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Abstract
The key objective of this study is determining several existence criteria for the
sequential generalized fractional models of an elastic beam, fourth-order Navier
equation in the context of quantum calculus (q-calculus). The required way to
accomplish the desired goal is that we first explore an integral equation of fractional
order w.r.t. q-RL-integrals. Then, for the existence of solutions, we utilize some fixed
point and endpoint conditions with the aid of some new special operators belonging
to operator subclasses, orbital α-admissible and α-ψ -contractive operators and
multivalued operators involving approximate endpoint criteria, which are
constructed by using aforementioned integral equation. Furthermore, we design two
examples to numerically analyze our results.
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1 Introduction
With the passing of years and even decades, people need to be more and more aware of
details of various natural phenomena. The logical tools and notions available in mathemat-
ics and especially mathematical operators are one of possible ways to achieve this aim in
modeling various processes. In this direction, many researchers developed numerous frac-
tional operators such that their applicability and usefulness become more and more evi-
dent to researchers each day. As a result, using fractional operators, different processes are
modeled and examined from all aspects in the mathematical structures such as boundary
value problems. In broad fields such as chemistry, biology, physics, economics, engineer-
ing, and so on fractional calculus, related differential equations and BVPs are commonly
used [1–5]. In a vast domain of papers, scientists have examined numerous mathematical
procedures across different facets of fractional differential equations [6–13].

In recent years, there has been a great deal of interest in the analysis of q-difference
equations. These equations have been found to be applicable in various fields of physics
and mechanics and thus have been developed into multidisciplinary topics. Fractional
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q-calculus is considered as a special fractional variant of calculus, originally it was sug-
gested by Jackson [14]. and then further investigations were performed by Al-Salam and
Agarwal [15, 16]. Some fascinating studies into IVPs and BVPs with equations involving
q-operators are available in [17–31].

More specifically, Ferreira [32] considered the following nonlinear fractional terminal
q-BVP and discussed the existence of a nontrivial solution:

⎧
⎨

⎩

D
�1
q μ(t) + M(t,μ(t)) = 0,

μ(0) = 0 = μ(1),

where t ∈ O = [0, 1], D�1
q is the standard Riemann–Liouville fractional q-derivative, and

M : O ×R →R is a continuous function.
Ahmad and Ntouyas [33] in 2011 studied the following q-analogue of second-order q-

difference inclusion BVP and investigated the existence criteria using results from fixed
point theory:

⎧
⎨

⎩

CD2
qμ(t) ∈M(t,μ(t)),

μ(0) = αμ(T), Dqμ(0) = αDqμ(T),

where t ∈ [0, T], α ∈R \ {1}, and M : [0, T] ×R → P(R) a compact-valued map.
Ahmad et al. [17] studied the existence criteria for the q-difference inclusion involving

q-antiperiodic conditions

⎧
⎨

⎩

CD
�1
q μ(t) ∈M(t,μ(t),Dqμ(t),D2

qμ(t)),

μ(0) + μ(1) = 0, Dqμ(0) + Dqμ(1) = 0, D2
qμ(0) + D2

qμ(1) = 0,

where t ∈ O, q ∈ (0, 1), 2 < �1 ≤ 3, CD
�1
q denotes the q-fractional derivative in the Caputo

sense of order �1, and M : O ×R
3 → P(R) involves some specifications.

An elastic beam is considered as an essential feature in constructions like ships, bridges,
building structures, and aviation industry. In this direction and in mathematical point
of view, the following fourth-order BVP of Navier differential equation can be used in
modeling deformation of the beam (see [34]):

⎧
⎨

⎩

μ(4)(t) = M(t,μ(t),μ′′(t)),

μ(0) = 0 = μ(1) = μ′′(0) = μ′′(1),
(1)

where M : O × R
2 → R is continuous, and t ∈ O := [0, 1]. By transforming (1) into the

second-order integro–differential equation with bounded M, Aftabizadeh [35] utilized
Schauder’s fixed-point theorem and discussed the existence and uniqueness of solutions
for (1). The upper and lower solution method was used by Ma et al. [36] for problem (1).
In 2004, Bai et al. [37] extended a monotone method to upper and lower solutions of the
beam model (1). In the context of fractional calculus, Bachar and Eltayeb [38] proposed the
fractional variant of the Riemann–Liouville model (1) and explored the existence, unique-
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ness, and positivity for the solutions of a system designed by the following format:

⎧
⎨

⎩

RLD�1 (RLD�2μ)(t) = M(t,μ(t), RLD�2μ(t)), t ∈O := [0, 1],

μ(0) = 0 = μ(1) = RLD�2μ(0) = RLD�2μ(1),
(2)

where �1 ∈ (1, 2], �2 ∈ (1, 2), RLD�1 and RLD�2 are the fractional derivatives in the
Riemann–Liouville sense, and M : O × R

2 → R is continuous. In the case �1 = �2 = 2,
problem (2) reduces to (1).

Inspired by aforesaid ideas given in the papers mentioned, in terms of the standard
Navier equation, we review and discuss a new sequential generalized fractional q-Navier
BVP

⎧
⎨

⎩

CD
�1
q (CD

�2
q μ)(t) = M(t,μ(t), CD

�2
q μ(t)), t ∈O := [0, 1], q ∈ (0, 1),

γμ(0) = δμ(1) = λCD
�2
q μ(0) = βCD

�2
q μ(1) = 0,

(3)

along with its inclusion version given by

⎧
⎨

⎩

CD
�1
q (CD

�2
q μ)(t) ∈M(t,μ(t), CD

�2
q μ(t)), t ∈O := [0, 1], q ∈ (0, 1),

γμ(0) = δμ(1) = λCD
�2
q μ(0) = βCD

�2
q μ(1) = 0,

(4)

where �1 ∈ (1, 2], �2 ∈ (1, 2), and γ , δ,λ,β ∈ R
+. Moreover, the operator CD

(·)
q is the q-

derivative of given fractional orders in the Caputo sense. Furthermore, a continuous
single-valued function M : O ×R

2 → R and a multivalued function M : O ×R
2 → P(R)

are assumed to be arbitrary equipped with some required specifications explained subse-
quently.

The novelty of our paper is that the above suggested structure for Navier problem is
unique and novel, which can be regarded as a generalized fractional model of the standard
Navier problem in the context of quantum operators. Indeed, by taking �1 = �2 = 2, q → 1,
and γ = δ = λ = β = 1 we have the standard Navier BVP (1). Also, we establish our results
by new techniques involving some special operators.

We have organized the remaining sections of the paper as follows. The upcoming sec-
tion is assigned to the basic ideas of fractional q-calculus. Section 3 starts with a lemma,
which specifies the solution of our proposed Navier BVPs (3)–(4) in terms of an integral
equation of noninteger order. After that, we follow the well.-known fixed-point methods
due to Krasnoselskii [39] and new operators introduced by Samet et al. [40] to obtain the
existence of solutions for single-valued maps. In Sect. 4, we consider the inclusion variant
(4) of the Navier BVP and explore the existence of solutions using the methods presented
by Mohammadi et al. [41] and approximated end-point property. Section 5 provides illus-
trations of the results given in Sects. 3 and 4. In the last section, we present the concluding
remarks and future proposals.

