z) := U(z) + 1, we get

<
(

zU′(z)
U(z)

)
= <

(
zG′(z)
U(z)

)
> 0.

Thus, Miller–Mocanu Lemma (see [14], p. 132) admits that

1 + κ
(
z Φ′(z)

)
≺ 1 + κ

(
zX′κ(z)

)
⇒ Φ(z) ≺ Xκ(z).

To finish this conversation, we must show that Xκ(z) ≺ σκ(z) under the necessary condition
κ < −1 or κ > 1 such that

1 +
2
κ

(
log
(

κ

κ + 1

)
+

1
2κ

)
= Xκ(−1) ≤ Xκ(1) = 1 +

2
κ

(
log
(

κ

κ − 1

)
− 1

2κ

)
.

Moreover,

1− 1
κ

(
κ − 1
κ + 1

)
= σκ(−1) ≤ σκ(1) = 1 +

1
κ

(
κ + 1
κ − 1

)
whenever −1 < κ < 0 and κ > 1. Hence, we obtain

1− 1
κ

(
κ − 1
κ + 1

)
≤ Xκ(−1) ≤ Xκ(1) ≤ 1 +

1
κ

(
κ + 1
κ − 1

)
whenever κ > 1. Finally, we have that

Xκ(z) ≺ ϑ(z) = 1 + 3β z + z3

when
−3β ≤ Xκ(−1) ≤ Xκ(1) ≤ 2 + 3β

which is provided

β = max
{−κ − 1

κ
− 2 log(

κ

κ + 1
)

3κ
,
−κ − 1

κ
+ 2 log(

κ

κ − 1
)

3κ

}
= max{1

3
(2 log(2)− 2),

1
12

(4 log(2)− 5)}

≈ max{−0.204569,−0.185618}
= −0.185618, κ > 1.

Hence, we have
Xκ(z) ≺ ϑ(z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Step (ii): put k = 1⇒ 1 + κ
(

z Φ′(z)
Φ(z)

)
≺ σκ(z).
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Define an analytic function Yκ : ∪ → C formulating by the structure

Yκ(z) = exp

2 log(
κ

κ − z
)− z

κ

κ

.

Obviously, Yκ(z) is satisfying Yκ(0) = 1 and

1 + κ

(
z Yκ

′(z)
Yκ(z)

)
= σκ(z), z ∈ ∪ . (9)

By considering U(z) = σκ(z)− 1, which is starlike in ∪ and W(z) = U(z) + 1, we attain

<
(

zU′(z)
U(z)

)
= <

(
zW′(z)
U(z)

)
> 0, z ∈ ∪ .

Thus, Miller-Mocanu Lemma implies

1 + κ

(
z Φ′(z)
Φ(z)

)
≺ 1 + κ

(
zY′κ(z)
Yκ(z)

)
⇒ Φ(z) ≺ Yκ(z).

Proceeding, the following inequality indicates

exp

2 log(
κ

κ + 1
) +

1
κ

κ

 = Yκ(−1) ≤ Yκ(1) = exp

2 log(
κ

κ − 1
)− 1

κ
κ


if κ > 1 or κ < −1. In addition, we have Yκ(z) ≺ σκ(z) provided that for κ > 1 the inequal-
ity

σκ(−1) ≤ Yµ(−1) ≤ Yµ(1) ≤ σκ(+1)

holds. Thus, we have
Yκ(z) ≺ ϑ(z) = 1 + 3β z + z3

when
−3β ≤ Yκ(−1) ≤ Yκ(1) ≤ 2 + 3β

satisfying

β = max
{
− 1

3
e(1/κ2)

(
κ

κ + 1

)(2/κ)

,
1
3

(
e(−1/κ2)

(
κ

κ − 1

)(2/κ)

− 2

)}
= max

{
(−0.333333)(2.71828)(1/κ2)

(
κ

κ + 1

)(2/κ)

, (0.333333)

(
2.71828(−1/κ2)

(
κ

κ − 1

)(2/κ)

− 2

)}
≈ −0.333333, κ > 1.

