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Abstract: An efficient technique, called pseudo-Galerkin, is performed to approximate some types
of linear/nonlinear BVPs. The core of the performance process is the two well-known weighted
residual methods, collocation and Galerkin. A novel basis of functions, consisting of first derivatives
of Chebyshev polynomials, has been used. Consequently, new operational matrices for derivatives
of any integer order have been introduced. An error analysis is performed to ensure the convergence
of the presented method. In addition, the accuracy and the efficiency are verified by solving BVPs
examples, including real-life problems.

Keywords: Chebyshev polynomials’ first derivative; pseudo-Galerkin; weighted residual methods;
error analysis; Lane–Emden; population model; MHD

1. Introduction

BVPs are used to model various problems in some fields, such as economics, biology,
and engineering [1–5]. Due to the importance of ODEs, significant research work has been
carried out about these problems [6–11]. In most instances, the exact solution of some
ODEs cannot be obtained analytically, and numerical methods are considered as the way
to obtain it.

Numerical methods are the set finite element, finite difference, spectral methods, etc.,
of all derivatives’ approximation solutions that lead to the exact values. Spectral methods
(SMs) are considered a class of techniques that are worked in applied mathematics to
obtain numerical solutions for many various problems in various fields. Many applications
are treated by spectral methods, which obtain better results [12,13]: time–space with
sub-diffusion and super-diffusion, Abel’s integral equations, and the multi-dimensional
fractional Rayleigh–Stokes problem in fluids have all been solved by spectral methods.
The consideration of SMs in approximating computations has been taken in the last few
decades. SMs have been established to be an identical suitable tool to obtain the numerical
solution of ODEs [14–16]. It deals with ODEs by stating these equations in terms of a series
of unknown constants and smooth functions. The main idea of spectral methods is to use
that set of tested functions, which are also known as expansion or basis approximating
functions. Being very smooth, global, and orthogonal appear to be vital properties of these
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polynomials. It is worth mentioning that the spectral method has been presented in [17]
and fifth kind Chebyshev [18], and is still being used and developed in [19]. For more recent
work about this polynomial, kindly refer to [20,21]. The approximation of spectral methods
depends on the type of its basis function. A numerical method is called stable if the error
function does not increase with respect to time. The SMs involve three methods types, called
the Galerkin [22], Tau [23], and collocation (pseudo-spectral) methods (SCM) [24–27]. These
methods can be used to investigate operational matrices for the derivatives [28]. SCMs are
obtained when the test functions in the variational formulation are Dirac functions based
on a pre-determined set of collocation points. The follow-on system approximates the
derivatives by differentiating a universal interpolant constructed through the collocation
points. The set of collocation points is related to the basis functions as the nodes of
quadrature formulae, which are used in the subtraction of spectral coefficients from the
grid values. Recently, a developing method was raised as a collection between Galerkin
and the collocation methods [29].

As mentioned, the core of the SMs is the choice of the orthogonal polynomials. The au-
thor in [30] introduced the idea of using the derivative of the orthogonal polynomials.
Recently, the first complete contribution for the Legendre’s derivative was introduced
in [31]. Thus, we will continue this novelty in this work by investigating Chebyshev’s
derivative as a new base function. Consequently, the new operational matrices for differen-
tiation have been constructed.

According to the SMs’ point of view, the orthogonal polynomials have to satisfy the
initial/boundary condition in the Galerkin method. While it is not a must in the collocation
method, the expansion’s constants are determined in terms of the unknown function. As a
new trend, the authors in [16] introduced a mix between the Galerkin and collocation
methods, called the pseudo-Galerkin method. Therefore, the pseudo-Galerkin method
with Chebyshev’s derivative will be used.

The frame of this paper is systematized as follows. In Section 2, some preliminaries
and notations are presented for subsequent growths, and some differential and forms of
Chebyshev polynomials (CHPs) are described. The description of the first derivative of
the Chebyshev polynomials method (FDCHPs) and reviewing the algorithm of the method
given are displayed in Section 3. Section 4 talks about the error analysis of the shown
method. The numerical results of applying the obvious system on different problems are
covered in Section 5. Finally, a brief conclusion is shown in Section 6.

2. Preliminaries

In this section, some important relations and properties of the CHPs and FDCHPs are
introduced and presented. The relations that follow are the recurrence relations for the
CHPs, Tn(s), and its derivatives, T

′
n(s), of degree n , [32]:

Tn(s) = 2sTn−1(s)− Tn−2(s) , (1)

2Tn(s) =
1

n + 1
T
′
n+1(s)−

1
n− 1

T
′
n−1(s) , (2)

with n = 2, 3, ..., where T0(s) = 1 and T1(s) = s . The CHPs (FDCHPs) form a com-
plete orthogonal set on the interval [-1,1] w.r.t. the weighting function w(s) = 1√

1−s2(
ŵ(s) =

√
1− s2

)
[33]:

∫ 1

−1
Tn(s)Tm(s)w(s)ds =


0 n 6= m ,
π
2 n = m 6= 0 ,
π n = m = 0 ,

(3)

∫ 1

−1
T′n(s)T

′
m(s)ŵ(s)ds =

{
0 n 6= m ,

n2π
2 n = m 6= 0 .