2 Basic preliminaries
We assemble and examine supplementary and fundamental concepts concerning q-
calculus in the light of our approaches to this research.
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We suppose that 0 < q < 1. A q-analogue of the function (m1 – m2)n given for n ∈ N0 is
defined by (m1 – m2)(0) = 1 and

(m1 – m2)(n) =
n–1∏

k=0

(
m1 – m2qk),

where m1, m2 ∈R and N0 := {0, 1, 2, . . . } [42]. Let now n = ω be a constant in R. Let us now
define the following q-analogue of the existing power mapping (m1 –m2)n in a q-fractional
setting:

(m1 – m2)(ω) = mω
1

∞∏

n=0

1 – ( m2
m1

)qn

1 – ( m2
m1

)qω+n (5)

for m1 �= 0. Note that by taking m2 = 0 we immediately obtain the equality m(ω)
1 = mω

1 [42].
For a real number m1 ∈R, a q-number [m1]q is expressed as

[m1]q =
1 – qm1

1 – q
= qm1–1 + · · · + q + 1.

The q-gamma function is defined as


q(ς ) =
(1 – q)(ς–1)

(1 – q)ς–1 , (6)

for ς ∈R \ {0, –1, –2, . . .} [42, 43]. Note that 
q(ς + 1) = [ς ]q
q(ς ) [43].
For a real-valued continuous function μ, the quantum derivative of this function is de-

fined as

(Dqμ)(t) =
μ(t) – μ(qt)

(1 – q)t
, (7)

and also (Dqμ)(0) = limt→0(Dqμ)(t) [44]. Given a function μ, its quantum derivative can
be extended to an arbitrary higher order by (Dn

qμ)(t) = Dq(Dn–1
q μ)(t) for any n ∈ N [44].

Obviously, (D0
qμ)(t) = μ(t).

Given a continuous map μ : [0, c2] → R, the quantum integral of this function can be
defined by

(Iqμ)(t) =
∫ t

0
μ(v) dqv = t(1 – q)

∞∑

k=0

μ
(
tqk)qk , t ∈ [0, c2], (8)

provided that the absolute convergence of the series holds [44]. The quantum integral of
μ can be similarly extended like the quantum derivative to an arbitrary higher order using
the iterative rule (In

qμ)(t) = Iq(In–1
q μ)(t) for n ≥ 1 [44].

If a function μ is continuous at t = 0, then (IqDqμ)(t) = μ(t) – μ(0) [44]. Moreover,
(DqIqμ)(t) = μ(t) for all t. In this case, by considering a real number � ≥ 0 such that n – 1 <
� < n, that is, n = [�] + 1, for a function μ ∈ CR([0, +∞)), the Riemann–Liouville quantum
integral is defined as

R
I

�
qμ(t) =

1

q(�)

∫ t

0
(t – qv)(�–1)μ(v) dqv, � > 0,
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provided that the above value is finite and RI0
qμ(t) = μ(t) [32, 45]. Further, the semigroup

specification for the mentioned q-operator occurs such that RI
�1
q (RI

�2
q μ)(t) = RI

�1+�2
q μ(t)

for �1,�2 ≥ 0 [32]. For ς ∈ (–1,∞), we have the following property:

R
I

�
qt

ς =

q(ς + 1)


q(ς + � + 1)
t
ς+�, t > 0.

It is evident that if ς = 0, then RI�
q1(t) = 1


q(�+1) t
� for any t > 0. Given a function μ ∈

C(n)
R

([0, +∞)), its Caputo q-derivative is defined as

C
D

�
qμ(t) =

1

q(n – �)

∫ t

0
(t – qv)(n–�–1)

D
n
qμ(v) dqv

if the integral exists [32, 45]. We have the following property:

C
D

�
qt

ς =

q(ς + 1)


q(ς – � + 1)
t
ς–�, t > 0.

It is evident that CD�
q1(t) = 0 for any t > 0.

Lemma 2.1 ([46]) Let n – 1 < � < n. Then

(C
I

�
q

C
D

�
qμ

)
(t) = μ(t) –

n–1∑

k=0

tk


q(k + 1)
(
D

k
qμ

)
(0).

According to this lemma, the fractional quantum differential equation CD�
qμ(t) = 0 has

a general solution μ(t) = m0 + m1t + m2t
2 + · · · + mn–1t

n–1, where m0, . . . ,mn–1 ∈ R and n =
[�] + 1 [46]. It is worth noting that for each continuous μ, according to Lemma 2.1, we get

(R
I

�
q

C
D

�
qμ

)
(t) = μ(t) + m0 + m1t + m2t

2 + · · · + mn–1t
n–1,

where m0, . . . ,mn–1 are constants contained in R, and n = [�] + 1 [46].

Notation 2.2 Let (A∗,‖ · ‖A∗ ) be a normed space. By PB(A∗), PCL(A∗), PCM(A∗), and
PCX(A∗) we denote the classes of all bounded, closed, compact, and convex sets in A∗,
respectively.

Let � be the subclass of nondecreasing operators ψ : [0,∞) → [0,∞) such that

∞∑

n=1

ψn(t) < ∞, ψ(t) < t, t > 0.

For more information about the following definitions, see [47–51].

Definition 2.3 ([40]) Let M : A∗ →A∗ and α : A2∗ →R≥0. Then
(i) M is an α-ψ-contraction if for μ1,μ2 ∈ A∗,

α(μ1,μ2)d(Mμ1, Mμ2) ≤ ψ
(
d(μ1,μ2)

)
.

(ii) M is α-admissible if α(μ1,μ2) ≥ 1 yields α(Mμ1, Mμ2) ≥ 1.
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Definition 2.4 ([52])
(1) A member μ ∈ A∗ is called an end-point of a multivalued function M : A∗ → P(A∗)

if M(μ) = {μ}.
(2) A multivalued map M admits an approximate end-point criterion (AEP) if

inf
μ1∈A∗

[
sup

μ2∈M(μ1)
d(μ1,μ2)

]
= 0.

Definition 2.5 ([41]) Let M : A
 → PCL,B(A
), α : A2

 → [0, +∞), and ψ ∈ � . Then

(1) M is orbital α-admissible if for all μ1 ∈A
 and μ2 ∈Mμ1, the inequality
α(μ1,μ2) ≥ 1 implies α(μ2,μ3) ≥ 1 for each μ3 ∈Mμ2.

(2) M is an α-ψ-contractive multi–function if for all μ1,μ2 ∈A
,

α(μ1,μ2)Hd(Mμ1,Mμ2) ≤ ψ
(
d(μ1,μ2)

)
,

where Hd is the Pompeiu–Hausdorff metric.

We recall some necessary fixed-point results in connection with the suggested boundary
problem.

Theorem 2.6 ([40]) Let (A∗, d) be a complete metric space, let α : A∗ ×A∗ →R and ψ ∈ � ,
and let M : A∗ →A∗ be an α-ψ-contractive map such that:

(1) M is α-admissible self-map on A∗;
(2) for some μ0 ∈A∗, α(μ0, Mμ0) ≥ 1;
(3) for any sequence {μn} in A∗ such that μn → μ and α(μn,μn+1) ≥ 1 for all n ≥ 1, we

have α(μn,μ) ≥ 1 for all n ≥ 1.
Then there is a fixed–point for M.

Theorem 2.7 ([39], Krasnoselskii) Let G �= ∅ be a closed bounded convex set contained in
a Banach space A∗, and let M1 and M2 be such that:

(1) M1μ1 + M2μ2 ∈ G for μ1,μ2 ∈ G;
(2) M1 is compact and continuous;
(3) M2 is a contraction.

Then there exists μ ∈ G such that μ = M1μ + M2μ.