(10)

This leads to the following subordination

Yκ(z) ≺ ϑ (z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Step (iii): consume that k = 2⇒ 1 + κ
(

z Φ′(z)
Φ2(z)

)
≺ σκ(z).

Define a function Dκ : ∪ → C formulating by the design

Dκ(z) =
(

1− 2
κ

(
log
(

κ

κ − z

)
− z

2κ

))−1
.
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Clearly, Dκ(0) = 1 and

1 + κ

(
z Dκ

′(z)
D2

κ(z)

)
= σκ(z), z ∈ ∪ . (11)

By considering the functions U(z) = σκ(z)− 1, which is starlike in ∪ and W(z) = U(z) + 1,
we receive

<
(

zU′(z)
U(z)

)
= <

(
zW′(z)
U(z)

)
> 0, z ∈ ∪ .

Hence, the Miller-Mocanu Lemma implies

1 + κ

(
z Φ′(z)
Φ2(z)

)
≺ 1 + κ

(
zD′κ(z)
D2

κ(z)

)
⇒ Φ(z) ≺ Dκ(z).

Accordingly, for κ < −1 or κ > 1.50957, we obtain(
1− 2

κ

(
log
(

κ

κ + 1

)
+

1
2κ

))−1
≤ Dκ(−1) ≤ Dκ(1) =

(
1− 2

κ

(
log
(

κ

κ − 1

)
− 1

2κ

))−1
.

Moreover, the subordination Dκ(z) ≺ σκ(z) when κ = 1.7723 > 1.50957 such that

σκ(−1) ≤ Dκ(−1) ≤ Dκ(1) ≤ σκ(1).

Thus, if

β = max
{ −κ2

3(κ2 − 2κ log(
κ

κ + 1
)− 1)

,
1
3

 κ2

κ2 − 2κ log(
κ

κ − 1
) + 1

− 2

}

= max
{1

3
,−1

3

}
≈ 0.333333, κ > 1,

then we have
−3β ≤ Dκ(−1) ≤ Dκ(1) ≤ 2 + 3β.

Consequently, this implies that

Dκ(z) ≺ ϑ(z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Proposition 6 can be extended by consuming an analytic function $(z), z ∈ ∪ such
that $(0) = 1. The proof is similar to the proof of Proposition 4; therefore, we omit it.

Proposition 7. Let $ ∈ H such that $(0) = 1, $′(0) > 1,<($(z)) > 0 and let

σκ(z) = 1 +
z
κ

(
κ + z
κ − z

)
, z ∈ ∪,

where κ is a real parameter. If one of the differential inequalities holds

1 + κ

(
z $′(z)
[$(z)]k

)
≺ σκ(z), k = 0, 1, 2,

then
$(z) ≺ ϑ(z) = 1 + 3β z + z3, z ∈ ∪, β > 1/3.

We proceed to consider three parameters α, β and κ. We obtain the following result:
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Proposition 8. Let the function ϕ ∈ ∧ designing the inequality

1 + α

(
z Φ′(z)
[Φ(z)]k

)
≺ σκ(z), k = 0, 1, 2,

where Φ(z) = τ(z)
(

z2 ϕ′′(z)
ϕ(z)

)
+

(
zϕ′(z)
ϕ(z)

)
and σκ(z) = 1 + z

κ

(
κ+z
κ−z
)
, z ∈ ∪ . Then

Φ(z) ≺ ϑ(z) = 1 + 3β z + z3, z ∈ ∪

when β ≥ max βk, k = 0, 1, 2 such that

• β0 = max
{−(α2 + 2α log(

α

α + 1
) + 1)

3α2 ,
−(α2 − 2α log(

α

α − 1
) + 1)

3α2

}
≈ −1

3(
α ≥ −0.211728, κ = max{0.5(2α − 2.82843|α|)

(2.82843|α| − 3α)
,

0.5(2.82843α |α| − 2α2)

(α (2.82843|α| − 3α))
}
)

;

• β 1 = max
{−1

3

(
α

α + 1

)(2/α)

e(1/α2),
1
3

(
(

α

α − 1
)(2/α)e(−1/α2) − 2

)}
≈ −1

3(
α > 1, κ ≥ −2

)
;

• β2 = max
{ α2

−3α2 + 6α log(
α

α + 1
) + 3

,
1
3

 α2

α2 − 2α log(
α

α − 1
) + 1

− 2

} ≈ −1
3

α > 1, κ =
α2

1.41421α2 + α2 = 0.4142,

Proof. Step (i): let k = 0⇒ 1 + α (z Φ′(z)) ≺ σκ(z).
Define an analytic function Xα : ∪ → C by

Xα(z) = 1 +
2
α

(
log
(

α

α− z

)
− z

2α

)
, z ∈ ∪ .