(4)
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Furthermore, T
′
n(s) can be generated as:

T
′
n(s) = n

sin(nθ)

sin(θ)
, (5)

where s = cos(θ).
The CHPs and FDCHPs can be expanded in a power series as [32,33]:

Tn(s) =
n
2

b n
2 c

∑
k=0

(−1)k(n− k− 1)!(2s)n−2k

(n− 2k)!(k)!
, (6)

where n ≥ 1 and b n
2 c is the integer part of n/2.

This explicit representation allows us to derive many useful formulae respective to
the CHPs [33]:

T
′
n(s) = 2n

n−1

∑
k=0

′ Tk(s) ; (n− k) odd, (7)

where ∑ ′ refers to halving the first term when (n− 1) is an even number [32], and its
inversion formula is given explicitly by:

sn = 21−n
b n

2 c

∑
k=0

′
(

n
k

)
Tn−2k(s) . (8)

3. Chebyshev Polynomials’ First Derivatives

This section is divided into two subsections. The first section’s main target is in-
vestigating a higher-order operational matrix for derivatives in terms of our novel base
functions, Chebyshev polynomials’ first derivatives. Consequently, this investigated matrix
will be used via the presented method to design an algorithm for solving some types
of problems.

3.1. Chebyshev Polynomials’ First Derivatives Operational Matrix

In this subsection, some important and novel relations will be investigated. The
recurrence relation of the FDCHPs, T

′
n+1(s), of degree n, denoted by DTn(s), is:

DTn(s) = 2s DTn−1(s) + 2Tn(s)− DTn−2(s) , n = 2, 3, 4, ... . (9)

The set { DTn(s) : n = 0, 1, 2, ...} form an orthogonal set as follows:

∫ 1

−1

DTn(s) DTm(s)ŵ(s)ds =

{
0 n 6= m ,

(n+1)2π
2 n = m ,

(10)

where ŵ(s) =
√

1− s2 .

Theorem 1. The FDCHPs can be approximated in terms of their variable s by the following formula:

DTn(s) =
n+1

∑
k=0

k Cn+1
rk

sk−1 ; (n− k + 1)even , (11)

where n ≥ 1 , Cn
rk

= (−1)rk 2k−1
[
2(rk+1

rk
)− (rk+k−1

rk
)
]

, and its inversion formula is given
explicitly by:

sn+1 =
2−(n+1)

n + 2

n+1

∑
k=0

(
n + 2
n−k+1

2

)
DTk(s) , (12)

where rk =
n−k+1

2 and (n− k + 1) is even.
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Proof. The first part of the theorem is gained by deriving Equation (6), whereas the result
of the second part is gained by deriving Equation (8).

Lemma 1. Let n be any non-negative integer. The moment formulae for the FDCHPs are given
explicitly by:

s DTn(s) =
n + 1

2

n+1

∑
k=n−1

1
k + 1

DTk(s); k 6= n . (13)

Proof. The result can be proved based on the substituting of Equation (9) into the recur-
rence relation (12) with some lengthy steps.

By generalising this lemma by following some sequence mathematical induction steps,
we obtain the next corollary.

Corollary 1. Let m and n be any two non-negative integers. The moments formula for the FDCHPs
are given explicitly by,

sm DTn(s) =
n + 1

(m + n + 1)2m

m+n

∑
k=0

(
m + n + 1

m+n−k
2

)
DTk(s) , (14)

where m > n + 1 ,

sm DTn(s) =
n + 1

2m

m+n

∑
k=0

1
k + 1

(
m

m+n−k
2

)
DTk(s) , (15)

where m ≤ n + 1 .

To establish the derivatives’ operational matrix, a relationship between the polynomial’s
derivative and the polynomial itself, as in the following theorem, needs to be investigated.

Theorem 2. The FDCHPs can be represented in terms of their original polynomials as,

d DTn(s)
d s

= 2 (n + 1)
n−1

∑
L=0

DTL(s) ; (n− L) odd, (16)

Proof. The desired result is obtained by deriving Equation (7).

Corollary 2. The first derivative operational matrix, D
[DT(s)

]
, of DT(s), can be written as,

D
[
DT(s)

]
= H · DT(s) , (17)

where,
DT(s) =

(DT0(s),D T1(s), · · · ,D Tr(s)
)T , D

[DT(s)
]
=
(

dDT0(s)
d s , dDT1(s)

d s , · · · , dDTr(s)
d s

)T
,

andH =
(
Hi j
)r+1

i,j=1 is a (r + 1)× (r + 1) lower triangular matrix defined as,

Hi j =

 2 (i + 1) , i > j, (i− j) odd,

0, otherwise .
(18)

Corollary 3. The pth derivative of DT(s) is:

Dp
[
DT(s)

]
= Hp · DT(s) . (19)
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In order to avoid the lack of accuracy due to the multiplication process for the matrix,
we investigate the elements of the matrix directly in the following theorem.