Theorem 2.8 ([41]) Let (A∗, d) be a complete metric space, let α : A∗ ×A∗ → [0,∞), and
let ψ ∈ � be a strictly increasing map. Moreover, let M : A∗ → PCL,B(A∗) be an α-ψ-
contraction, Assume that:

1 M is orbital α-admissible;
2 α(μ0,μ1) ≥ 1 for some μ0 ∈A∗ and μ1 ∈Mμ0;
3 the space A∗ has the property that for each sequence {μn} in A∗ such that

α(μn,μn+1) ≥ 1 and μn → μ for all n ∈ N, there exists a subsequence {μnr } of {μn}
such that α(μnr ,μ) ≥ 1 for all r ∈N.

Then M has a fixed point.

Theorem 2.9 ([52]) Let (A∗, d) be a complete metric space. In addition, consider:
1 a map ψ : [0,∞) → [0,∞) which is u.s.c with ψ(t) < t and lim inft→∞(t – ψ(t)) > 0 for

all t > 0,
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2 a multivalued map M : A∗ → PCL,B(A∗) such that Hd(Mμ1,Mμ2) ≤ ψ(d(μ1,μ2)) for
any μ1,μ2 ∈ A∗.

Then a unique endpoint of M exists iff M has an approximate end-point criterion.

3 Results for q-Navier FBVP (3)
Consider the space A∗ = {μ(t) : μ(t), CD

�2
q μ(t) ∈ CR(O)} of all continuous functions on O

along with real values, which is a Banach space under the sup norm ‖μ‖A∗ = supt∈O |μ(t)|+
supt∈O |CD�2

q μ(t)| for μ ∈ A∗. The following lemma presents a solution to the proposed
problem (3) in the form of an integral equation, which is important in determining our
key findings.

Lemma 3.1 Let η ∈ A∗, �1,�2 ∈ (1, 2), and γ , δ,λ,β ∈ R
+. Then μ∗ is a solution to the

nonlinear sequential fractional q-Navier BVP

⎧
⎨

⎩

CD
�1
q (CD

�2
q μ)(t) = η(t), t ∈O, q ∈ (0, 1),

γμ(0) = δμ(1) = λCD
�2
q μ(0) = βCD

�2
q μ(1) = 0,

(9)

if and only if it satisfies the q-integral equation

μ(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv. (10)

Proof First, let a function μ∗ be a solution of the nonlinear sequential generalized q-Navier
FBVP (9). Then CD

�1
q (CD

�2
q μ∗)(t) = η(t). Since �1 ∈ (1, 2), taking the �th

1 -q-integral in the
Riemann–Liouville setting, we obtain

C
D

�2
q μ∗(t) =

∫ t

0

(t – qv)(�1–1)


q(�1)
η(v) dqv + m0 + m1t,

where we need to find the constants m0,m1 ∈R. By the third condition λCD
�2
q μ(0) = 0 we

obtain m0 = 0. So

C
D

�2
q μ∗(t) =

∫ t

0

(t – qv)(�1–1)


q(�1)
η(v) dqv + m1t. (11)

On the other hand, by (11) and the fourth condition βCD
�2
q μ(1) = 0 we get

β

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv + βm1 = 0,

and thus

m1 = –
∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv. (12)
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In view of (12), relation (11) becomes

C
D

�2
q μ∗(t) =

∫ t

0

(t – qv)(�1–1)


q(�1)
η(v) dqv – t

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv. (13)

Again, since �2 ∈ (1, 2), taking the �th
2 -q-integral in the Riemann–Liouville setting in (13),

we obtain

μ∗(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv –

t�2+1


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv + m

∗
0 + m

∗
1t,

where the constants m∗
0,m∗

1 ∈ R are to find. The first condition γμ(0) = 0 gives m∗
0 = 0. In

consequence,

μ∗(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv –

t�2+1


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv + m

∗
1t. (14)

At last, the second condition δμ(1) = 0 implies that

δ

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv –

δ


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv + δm∗

1 = 0.

Consequently,

m
∗
1 = –

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv +

1

q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv.

Inserting m∗
1 into (14), we obtain

μ∗(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
η(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
η(v) dqv,

which yields that μ∗ settles q-integral equation (10). On the other hand, we can simply
prove the converse by direct computation, and ultimately the arguments are finished. �

Now consider the operator N : A∗ →A∗ defined by

(Nμ)(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

– t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv.

We can easily infer that μ∗ is a solution of fractional q-Navier BVP (3) iff μ∗ is a fixed point
of the operator N. For simplicity, set

�

1 =

2

q(�1 + �2 + 1)

+
2


q(�1 + 1)
q(�2 + 2)
,
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�

2 =

2

q(�1 + 1)

+
1


q(�1 + �2 + 1)
q(2 – �2)

+

q(�2 + 2)
q(2 – �2) + 1


q(�1 + 1)
q(�2 + 2)
q(2 – �2)
, (15)

and

�

1 =

1

q(�1 + �2 + 1)

+
2


q(�1 + 1)
q(�2 + 2)
,

�

2 =

1

q(�1 + 1)

+
1


q(�1 + �2 + 1)
q(2 – �2)

+

q(�2 + 2)
q(2 – �2) + 1


q(�1 + 1)
q(�2 + 2)
q(2 – �2)
. (16)

Theorem 3.2 Suppose there exist a map U : R2 × R
2 → R, a continuous function M :

O ×A2∗ →A∗, and a nondecreasing function ψ ∈ � such that:
(X1) for any μ1,μ2, w1, w2 ∈A∗ and t ∈O, we have

∣
∣M(t,μ1, w1) – M(t,μ2, w2)

∣
∣ ≤ x̃ψ

(|μ1 – μ2| + |w1 – w2|
)

with

U
((

μ1(t), w1(t)
)
,
(
μ2(t), w2(t)

)) ≥ 0,

where x̃ = 1
�


1+�

2

;
(X2) there exists μ0 ∈A∗ such that for all t ∈O,

U
((

μ0(t), C
D

�2
q μ0(t)

)
,
(
Nμ0(t), C

D
�2
q

(
Nμ0(t)

))) ≥ 0

and

U
((

μ1(t), C
D

�2
q μ1(t)

)
,
(
μ2(t), C

D
�2
q μ2(t)

)) ≥ 0,

which gives

U
((
Nμ1(t), C

D
�2
q

(
Nμ1(t)

))
,
(
Nμ2(t), C

D
�2
q

(
Nμ2(t)

))) ≥ 0

for all μ1,μ2 ∈A∗ and t ∈O;
(X3) for any convergent sequence {μn}n≥1 in A∗ such that μn → μ and

U
((

μn(t), C
D

�2
q μn(t)

)
,
(
μn+1(t), C

D
�2
q μn+1(t)

)) ≥ 0

for all n and t ∈O, we have

U
((

μn(t), C
D

�2
q μn(t)

)
,
(
μ(t), C

D
�2
q μ(t)

)) ≥ 0.

