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Abstract: The purpose of this work is to find new soliton solutions of the complex
Ginzburg-Landau equation (GLE) with Kerr law non-linearity. The considered
equation is an imperative nonlinear partial differential equation (PDE) in the field
of physics. The applications of complex GLE can be found in optics, plasma and
other related fields. The modified extended tanh technique with Riccati equation is
applied to solve the Complex GLE. The results are presented under a suitable
choice for the values of parameters. Figures are shown using the three and
two-dimensional plots to represent the shape of the solution in real, and imaginary
parts in order to discuss the similarities and difference between them. The graphi-
cal representation of the results depicts the typical behavior of soliton solutions.
The obtained soliton solutions are of different forms, such as, hyperbolic and tri-
gonometric functions. The results presented in this paper are novel and reported
first time in the literature. Simulation results establish the validity and applicabil-
ity of the suggested technique for the complex GLE. The suggested method with
symbolic computational software such as, Mathematica and Maple, is proven as
an effective way to acquire the soliton solutions of nonlinear partial differential
equations (PDEs) as well as complex PDEs.

Keywords: Modified extended tanh technique; soliton solution; complex
Ginzburg-Landau equation; Riccati equation

1 Introduction

Exact traveling wave solutions of nonlinear PDEs has become imperative in the study physical
phenomena. NPDEs are used to express different real-world phenomena of applied sciences, such as,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.



mailto:Shumaila_javeed@comsats.edu.pk
http://dx.doi.org/10.32604/cmc.2020.012611
http://dx.doi.org/10.32604/cmc.2020.012611

1370 CMC, 2021, vol.66, no.2

fluid and solid mechanics, quantum theory, shallow water waves, plasma physics, and chemical reaction
diffusion models etc.

Many semi-analytical and analytical techniques have been studied to solve nonlinear PDEs, for example
the auxiliary equation technique [1], the expansion (G'/G) technique [2], the exponential function technique
[3,4], the generalized Kudryashov technique [5], the first integral technique [6,7], the Jacobi elliptic
technique [8], the tan(¢/2)—expansion technique [9], the Bernoulli sub-equation technique [10], the sine-
Gordon technique [11,12], the sub-equation technique [13], the Liu group technique [14] and the new
extended direct algebraic technique [15—17], etc.

The complex GLE is an imperative PDE in the field of physics. The applications of complex GLE can be
found in optics, plasma and other related fields. Different techniques have been suggested to acquire the
solutions of NPDEs. These techniques are the first integral and (G'/G)-expansion [18], the new extended
direct algebraic [19], the generalized exponential function [20] and the ansatz functions [21], etc.

The focus of this study is to acquire the soliton solutions of complex GLE with Kerr law nonlinearity
employing the modified extended tanh technique with Riccati equation. This paper is presented in the
following manner: In Section 2, the proposed technique is described. In Section 3, the solutions of
complex GLE are presented. In Section 4, the conclusions and future recommendations are discussed.

2 Analysis of the Method
The NPDE is generally defined as follows:

H(g,D,g,D.g,Dug,Dng, D:Dxg, ...) = 0. 6]
Implementing the transformation:
glx, 1) = G(¢&), E=Ax—w)

where A and v are nonzero constants. Applying the above transformation, we convert Eq. (1) into a nonlinear
ordinary differential equation (ODE) as follows:

UuG,G,Gg",...)=0, 2
where the derivatives are with respect to £. The solutions of Eq. (2) is presented as follows

G(&) =ao+ Y, (agh (&) + brp™(9)). 3)
where ai,bi, k=1,2,...... ,N denote the constants that are required to be calculated.

Moreover, ¢(§) satisfies the following Riccati equation
¢ =b+¢, “
where b is a constant, Eq. (4) has the following solutions:
(1) For b < 0, we get
¢ = —V—btanh(v/—=b¢&), or p = —v/—bcoth(vV—=b¢).
(ii) For b > 0, we get

¢ = Vbtan(Vb¢), or o = —V/bcot(Vbe).
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(iii) For b = 0, we get
_ !