Clearly, Xα(0) = 1 and

1 + α
(
z Xα

′(z)
)
= σκ(z), z ∈ ∪ . (12)

Define a function

U(z) =
z
κ

(
κ + z
κ − z

)
which is starlike in ∪ (see [16]). Therefore, for G(z) := U(z) + 1, we get

<
(

zU′(z)
U(z)

)
= <

(
zG′(z)
U(z)

)
> 0.

Thus, Miller–Mocanu Lemma implies

1 + α
(
z Φ′(z)

)
≺ 1 + α

(
zX′κ(z)

)
⇒ Φ(z) ≺ Xα(z).

It is clear that Xα(z) ≺ σκ(z) under the necessary condition α < −1 or α > 1 such that

1 +
2
α

(
log
(

α

α + 1

)
+

1
2α

)
= Xα(−1) ≤ Xα(1) = 1 +

2
α

(
log
(

α

α− 1

)
− 1

2α

)
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and

1− 1
κ

(
κ − 1
κ + 1

)
= σκ(−1) ≤ σκ(1) = 1 +

1
κ

(
κ + 1
κ − 1

)
whenever −1 < κ < 0 and κ > 1. Hence, we obtain

1− 1
κ

(
κ − 1
κ + 1

)
≤ Xα(−1) ≤ Xα(1) ≤ 1 +

1
κ

(
κ + 1
κ − 1

)
whenever

α ≥ −0.211728, κ = max{0.5(2α − 2.82843|α|)
(2.82843|α| − 3α)

,
0.5(2.82843α |α| − 2α2)

(α (2.82843|α| − 3α))
}.

Finally, we have that
Xα(z) ≺ ϑ(z) = 1 + 3β z + z3

when
−3β ≤ Xα(−1) ≤ Xα(1) ≤ 2 + 3β

which is provided

β = max
{−(α2 + 2α log(

α

α + 1
) + 1)

3α2 ,
−(α2 − 2α log(

α

α − 1
) + 1)

3α2

}
≈ −1

3(
α > 0, κ = max{0.5(2α − 2.82843|α|)

(2.82843|α| − 3α)
,

0.5(2.82843α |α| − 2α2)

(α (2.82843|α| − 3α))
}
)

.

Which implies that
Xα(z) ≺ ϑ(z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Step (ii): consider k = 1⇒ 1 + α
(

z Φ′(z)
Φ(z)

)
≺ σκ(z).

Define an analytic function Yα : ∪ → C by

Yα(z) = exp

2 log(
α

α− z
)− z

α

α

.

Obviously, Yα(0) = 1 and

1 + α

(
z Yα

′(z)
Yα(z)

)
= σκ(z), z ∈ ∪ . (13)

By considering U(z) = σκ(z)− 1, which is starlike in ∪ and W(z) = U(z) + 1, we attain

<
(

zU′(z)
U(z)

)
= <

(
zW′(z)
U(z)

)
> 0, z ∈ ∪ .