Then the generalized q-Navier BVP (3) has a solution.
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Proof Let μ1 and μ2 belong to A∗ with

U
((

μ1(t), C
D

�2
q μ1(t)

)
,
(
μ2(t), C

D
�2
q μ2(t)

)) ≥ 0

for each t ∈O. Then we may write

∣
∣Nμ1(t) – Nμ2(t)

∣
∣

≤
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ1(v), C

D
�2
q μ1(v)

)
– M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

+ |t|
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ1(v), C

D
�2
q μ1(v)

)
– M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

+
|t�2+1 – t|

q(�2 + 2)

×
∫ 1

0

(1 – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ1(v), C

D
�2
q μ1(v)

)
– M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

≤
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
x̃ψ

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

+ |t|
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
x̃ψ

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

+
|t�2+1 – t|

q(�2 + 2)

×
∫ 1

0

(1 – qv)(�1–1)


q(�1)
x̃ψ

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

≤ 2

q(�1 + �2 + 1)

x̃ψ
(‖μ1 – μ2‖A∗

)
+

2

q(�1 + 1)
q(�2 + 2)

x̃ψ
(‖μ1 – μ2‖A∗

)

= x̃�

1ψ

(‖μ1 – μ2‖A∗
)
,

and, similarly, we get

∣
∣
(C
D

�2
q Nμ1

)
(t) –

(C
D

�2
q Nμ2

)
(t)

∣
∣

≤ 2

q(�1 + 1)

x̃ψ
(‖μ1 – μ2‖A∗

)
+

1

q(�1 + �2 + 1)
q(2 – �2)

x̃ψ
(‖μ1 – μ2‖A∗

)

+

q(�2 + 2)
q(2 – �2) + 1


q(�1 + 1)
q(�2 + 2)
q(2 – �2)
x̃ψ

(‖μ1 – μ2‖A∗
)

= x̃�

2ψ

(‖μ1 – μ2‖A∗
)
.

Consequently, we have

‖Nμ1 – Nμ2‖A∗ ≤ (
�


1 + �

2
)
x̃ψ

(‖μ1 – μ2‖A∗
)

= ψ
(‖μ1 – μ2‖A∗

)
.
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Now let α : A∗ ×A∗ → [0,∞) be the function defined as

α(μ1,μ2) =

⎧
⎨

⎩

1 if U((μ1(t), CD
�2
q μ1(t)), (μ2(t), CD

�2
q μ2(t))) ≥ 0,

0 otherwise,

for any μ1,μ2 ∈ A∗. Then we get α(μ1,μ2)d(Nμ1,Nμ2) ≤ ψ(d(μ1,μ2)) for all μ1,μ2 ∈
A∗. Thus N is an α-ψ-contraction. It is also simple to verify that N is α-admissible and
α(μ0,Nμ0) ≥ 1. On the other hand, let {μn}n≥1 be a sequence in A∗ such that μn → μ and
α(μn,μn+1) ≥ 1 for all n. By the definition of the nonnegative function α we have

U
((

μn(t), C
D

�2
q μn(t)

)
,
(
μn+1(t), C

D
�2
q μn+1(t)

)) ≥ 0.

Therefore by the hypothesis we obtain

U
((

μn(t), C
D

�2
q μn(t)

)
,
(
μ(t), C

D
�2
q μ(t)

)) ≥ 0.

This indicates that α(μn,μ) ≥ 1 for every n. Ultimately, by Theorem 2.6 we conclude that
N has a fixed point μ∗∗ ∈A∗. This implies that μ∗∗ is a solution of the generalized q-Navier
FBVP (3), and the proof is completed. �

Theorem 3.3 Let M : O ×A2∗ → A∗ be a continuous function. Assume the following con-
ditions:

(X4) there is k ∈ C(O,R) such that for all t ∈O and μ1,μ2, w1, w2 ∈ A∗,

∣
∣M(t,μ1, w1) – M(t,μ2, w2)

∣
∣ ≤ k(t)

(|μ1 – μ2| + |w1 – w2|
)
;

(X5) there exist a continuous function � : O →R
+ and a continuous nondecreasing func-

tion ψ : R+ →R
+ such that for all t ∈O and μ1,μ2 ∈A∗,

∣
∣M(t,μ1,μ2)

∣
∣ ≤ �(t)ψ

(|μ1| + |μ2|
)
.

Then if

L = ‖k‖(�

1 + �


2
)

< 1, (17)

where ‖k‖ = supt∈O |k(t)| and �

1, �


2 are defined in (16), then the generalized q-Navier
FBVP (3) has a solution.

Proof Define ‖�‖ = supt∈O |�(t)| and choose an appropriate constant ε > 0 such that

ε ≥ ψ
(‖μ‖A∗

)‖�‖(�

1 + �


2
)
, (18)

where �

1 and �


2 are defined in (15). Define the set Yε = {μ ∈ A∗ : ‖μ‖A∗ ≤ ε}. It is a
nonempty, closed, bounded, and convex set contained in A∗. Define N1 and N2 on Yε as

(N1μ)(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv
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and

(N2μ)(t) = –t
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

for t ∈O. Let ô = supμ∈R ψ(‖μ‖A∗ ). Now, for μ1,μ2 ∈ Yε , we obtain inequalities

∣
∣(N1μ1 + N2μ2)(t)

∣
∣

≤
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ1(v), C

D
�2
q μ1(v)

)∣
∣dqv

+ |t|
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

+
|t�2+1 – t|

q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

≤
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�(v)ψ

(∣
∣μ1(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v)

∣
∣
)

dqv

+ |t|
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�(v)ψ

(∣
∣μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ2(v)

∣
∣
)

dqv

+
|t�2+1 – t|

q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�(v)ψ

(∣
∣μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ2(v)

∣
∣
)

dqv

≤ ô‖�‖
[

2

q(�1 + �2 + 1)

+
2


q(�1 + 1)
q(�2 + 2)

]

= ô‖�‖�

1

and

∣
∣
(C
D

�2
q N1μ1 + C

D
�2
q N2μ2

)
(t)

∣
∣

≤
∫ t

0

(t – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ1(v), C

D
�2
q μ1(v)

)∣
∣dqv

+
|t1–�2 |


q(2 – �2)

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

+
|t
q(�2 + 2)
q(2 – �2) – t1–�2 |


q(�2 + 2)
q(2 – �2)

×
∫ 1

0

(1 – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ2(v), C

D
�2
q μ2(v)

)∣
∣dqv

≤
∫ t

0

(t – qv)(�1–1)


q(�1)
�(v)ψ

(∣
∣μ1(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v)

∣
∣
)

dqv

+
|t1–�2 |


q(2 – �2)

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�(v)ψ

(∣
∣μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ2(v)

∣
∣
)

dqv

+
|t
q(�2 + 2)
q(2 – �2) – t1–�2 |


q(�2 + 2)
q(2 – �2)
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×
∫ 1

0

(1 – qv)(�1–1)


q(�1)
�(v)ψ

(∣
∣μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ2(v)

∣
∣
)

dqv

≤ ô‖�‖
[

2

q(�1 + 1)

+
1


q(�1 + �2 + 1)
q(2 – �2)

+

q(�2 + 2)
q(2 – �2) + 1


q(�1 + 1)
q(�2 + 2)
q(2 – �2)

]

= ô‖�‖�

2.

Therefore ‖N1μ1 + N2μ2‖A∗ ≤ ô‖�‖(�

1 + �


2) ≤ ε, which implies that

(N1μ1 + N2μ2) ∈ Yε .

From the continuity of the single-valued function M it is evident that N1 is continuous on
its domain. Now, for all μ ∈ Yε , we get that

∣
∣(N1μ)(t)

∣
∣ ≤

∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ(v), C

D
�2
q μ(v)

)∣
∣dqv

≤ 1

q(�1 + �2 + 1)

‖�‖ψ(‖μ‖A∗
)

and

∣
∣
(C
D

�2
q N1μ

)
(t)

∣
∣ ≤

∫ t

0

(t – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ(v), C

D
�2
q μ(v)

)∣
∣dqv

≤ 1

q(�1 + 1)

‖�‖ψ(‖μ‖A∗
)
.