The value of K can be computed to balance the nonlinear and linear terms of highest orders (c.f. Eq. (2)).
Then, substitute Eq. (3) with its derivatives into Eq. (2) yields:

R((¢)) =0, ®)

where R(¢(&)) denotes a polynomial in ¢(¢). Afterwards, we equate the coefficients of each power of ¢ (&)
in Eq. (5) to zero, and a system of algebraic equations is acquired. Thus, the solution of obtained algebraic
equations will provide the exact solutions of Eq. (1).

3 Application of the Technique on CGLE
This study comprises of several solutions of the CGLE using the proposed method (c.f. Section 2).
Consider the CGLE with Kerr law nonlinearity [22,23]:

i% + a% +clel’g = |g|ﬁ2g [2Ig|2 (1) —{ (Iglz)x}z] +9g, ©

where x is the distance along the fibers and t is the dimensionless time. Moreover, g = g(x, t) is a complex
function which represents the wave profile occur in many phenomena such as, plasma physics and nonlinear
optics. The real valued parameters a and c relates to the velocity dispersion and the nonlinearity coefficient,
respectively. Furthermore, f is the perturbation parameter and y represents the detuning effects. In order to
find the solution (c.f. Eq. (6)), we employ the wave transformation as given below:

gx,1) = G(é)em(x’t)’ ¢ =Ax—w), p= —kx + ot, (7

where A\ and v. are the constants. Moreover, k£ describes the wave frequency and the @ expresses the
wave number.

From (7), we obtain:
g = inGe* — WG et u, = —ikGe'* + WG et
S = —k*Get — kNG e* 4+ N2 G et — ikG e,

g =% (lef). =260, ®)
(Ig1*)w = 22(GG" + (@)
Now, substitute Eq. (8) and Eq. (7) into Eq. (6), we get:
i(v+2ak)G' =0, (€]
N(a—4p)G" — (v +ak* +9)G + cG’ = 0. (10)
From Eq. (9), we obtain:
v = —2ak

Balancing G” and G in Eq. (10) results K + 2 = 3K, and so K = 1. Thus, we acquire the form as
given below:
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(1)

Now, substitute Eq. (11) into Eq. (10). Thus, the following system is acquired by equating the

coefficients of each power of ¢(§) to zero:
—(w + ak® + y)ag + cag + 6aparbic = 0,
2)\(a — 4B)arb — (o + ak® + y)a) + 3caja; + 3caib, =0,
3ca0a% =0,
2)\(a — 4B)a; + ca;® =0,
2)\*(a — 4B)b1b — (@ + ak® + )by + 3calb; + 3ca)b] = 0,
3caph? = 0,
202(a — 4P)b1h* + cb;® = 0.

After solving the above system, we acquire the following solutions.

Case 1.
v —a _Ob_w+ak2+y o w4 ak® +y
0 1 ) 2)\2(a_4ﬁ)7 1 X 20(4[3—(1)’
hence, the solution is formed as:
w—l—akz—i-y
0, th
a—4ﬁ > en

w—l—ak2 wtak?+g i(—hortwr)
Ve ( 2(a — 4b) Da—ap) F Ve ’
- w—I—ak2 w+ak2+g( —yp) el
20sd) 2(a —4b)

w+ak2+y
0, th
a—4ﬁ < en

wtak’+¢ w+ak* + g {(—ho-twr)
t 1 Wi
-\ < Pa—ap) Ve ’
_ t I(— Wi .
VT ( Da—ap) e

Case 2.