Thus, Miller–Mocanu Lemma implies

1 + α

(
z Φ′(z)
Φ(z)

)
≺ 1 + α

(
zY′α(z)
Yα(z)

)
⇒ Φ(z) ≺ Yα(z).
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Proceeding, the following inequality holds when α 6= 0,

exp

2 log(
α

α + 1
) +

1
α

α

 = Yα(−1) ≤ Yα(1) = exp

2 log(
α

α− 1
)− 1

α
α


In addition, we have Yα(z) ≺ σκ(z) whenever

1− 1
κ

(
κ − 1
κ + 1

)
≤ Yα(−1) ≤ Yα(1) ≤ 1 +

1
κ

(
κ + 1
κ − 1

)
(

α > 1, κ ≥ −2
)

holds. Thus, we have
Yα(z) ≺ ϑ(z) = 1 + 3β z + z3

when
−3β ≤ Yα(−1) ≤ Yα(1) ≤ 2 + 3β

satisfying

β = max
{−1

3

(
α

α + 1

)(2/α)

e(1/α2),
1
3

(
(

α

α − 1
)(2/α)e(−1/α2) − 2

)}
≈ −0.333333, α > 1.

Consequently, we have the following subordination

Yα(z) ≺ ϑ (z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Step (iii): put k = 2⇒ 1 + α
(

z Φ′(z)
Φ2(z)

)
≺ σκ(z).

Define an analytic function Dα : ∪ → C by

Dα(z) =
(

1− 2
α

(
log
(

α

α− z

)
− z

2α

))−1
.

Clearly, Dα(0) = 1 and

1 + α

(
z Dα

′(z)
D2

α(z)

)
= σκ(z), z ∈ ∪ . (14)

By considering the functions U(z) = σκ(z)− 1, which is starlike in ∪ and W(z) = U(z) + 1,
we receive

<
(

zU′(z)
U(z)

)
= <

(
zW′(z)
U(z)

)
> 0, z ∈ ∪ .

Hence, the Miller–Mocanu Lemma yields

1 + α

(
z Φ′(z)
Φ2(z)

)
≺ 1 + α

(
zD′α(z)
D2

α(z)

)
⇒ Φ(z) ≺ Dα(z).

Accordingly, for α < −1 or α > 1.50957, we obtain(
1− 2

α

(
log
(

α

α + 1

)
+

1
2α

))−1
≤ Dα(−1) ≤ Dα(1) =

(
1− 2

α

(
log
(

α

κ − 1

)
− 1

2α

))−1
.
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Moreover, the subordination Dα(z) ≺ σκ(z) when

α > 1, κ =
α2

1.41421α2 + α2 = 0.4142,

such that

1− 1
κ

(
κ − 1
κ + 1

)
≤ Dα(−1) ≤ Dα(1) ≤ 1 +

1
κ

(
κ + 1
κ − 1

)
.

Thus, if

β = max
{ α2

−3α2 + 6α log(
α

α + 1
) + 3

,
1
3

 α2

α2 − 2α log(
α

α − 1
) + 1

− 2

}

= max
{−1

3
,
−1
3

}
≈ −0.333333,

(
α > 1, κ =

α2

1.41421α2 + α2

)
,

then we have
−3β ≤ Dα(−1) ≤ Dα(1) ≤ 2 + 3β.

Consequently, this implies that

Dα(z) ≺ ϑ(z)⇒ Φ(z) ≺ ϑ(z), z ∈ ∪ .

Proposition 8 can be generalized by assuming an analytic function ω(z), z ∈ ∪ such
that ω(0) = 1. The proof is similar to the proof of Proposition 8; therefore, we omit it.

Proposition 9. Let ω ∈ H such that ω(0) = 1, ω′(0) > 1,<(ω(z)) > 0 and let

σκ(z) = 1 +
z
κ

(
κ + z
κ − z

)
, z ∈ ∪,

where κ is a real parameter. If one of the differential inequalities holds

1 + α

(
z ω′(z)
[ω(z)]k

)
≺ σκ(z), k = 0, 1, 2,

then
ω(z) ≺ ϑ(z) = 1 + 3β z + z3, z ∈ ∪(

α > 1, κ =
α2

1.41421α2 + α2 = 0.4142, β ≥ −1
3

)
.

More generalization can be suggested by assuming four parameters α, β, κ and m such
that ϑ(z) = 1 + mκ z + z3. Then, we obtain the next extended result. The proof is omitted.