Thus

‖N1μ‖A∗ ≤
[

1

q(�1 + 1)

+
1


q(�1 + �2 + 1)

]

‖�‖ψ(ε).

This clearly shows the uniform boundedness of the operator N1 on Yε . To ensure the
compactness of N1 on Yε , consider t1, t2 ∈ O such that t1 < t2. Then we get the following
inequalities:

∣
∣(N1μ)(t2) – (N1μ)(t1)

∣
∣

=
∣
∣
∣
∣

∫ t2

0

(t2 – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

–
∫ t1

0

(t1 – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t1

0

(t2 – qv)(�1+�2–1) – (t1 – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t2

t1

(t2 – qv)(�1+�2–1)


q(�1 + �2)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

∣
∣
∣
∣

≤
∫ t1

0

(t2 – qv)(�1+�2–1) – (t1 – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ(v), C

D
�2
q μ(v)

)∣
∣dqv
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+
∫ t2

t1

(t2 – qv)(�1+�2–1)


q(�1 + �2)
∣
∣M

(
v,μ(v), C

D
�2
q μ(v)

)∣
∣dqv

≤
[
t

(�1+�2)
2 – t

(�1+�2)
1


q(�1 + �2 + 1)

]

‖�‖ψ(‖μ‖A∗
)

≤
[
t

(�1+�2)
2 – t

(�1+�2)
1


q(�1 + �2 + 1)

]

‖�‖ψ(ε).

Thus, as t1 goes to t2, |(N1μ)(t2) – (N1μ)(t1)| tends to zero independently of μ. Also, we
find that

∣
∣
(C
D

�2
q N1μ

)
(t2) –

(C
D

�2
q N1μ

)
(t1)

∣
∣

=
∣
∣
∣
∣

∫ t2

0

(t2 – qv)(�1–1)


q(�1)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

–
∫ t1

0

(t1 – qv)(�1–1)


q(�1)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t1

0

(t2 – qv)(�1–1) – (t1 – qv)(�1–1)


q(�1)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t2

t1

(t2 – qv)(�1–1)


q(�1)
M

(
v,μ(v), C

D
�2
q μ(v)

)
dqv

∣
∣
∣
∣

≤
∫ t1

0

(t2 – qv)(�1–1) – (t1 – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ(v), C

D
�2
q μ(v)

)∣
∣dqv

+
∫ t2

t1

(t2 – qv)(�1–1)


q(�1)
∣
∣M

(
v,μ(v), C

D
�2
q μ(v)

)∣
∣dqv

≤
[

t
�1
2 – t

�1
1


q(�1 + 1)

]

‖�‖ψ(‖μ‖A∗
)

≤
[

t
�1
2 – t

�1
1


q(�1 + 1)

]

‖�‖ψ(ε).

Thus |(CD
�2
q N1μ)(t2) – (CD

�2
q N1μ)(t1)| goes to zero as t1 approaches to t2 independently

of μ. Therefore ‖(N1μ)(t2)–(N1μ)(t1)‖A∗ → 0 as t1 → t2. Consequently, the equicontinu-
ity of the operator N1 is confirmed. Therefore by the Arzelà–Ascoli theorem N1 is a com-
pact operator on Yε . At last, we show that N2 is a contraction mapping. Let μ1,μ2 ∈ Yε .
Then

∣
∣(N2μ1)(t) – (N2μ2)(t)

∣
∣

≤ |t|
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
k(v)

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

+
|t�2+1 – t|

q(�2 + 2)

×
∫ 1

0

(1 – qv)(�1–1)


q(�1)
k(v)

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

≤ 1

q(�1 + �2 + 1)

‖k‖‖μ1 – μ2‖A∗ +
2


q(�1 + 1)
q(�2 + 2)
‖k‖‖μ1 – μ2‖A∗
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= ‖k‖�

1‖μ1 – μ2‖A∗ ,

and

∣
∣
(C
D

�2
q N2μ1

)
(t) –

(C
D

�2
q N2μ2

)
(t)

∣
∣

≤ |t1–�2 |

q(2 – �2)

×
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
k(v)

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

+
|t
q(�2 + 2)
q(2 – �2) – t1–�2 |


q(�2 + 2)
q(2 – �2)

×
∫ 1

0

(1 – qv)(�1–1)


q(�1)
k(v)

(∣
∣μ1(v) – μ2(v)

∣
∣ +

∣
∣C
D

�2
q μ1(v) – C

D
�2
q μ2(v)

∣
∣
)

dqv

≤ 1

q(�1 + �2 + 1)
q(2 – �2)

‖k‖‖μ1 – μ2‖A∗

+

q(�2 + 2)
q(2 – �2) + 1


q(�1 + 1)
q(�2 + 2)
q(2 – �2)
‖k‖‖μ1 – μ2‖A∗

= ‖k‖�

2‖μ1 – μ2‖A∗ .

Thus

‖N2μ1 – N2μ2‖A∗ ≤ ‖k‖(�

1 + �


2
)‖μ1 – μ2‖A∗ = L‖μ1 – μ2‖A∗ ,

where the constant L < 1. Therefore N2 is a contraction onYε . Hence Theorem 2.7 implies
the existence of a solution for the generalized q-Navier FBVP (3). �

4 Results for q-Navier FBVP (4)
In this section, we obtain the existence results for the generalized q-Navier inclusion FBVP
(4). A function μ belonging to CA∗ (O,A∗) is regarded as a solution of the sequential gen-
eralized q-Navier FBVP (4) if it fulfills the given BCs and there exists �̄ ∈L1(O) such that
�̄(t) ∈M(t,μ(t), CD

�2
q μ(t)) for almost all t ∈O and

μ(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄(v) dqv

for all t ∈O. We define the set of selections of the multivalued function M by

(SEL)M,μ =
{
�̄ ∈L1(O) : �̄(t) ∈M

(
t,μ(t), C

D
�2
q μ(t)

)
for all t ∈O

}

for μ ∈A∗. Now we define the operator Z : A∗ → P(A∗) as

Z(μ) =
{
� ∈A∗ : there exists �̄ ∈ (SEL)M,μ : �(t) = ω̌(t) for all t ∈O

}
, (19)
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where

ω̌(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄(v) dqv.