w+ak? +y _ w+ak?® +y

ay=a =0,b= ,b1 = ,
oo 22(a—4P)""" T N/2c(8h — a)

hence, the solution is formed as:
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2 2
gs(x, 1) = w+ak W ak (x — vt) | expli(—kx + wt)],
2(a — 4b)
(r.6) = w—i—ak2 w+ak2+ expli(—kx + wi)]
86\ X, 1) = a—4b p .
ca—l—akz—i-y
If W<O, then
w—i—ak2 w4 ak® 4+
i(—kx t
=/~ ( St 4y ) | el w)
k* + k?
—\/— what +y ( W—i_aa_4—bi_)y(x—vt)> expli(—kx + wt)].
Case 3.
v _Ob_w—i-akz—i-y _ w4 ak® 4y
0 — | 9 _2)\2(0—413)7 1_/\ 20(4ﬁ_a))

hence, the solution is formed as:

w+ak? 4y
If——=>0,th
a—4p > en
w+ak2 w+ak’+g i(—k-+wr)
\/ ( 2(a — 4b) Da—ap) F )¢ ’
w—l—ak2 wHak?>+g i(—etwi)
_ t 1 Wi .
V ( 2(a — 4b) Da—ap) F Ve
w—l—akz—i-y
0, th
a—4f < 0, then
w+ak®> +g w+ak®> +g ;
)= 4[] ——~ — & h . S(x—t i(—kxe+wt)
g1 1) c & ( 2Pa—ab) " )¢ ’
[ wHak?+7y w+ak? +y i(—
)= 4| ————— ‘coth T x— i( kxﬂLWt)'
Case 4

e 0a - 2X2(4f — a) ,  V2(w+4dk?+y) | wo+ak®+y
0= A ¢ ! 8\y/cla—4p) 8N\ (4B —a)’

therefore, the solution is formed as:
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o+ ak? +7y
If4ﬁ7—a>0, then
w4+ ak® 4+ g wHak’> + g w+ak?+g (et
t) =/ ——2| t - — ®(x—wt tf ([ —— TS i(—loctwi)
go(x, 1) " (an( 3@ —a) (x—vt) | +co 3@ —a) (x—vt) ] |e ,
wak® + g w+ak®> + g wak® + g :
)= —{/————— 2| ¢ T Sy _ i(—kx+wt)
gio(x, ) i <an< $(@b —a) (x —vt) | +cot 3@ —a) (x—vt) | |e
w4 ak® 4y
If 4ﬁ7—a< 0, then
w+ak?+g w+ak?+g w+ak?+g ~
=1 ———— "2 tanh( | — S (x—wt th( -2 TE i(—kec+w)
gnnl) = 4c (an< 8@h—a) | o S@h—a) * ) | !
wtak®+g wak®+g wak®+g ;
ty=—/ —— 21| tanh 7 Oy h _ _ i(—kx+wt)
gi2(x,1) ” (an ( 8 —a) (x—vt) | +cot S(4b—a) (x—vt) | |e

4 Representation of Obtained Solutions

This part studies the physical interpretation of obtained solutions under a suitable choice for the
values of parameters. It represents each one of the selected solutions by three and two-dimensional
plots, we represent the shape of the solution in real, and imaginary plots to show the similarities and
difference between them in these cases. We have plotted each of g3(x,¢) in Figs. 1-3 considering the
following conditions:

VI

—1t=0
—t=1

t=3
—1t=5

WAL

30

0

X

Figure 1: Plotting the real part of g3(x, ) with 0 < x,<30,0<7<35

Wave solution of g3(x, ¢) in three and two dimensional when,a =c=w =k=9y=XA=f =1, inthe
next interval 0 < x,< 30,0 <t < 5.

Furthermore, we have plotted each of g1; (x, #) in Figs. 4—6 considering the following conditions: Wave
solution of gj;(x,¢) in three and two dimensional when, a = 5,c =w =k =y = A= f =1, in the next
interval 0 < x,< 30,0 <r<5.
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Figure 6: Plotting of |gy;(x,#)|* with —60 <x,<60,7=0,1,3,5

5 Conclusions

In this work, new generalized travelling wave solutions of the Complex GLE with Kerr law non-linearity
were obtained. The modified extended tanh method with Riccati equation was implemented. The acquired
results are represented by trigonometric and hyperbolic functions. The results depict the typical soliton
behavior of the solution. The suggested technique is a powerful and efficient way to discuss complex
NPDEs. The results presented in this paper are novel and reported first time in the literature. Simulation
results establish the validity and applicability of the suggested technique.
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