Proposition 10. Let Λ ∈ H such that Λ(0) = 1, Λ′(0) > 1,<(Λ) > 0 and let

σκ(z) = 1 +
z
κ

(
κ + z
κ − z

)
, z ∈ ∪,
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where κ is a real parameter. If one of the differential inequalities hold

1 + α

(
z Λ′(z)
[Λ(z)]k

)
≺ σκ(z), k = 0, 1, 2,

then
Λ(z) ≺ ϑ(z) = 1 + m β z + z3, z ∈ ∪, m 6= 0

where m ≥ max{m0, m1, m2} satisfying

•

m0 =
{−(α2 − 2α log(

α

α − 1
) + 1)

α2β
,
−(α2 − 2α log(

α

α + 1
) + 1)

α2β

}
for all κ ≥ 1, α ∈ R \ {−1, 0, 1}, β 6= 0.

•

m1 =
{−(( α

(α + 1)
)(2/α)e(2/α2))

β
, −1

}
(

κ ≥ 1, α ∈ R \ {−1, 0, 1}, β 6= 0
)

;

•

m2 = max
{ α2

α2(−β) + 2α β log(
α

(α + 1)
) + β

,
−(α2 − 4α log(

α

(α − 1)
) + 2)

(α2β − 2α β log(
α

(α − 1)
) + β)

}
(

α2β 6= 2α β log(
α

α + 1
) + β, κ ≥ 1

)
.

In the next result, we study the conditions for four parameters α, β, κ and γ such that
ϑ(z) = 1 + β z + γ z3.

Proposition 11. Let Λ ∈ H such that Λ(0) = 1, Λ′(0) > 1,<(Λ) > 0 and let

σκ(z) = 1 +
z
κ

(
κ + z
κ − z

)
, z ∈ ∪,

where κ is a real parameter. If one of the differential inequalities holds

1 + α

(
z Λ′(z)
[Λ(z)]k

)
≺ σκ(z), k = 0, 1, 2,

then
Λ(z) ≺ ϑ(z) = 1 + β z + γ z3, z ∈ ∪, m 6= 0

where γ ≥ max{γ0, γ1, γ2} for all κ ≥ 1, α ∈ R \ {−1, 0, 1}, β 6= 0 satisfying

•

γ0 =
{−(α2β + 2α log(

α

(α + 1)
) + 1)

α2 ,
−(α2β − 2α log(

α

(α − 1)
) + 1)

α2

}
•

γ1 =
{

1− e((2α log( α
α +1 )+2)/α2) − β , e(−2/α2)

(
α

α − 1

)(2/α)

− β − 1
}
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•

γ2 = max
{ α2

(−α2 + 2α log( α
α +1 ) + 1)

− β + 1,
α2

(α2 − 2α log( α
α −1 ) + 1)

− β − 1
}

Example 12. Consider the function p(z) = 1 + 2α z which satisfies the subordination

1 + 2α z ≺ 1 + z
(

1 + z
1− z

)
then for β = 1 and κ = 1, Proposition 10 yields for m0 = −0.9 and α ∈ R \ {−1, 0, 1}
the subordination

p(z) ≺ 1 + mz + z3, m > m0, z ∈ ∪ .

Or by using Proposition 11, where γ0 = −0.9 we have the subordination

p(z) ≺ 1 + z + γ z3, γ > γ0, z ∈ ∪ .

The above example shows the sufficient conditions for a function p(z) to have a fractal domain us-
ing the multibrot function ϑ(z). Consequently, the LDEs can be considered such that p(z) =
Φ(z), z ∈ ∪ .

4. Conclusions

A discussion of a style of Langevin differential equations (LDEs) of complex variables
is studied in the statement of geometric function theory. This class of LDEs is a gener-
alization of the well known class given in [16,17]. We organized a class of normalized
functions relating the formation of LDEs. By the subordination inequality, we figured
the upper bound determination of a class of fractal functions holding multibrot function
ϑ(z) = 1 + 3κ z + z3. Moreover, we illustrated the extended results based on the class
P (p(z) ∈ P when p(0) = 1, p′(0) > 1,<(p(z)) > 0). As present determinations
in this method, one can consider Equation (3) in terminologies of differential operators
such as fractional differential and convolution operators in the open unit disk. On the other
hand, one can commend a quantum calculus.
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