For simplicity, put

χ1 = ‖ζ‖�

1 and χ2 = ‖ζ‖�


2. (20)

Theorem 4.1 Let M : O ×A2∗ → PCM(A∗) be a multivalued function. Assume that:
(X6) the set-valued map M is integrable and bounded such that for all μ1,μ2 ∈ A∗, the

map M(·,μ1,μ2) : O → PCM is measurable;
(X7) there exist a function ζ ∈ C(O, [0,∞)) and ψ ∈ � such that

Hd
(
M(t,μ1,μ2),M(t, μ̃1, μ̃2)

) ≤ ζ (t)
(

x̃

‖ζ‖
)

ψ
(|μ1 – μ̃1| + |μ2 – μ̃2|

)
(21)

for all t ∈O and μ1,μ2, μ̃1, μ̃2 ∈A∗, where supt∈O |ζ (t)| = ‖ζ‖, x̃ = 1
�


1+�

2

, and �

1,

�

2 are the constants defined in (15);

(X8) there exists a function U : R2 × R
2 → R such that U((μ1,μ2), (μ̃1, μ̃2)) ≥ 0 for all

μ1,μ2, μ̃1, μ̃2 ∈A∗;
(X9) if {μn}n≥1 is a sequence in A∗ such that μn → μ and

U
((

μn(t), C
D

�2
q μn(t)

)
,
(
μn+1(t), C

D
�2
q μn+1(t)

)) ≥ 0

for all t ∈O and n ≥ 1, then there exists a subsequence {μnr }r≥1 of {μn} such that

U
((

μnr (t), C
D

�2
q μnr (t)

)
,
(
μ(t), C

D
�2
q μ(t)

)) ≥ 0

for all t ∈O and r ≥ 1;
(X10) there exist μ0 ∈A∗ and � ∈Z(μ0) such that

U
((

μ0(t), C
D

�2
q μ0(t)

)
,
(
�(t), C

D
�2
q �(t)

)) ≥ 0

for all t ∈O, where the multifunction Z : A∗ → P(A∗) is defined in (19);
(X11) for any μ ∈ A∗ and � ∈Z(μ) such that

U
((

μ(t), C
D

�2
q μ(t)

)
,
(
�(t), C

D
�2
q �(t)

)) ≥ 0,

there exists ω̌ ∈Z(μ) such that

U
((
�(t), C

D
�2
q �(t)

)
,
(
ω̌(t), C

D
�2
q ω̌(t)

)) ≥ 0

for each t ∈O.
Then the fractional q-Navier inclusion FBVP (4) admits a solution.
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Proof Clearly, any solution of the fractional q-Navier FBVP (4) is a fixed point of the map
Z : A∗ → P(A∗). Since the set-valued map t → M(t,μ(t), CD

�2
q μ(t)) admits closed values

and is measurable for all μ ∈ A∗, M admits a measurable selection. This indicates that
the set (SEL)M,μ �= ∅. Firstly, we prove that the set Z(μ) contained in A∗ is closed for any
μ ∈A∗. Suppose {μn}n≥1 is a sequence in Z(μ) such that μn → μ. For each n, there exists
�̄n ∈ (SEL)M,μ such that

μn(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄n(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄n(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄n(v) dqv

for almost all t ∈O. Since the map M is compact-valued, there is a subsequence of {�̄n}n≥1

converging to some �̄ ∈L1(O). Hence �̄ ∈ (SEL)M,μ, and

μn(t) → μ(t)

=
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄(v) dqv

for each t ∈ O. This reveals that μ ∈ Z(μ), and hence Z admits closed values. As the
multivalued map M has compact values, it is easy to conclude that Z(μ) is bounded for
each μ ∈A∗. Let us show that the multifunction Z is an α-ψ-contraction. To this end, we
define the nonnegative function α on A∗ ×A∗ by

α(μ, μ̃) =

⎧
⎨

⎩

1 if U((μ(t), CD
�2
q μ(t)), (μ̃(t), CD

�2
q μ̃(t))) ≥ 0,

0 otherwise,

for all μ, μ̃ ∈A∗. Let μ, μ̃ ∈A∗ and �1 ∈Z(μ̃). Consider �̄1 ∈ (SEL)M,μ̃ such that

�1(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄1(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄1(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄1(v) dqv

for all t ∈O. From (21) we have

Hd
(
M

(
t,μ, C

D
�2
q μ

)
,M

(
t, μ̃, C

D
�2
q μ̃

)) ≤ ζ (t)
(

x̃

‖ζ‖
)

ψ
(|μ – μ̃| +

∣
∣C
D

�2
q μ – C

D
�2
q μ̃

∣
∣
)

for any μ, μ̃ ∈A∗ such that

U
((

μ(t), C
D

�2
q μ(t)

)
,
(
μ̃(t), C

D
�2
q μ̃(t)

)) ≥ 0
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for almost all t ∈O. Hence there exists ω̌ ∈ M(t,μ(t), CD
�2
q μ(t)) such that

∣
∣�̄1(t) – ω̌

∣
∣ ≤ ζ (t)

(
x̃

‖ζ‖
)

ψ
(∣
∣μ(t) – μ̃(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q μ̃(t)

∣
∣
)
.

Consider T : O → P(A∗) defined by

T(t) =
{

ω̌ ∈A∗ :
∣
∣�̄1(t) – ω̌

∣
∣ ≤ ζ (t)

(
x̃

‖ζ‖
)

ψ
(∣
∣μ(t) – μ̃(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q μ̃(t)

∣
∣
)
}

for t ∈O. Since �̄1 and ϑ = ζ ( x̃

‖ζ‖ )ψ(|μ – μ̃| + |CD�2
q μ – CD

�2
q μ̃|) are measurable, the mul-

tifunction T(·) ∩M(·,μ(·), CD
�2
q μ(·)) is measurable. Now select �̄2 ∈ M(t,μ(t), CD

�2
q μ(t))

such that for all t ∈O,

∣
∣�̄1(t) – �̄2(t)

∣
∣ ≤ ζ (t)

(
x̃

‖ζ‖
)

ψ
(∣
∣μ(t) – μ̃(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q μ̃(t)

∣
∣
)
.

Consider �2 ∈Z(μ) given as

�2(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄2(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄2(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄2(v) dqv

for t ∈O. Then we obtain

∣
∣�1(t) – �2(t)

∣
∣ ≤

∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
∣
∣�̄1(v) – �̄2(v)

∣
∣dqv

+ |t|
∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
∣
∣�̄1(v) – �̄2(v)

∣
∣dqv

+
|t�2+1 – t|

q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
∣
∣�̄1(v) – �̄2(v)

∣
∣dqv

≤ 2

q(�1 + �2 + 1)

‖ζ‖
(

x̃

‖ζ‖
)

ψ
(‖μ – μ̃‖A∗

)

+
2


q(�1 + 1)
q(�2 + 2)
‖ζ‖

(
x̃

‖ζ‖
)

ψ
(‖μ – μ̃‖A∗

)

≤
[

2

q(�1 + �2 + 1)

+
2


q(�1 + 1)
q(�2 + 2)

]

‖ζ‖
(

x̃

‖ζ‖
)

ψ
(‖μ – μ̃‖A∗

)

= x̃�

1ψ

(‖μ – μ̃‖A∗
)

and

∣
∣C
D

�2
q �1(t) – C

D
�2
q �2(t)

∣
∣

≤
[

2

q(�1 + 1)

+
1


q(�1 + �2 + 1)
q(2 – �2)
+


q(�2 + 2)
q(2 – �2) + 1

q(�1 + 1)
q(�2 + 2)
q(2 – �2)

]

× ‖ζ‖
(

x̃

‖ζ‖
)

ψ
(‖μ – μ̃‖A∗

)
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= x̃�

2ψ

(‖μ – μ̃‖A∗
)

for all t ∈O. Hence we find that

‖�1 – �2‖A∗ = sup
t∈O

∣
∣�1(t) – �2(t)

∣
∣ + sup

t∈O

∣
∣C
D

�2
q �1(t) – C

D
�2
q �2(t)

∣
∣

≤ (
�


1 + �

2
)
x̃ψ

(‖μ – μ̃‖A∗
)

= ψ
(‖μ – μ̃‖A∗

)
.

Therefore α(μ, μ̃)Hd(Z(μ) – Z(μ̃)) ≤ ψ(‖μ – μ̃‖A∗ ) for all μ, μ̃ ∈A∗, and we deduce that
the multifunction Z is an α-ψ-contraction. Now let μ ∈ A∗ and μ̃ ∈ Z(μ) be such that
α(μ, μ̃) ≥ 1 and

U
((

μ(t), C
D

�2
q μ(t)

)
,
(
μ̃(t), C

D
�2
q μ̃(t)

)) ≥ 0,

so that there exists a function ω̌ ∈Z(μ̃) such that

U
((

μ̃(t), C
D

�2
q μ̃(t)

)
,
(
ω̌(t), C

D
�2
q ω̌(t)

)) ≥ 0.

Thus α(μ̃, ω̌) ≥ 1, and it follows that Z is α-admissible. Now consider μ0 ∈ A∗ and μ̃ ∈
Z(μ0) such that for all t ∈O,

U
((

μ0(t), C
D

�2
q μ0(t)

)
,
(
μ̃(t), C

D
�2
q μ̃(t)

)) ≥ 0.

Then we get α(μ0, μ̃) ≥ 1. Let {μn}n≥1 be a sequence in A∗ such that μn → μ and
α(μn,μn+1) ≥ 1 for all n. Then

U
((

μn(t), C
D

�2
q μn(t)

)
,
(
μn+1(t), C

D
�2
q μn+1(t)

)) ≥ 0.

By (X9) there exists a subsequence {μnr }r≥1 of {μn} such that

U
((

μnr (t), C
D

�2
q μnr (t)

)
,
(
μ(t), C

D
�2
q μ(t)

)) ≥ 0

for all t ∈ O. This implies that α(μnr ,μ) ≥ 1 for all r. Hence all the assumptions of Theo-
rem 2.8 are fulfilled. This confirms the existence of a fixed–point of the operatorZ . There-
fore it follows that the generalized q-Navier FBVP (4) has a solution. �

Theorem 4.2 Let M : O × A2∗ → PCM(A∗) be a multivalued map. In addition, suppose
that:

(X12) there exists a nondecreasing and u.s.c function ψ : [0,∞) → [0,∞) such that
lim inft→∞(t – ψ(t)) ≥ 0 and ψ(t) ≤ t for all t > 0;

(X13) the multifunction M : O ×A2∗ → PCM(A∗) is an integrable bounded operator such
that M(·,μ1,μ2) : O → PCM(A∗) is measurable for all μ1,μ2 ∈A∗;

(X14) there exists a nonnegative map ζ ∈ C(O, [0,∞)) such that

Hd
(
M(t,μ1,μ2),M(t, μ̃1, μ̃2)

) ≤ ζ (t)x̃
ψ
(|μ1 – μ̃1| + |μ2 – μ̃2|

)
(22)

for all t ∈O and μ1,μ2, μ̃1, μ̃2 ∈A∗, where x̃
 = 1
χ1+χ2

with constants χ1, χ2 defined
in (20);
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(X15) the operator Z defined in (19) has the approximate end-point criterion.
Then the generalized q-Navier inclusion BVP (4) has a solution.

Proof We claim the existence of an end-point for Z : A∗ → P(A∗). Firstly, we show
that the set Z(μ) contained in A∗ is closed for any μ ∈ A∗. Since the set-valued map
t → M(t,μ(t), CD

�2
q μ(t)) admits closed values and is measurable for all μ ∈ A∗, M has

a measurable selection. This indicates that the set (SEL)M,μ �= ∅. As shown in the proof of
Theorem 4.1, we can prove that Z(μ) has closed values. Also, we can easily get that Z(μ)
is bounded for each μ ∈A∗ because the multivalued map M has compact values. Now let
us prove the inequality Hd(Z(μ),Z(ω̌)) ≤ ψ(‖μ – ω̌‖A∗ ). To this end, let μ, ω̌ ∈ A∗ and
�1 ∈Z(ω̌), and select �̄1 ∈ (SEL)M,ω̌ such that

�1(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄1(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄1(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄1(v) dqv

for almost all t ∈O. From (22) we have

Hd
(
M

(
t,μ(t), C

D
�2
q μ(t)

)
,M

(
t, ω̌(t), C

D
�2
q ω̌(t)

))

≤ ζ (t)x̃
ψ
(∣
∣μ(t) – ω̌(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q ω̌(t)

∣
∣
)

for all t ∈O. Hence there exists ρ̄ ∈M(t,μ(t), CD
�2
q μ(t)) such that

∣
∣�̄1(t) – ρ̄

∣
∣ ≤ ζ (t)x̃
ψ

(∣
∣μ(t) – ω̌(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q ω̌(t)

∣
∣
)
.

Now we define the set-valued map ϒ : O → P(A∗) by

ϒ(t) =
{
ρ̄ ∈A∗ :

∣
∣�̄1(t) – ρ̄

∣
∣ ≤ ζ (t)x̃
ψ

(∣
∣μ(t) – ω̌(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q ω̌(t)

∣
∣
)}

for t ∈ O. Since �̄1 and σ∗ = ζ x̃
ψ(|μ – ω̌| + |CD�2
q μ – CD

�2
q ω̌|) are measurable, the

multifunction ϒ(·) ∩ M(·,μ(·), CD
�2
q μ(·)) is measurable. Next, we choose �̄2 ∈ M(t,μ(t),

CD
�2
q μ(t)) such that

∣
∣�̄1(t) – �̄2(t)

∣
∣ ≤ ζ (t)x̃
ψ

(∣
∣μ(t) – ω̌(t)

∣
∣ +

∣
∣C
D

�2
q μ(t) – C

D
�2
q ω̌(t)

∣
∣
)

for all t ∈O. Choose �2 ∈Z(μ) such that

�2(t) =
∫ t

0

(t – qv)(�1+�2–1)


q(�1 + �2)
�̄2(v) dqv – t

∫ 1

0

(1 – qv)(�1+�2–1)


q(�1 + �2)
�̄2(v) dqv

–
t�2+1 – t


q(�2 + 2)

∫ 1

0

(1 – qv)(�1–1)


q(�1)
�̄2(v) dqv

for all t ∈O. By continuing the similar steps implemented in Theorem 4.1 we obtain

‖�1 – �2‖A∗ = sup
t∈O

∣
∣�1(t) – �2(t)

∣
∣ + sup

t∈O

∣
∣C
D

�2
q �1(t) – C

D
�2
q �2(t)

∣
∣

≤ (χ1 + χ2)x̃
ψ
(‖μ – ω̌‖A∗

)
= ψ

(‖μ – ω̌‖A∗
)
.
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Therefore Hd(Z(μ),Z(ω̌)) ≤ ψ(‖μ – ω̌‖A∗ ) for all μ, ω̌ ∈ A∗. By (X15) Z involves an ap-
proximate end-point criterion. Now Theorem 2.9 indicates the existence of μ∗∗ ∈A∗ such
that Z(μ∗∗) = {μ∗∗}. Hence the fractional q-Navier inclusion BVP (4) has a solution μ∗∗. �

5 Examples
We provide a few illustrative numerical examples to our theoretical and analytical findings
in the previous sections.

Example 5.1 Consider the generalized q-Navier FBVP

⎧
⎨

⎩

CD1.35
0.57(CD1.68

0.57μ)(t) = t|μ(t)|
27(1+|μ(t)|) + t3| sin(CD1.68

0.57μ(t))|
27(1+sin(CD1.68

0.57μ(t)))
,

(9.61)μ(0) = (16.37)μ(1) = (21.49)CD1.68
0.57μ(0) = (7.15)CD1.68

0.57μ(1) = 0,
(23)

where q = 0.57, �1 = 1.35, �2 = 1.68, γ = 9.61, δ = 16.37, λ = 21.49, β = 7.15, and t ∈ O.
Also, consider the continuous mapping M : O ×R

2 →R defined by

M
(
t,μ(t), w(t)

)
=

t|μ(t)|
27(1 + |μ(t)|) +

t3| sin(w(t))|
27(1 + sin(w(t)))

.

For any μ1,μ2, w1, w2 ∈ R, we can write

∣
∣M

(
t,μ1(t), w1(t)

)
– M

(
t,μ2(t), w2(t)

)∣
∣

≤ t

27
(∣
∣μ1(t) – μ2(t)

∣
∣ +

∣
∣sin

(
w1(t)

)
– sin

(
w2(t)

)∣
∣
)

≤ t

27
(∣
∣μ1(t) – μ2(t)

∣
∣ +

∣
∣w1(t) – w2(t)

∣
∣
)
.

Put k(t) = t

27 for all t. Then ‖k‖ = supt∈O | t

27 | = 1
27 . Moreover, consider the nondecreasing

continuous map ψ : R+ →R
+ given by ψ(ς ) = ς for all ς ∈R

+. Then we obtain

∣
∣M

(
t,μ(t), C

D
1.68
0.57μ(t)

)∣
∣ ≤ t

27
(∣
∣μ(t)

∣
∣ +

∣
∣C
D

1.68
0.57μ(t)

∣
∣
)

=
t

27
ψ

(∣
∣μ(t)

∣
∣ +

∣
∣C
D

1.68
0.57μ(t)

∣
∣
)
.

Clearly, the function � : O →R
+ defined by �(t) = t

27 is continuous. By (16) we find that

�

1 =

1

0.57(1.35 + 1.68 + 1)

+
2


0.57(1.35 + 1)
0.57(1.68 + 2)
≈ 1.065756,

�

2 =

1

0.57(1.35 + 1)

+
1


0.57(1.35 + 1.68 + 1)
0.57(2 – 1.68)

+

0.57(1.68 + 2)
0.57(2 – 1.68) + 1


0.57(1.35 + 1)
0.57(1.68 + 2)
0.57(2 – 1.68)

≈ 1.051325.

Now by (17)L≈ 0.0738194 < 1. Hence by Theorem 3.3 we can conclude that the fractional
generalized sequential q-Navier BVP (23) has a solution.
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Example 5.2 Consider the generalized q-Navier inclusion FBVP

⎧
⎨

⎩

CD1.41
0.26(CD1.88

0.26μ)(t) = [0, t| tan–1(μ(t))|
35(1+5t2)(1+| tan–1(μ(t))|) + t2|CD1.88

0.26μ(t)|
35(1+|CD1.88

0.26μ(t)|) ],

(10.46)μ(0) = (53.17)μ(1) = (11.73)CD1.88
0.26μ(0) = (95.31)CD1.88

0.26μ(1) = 0,
(24)

where q = 0.26, �1 = 1.41, �2 = 1.88, γ = 10.46, δ = 53.17, λ = 11.73, β = 95.31, and t ∈ O.
Define M : O ×R

2 → P(R) by

M
(
t,μ1(t),μ2(t)

)
=

[

0,
t| tan–1(μ1(t))|

35(1 + 5t2)(1 + | tan–1(μ1(t))|) +
t2|μ2(t)|

35(1 + |μ2(t)|)
]

for t ∈O. Now select a nonnegative map ζ ∈ C(O, [0,∞)) such that ζ (t) = t

7 for each t ∈O.
Thus ‖ζ‖ = supt∈O | t7 | = 1

7 . Furthermore, consider the nonnegative nondecreasing u.s.c
map ψ : [0,∞) → [0,∞) defined as ψ(t) = t

5 for all t > 0. It is easy to find that lim inft→∞(t–
ψ(t)) > 0 and ψ(t) < t for all t > 0. Now by (15) and (20) we get

�

1 =

2

0.26(1.41 + 1.88 + 1)

+
2


0.26(1.41 + 1)
0.26(1.88 + 2)
≈ 2.237523,

�

2 =

2

0.26(1.41 + 1)

+
1


0.26(1.41 + 1.88 + 1)
0.26(2 – 1.88)

+

0.26(1.88 + 2)
0.26(2 – 1.88) + 1


0.26(1.41 + 1)
0.26(1.88 + 2)
0.26(2 – 1.88)

≈ 2.082361,

and

χ1 = ‖ζ‖�

1 ≈ 0.319646 and χ2 = ‖ζ‖�


2 ≈ 0.297361.

For every μ1,μ2, μ̃1, μ̃2 ∈R, we have

Hd
(
M

(
t,μ1(t),μ2(t)

)
,M

(
t, μ̃1(t), μ̃2(t)

))

≤ t

7
.
1
5
(∣
∣μ1(t) – μ̃1(t)

∣
∣ +

∣
∣μ2(t) – μ̃2(t)

∣
∣
)

=
t

7
ψ

(∣
∣μ1(t) – μ̃1(t)

∣
∣ +

∣
∣μ2(t) – μ̃2(t)

∣
∣
)

≤ ζ (t)ψ
(∣
∣μ1(t) – μ̃1(t)

∣
∣ +

∣
∣μ2(t) – μ̃2(t)

∣
∣
)
[

1
χ1 + χ2

]

.

Next, we consider the set-valued map Z : A∗ → P(A∗) defined as

Z(μ) =
{
� ∈A∗ : there exists �̄ ∈ (SEL)M,μ : �(t) = ω̌(t) for all t ∈O

}
,

where

ω̌(t) =
∫ t

0

(t – 0.26v)(1.41+1.88–1)


0.26(1.41 + 1.88)
�̄(v) dqv
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– t

∫ 1

0

(1 – 0.26v)(1.41+1.88–1)


0.26(1.41 + 1.88)
�̄(v) dqv

–
t1.88+1 – t


0.26(1.88 + 2)

∫ 1

0

(1 – 0.26v)(1.41–1)


0.26(1.41)
�̄(v) dqv

=
∫ t

0

(t – 0.26v)(2.29)


0.26(3.29)
�̄(v) dqv – t

∫ 1

0

(1 – 0.26v)(2.29)


0.26(3.29)
�̄(v) dqv

–
t2.88 – t


0.26(3.88)

∫ 1

0

(1 – 0.26v)(0.41)


0.26(1.41)
�̄(v) dqv.

Ultimately, by Theorem 4.2 we find that the generalized q-Navier BVP (24) has a solution.

6 Conclusion
In this paper, we modeled the standard Navier equation to q-fractional Navier BVP and
explored the existence of solutions by making use of the well-known results from func-
tional analysis due to some techniques introduced by Krasnoselskii, Samet, Mohammadi,
and Amini-Harandi based on special operators. In fact, by deriving an integral equation
we defined some operators based on it, and then by utilizing a subclass of special op-
erators such as orbital α-admissible maps, α-ψ-contractions, the multifunctions having
approximate endpoint criterion, and so on we proved the required results. Finally, we gave
illustrations by two examples to explain the consistency of the findings for the proposed
sequential generalized Navier q-BVP. As a possible future plan, some other operators may
be considered in the next papers to discuss the existence of solutions, stability, and other
qualitative aspects of solutions of the generalized Navier fractional model in two singular
or nonsingular formats.
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