Theorem 3. Let p be any positive integer. Then, the FDCHPs’ pth-derivative operational matrix,

Hp, may be written asHp =
(
H
(p)
i j

)r+1

i,j=1
, such that:

H
(p)
i j = 2p (i + 1)

(p− 1)!


(

i−j−p+2
2

)
p−1

(
i+j−p+4

2

)
p−1

, i > j, (i− j− p) even,

0, otherwise .
(20)

Proof. By using the mathematical induction with the aide of Corollaries 2 and 3.

3.2. Chebyshev’s Derivative Pseudo-Galerkin Method

The presented method will be pseudo-Galerkin as one of the residual methods. This
method is a mix between the Galerkin method and the collocation method.

The used collocation points, si ; 0 ≤ i ≤ n, in that method are the normal Chebyshev–
Gauss–Lobatto points, si = cos(πi

n ) ; 0 ≤ i ≤ n, or the equidistant points si = −1 +
2
N i ; 0 ≤ i ≤ n.

Consider the BVPs:

h
(

fm(s) u(m)(s) , fm−1(s) u(m−1)(s) , fm−2(s) u(m−2)(s) ,

, . . . , f0(s)u(s)) = 0; −1 ≤ s ≤ 1 , (21)

with the initial/boundary conditions:

u(−1) = α0 , u(1) = β0 ,

u(1)(−1) = α1 , u(1)(1) = β1 ,

...

u(q)(−1) = αq , u(q)(1) = βq ,

(22)

where {αi}
q
0 and {βi}

q
0 are constants. The number of boundary conditions is equal to the

order of the problem.
Furthermore, u(s) can be approximated as:

u(s) ≈ un(s) =
n

∑
k=0

Ak
DTk(s) , (23)

where Ak denotes constants.
In addition, DTk(si) forms a square matrix. i.e., the elements of this matrix are the

values of the first order derivatives of CHPs at si.
The derivatives of the differential equation can be presented, according to Equations (19)

and (20) as the following:

dmu
dsm =

n

∑
k=0

k−m

∑
j=0

AkH
(m)
i j

(
DTj(s)

)
, (24)

where m is the order of derivatives. At m = 0, Equation (24) becomes equivalent to
Equation (23).
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Substituting from Equation (24) into Equation (21) yields:

h

(
fm(s)

n

∑
k=0

k−m

∑
j=0

AkH
(m)
i j

DTj(s) , fm−1(s)
n

∑
k=0

k−m+1

∑
j=0

AkH
(m−1)
i j

DTj(s),

. . . , f0(s)
n

∑
k=0

k

∑
j=0

AkHi j
DTj(s)

)
= 0;

−1 ≤ s ≤ 1 , (25)

such that:

∑n
k=0 ∑k

j=0 AkHi j
DTj(−1) = α0 , ∑n

k=0 ∑k
j=0 AkHi j

DTj(1) = β0 ,

∑n
k=0 ∑k−1

j=0 AkH
(1)
i j
DTj(−1) = α1 , ∑n

k=0 ∑k−1
j=0 AkH

(1)
i j
DTj(1) = β1 ,

...

∑n
k=0 ∑

k−q
j=0 AkH

(q)
i j
DTj(−1) = αq , ∑n

k=0 ∑
k−q
j=0 AkH

(q)
i j
DTj(1) = βq .

(26)

Equation (25) with Equation (26) can be collocated in order to construct an algebraic
equations system for unknowns {Ak}m

0 . Mainly, the linearity of the constructed algebraic
system depends on the formulation of the given BVP, Equations (21) and (22). In the case of
non-linearity, the non-linear algebraic system may be treated by numerous methods, such
as the Newton method, secant method, or SOR–Steffensen–Newton method, for finding
the solution of systems of non-linear equations [34]. Finally, Ak can be approximated by
solving the previous system to obtain the expanded approximate solution, which depends
on the FDCHPs. Algorithm 1 represented the solution’s steps where any software, such as
Matlab or Mathematica, can be programmed.

Algorithm 1: Algorithm steps for solving ODE via FDCHPs pseudo-Galerkin
Step 1 : Input : n ∈ N;
Step 2 : Select the {si}i=n

i=0 (collocation or the equidistant points);

Step 3 : Build the base function matrix
{DTj(si)

}i,j=n
i,j=0 using Equation (9);

Step 4 : Construct the DTn(s) derivative’s matrices{
DpDTj(si)

}i,j=n
i,j=0 , p = 1, 2, 3, · · · using Equation (19);

Step 5 : Expand the ODE as shown in Equation (25) using steps 3 and 4;
Step 6 : Solve the previous system to obtain the {Ak}n

0 ;
Step 7 : Substitute from step 6 into Equation (23) to obtain the

approximate solution.

4. Error Analysis

Throughout this section, we need to ensure the convergence and the boundness of the
spectral expansion before proceeding to the numerical computations. Finally, the stability’s
order has been determined. The following lemma will be needed for the investigation of
the error analysis and convergence.

Lemma 2 ([35]). Let u(s) be a smooth continuous function, such that:
(i) u(k) = ak,
(ii) u(s) is positive and decreasing for n ≤ s,
(iii) ∑ an convergent, and Rn = ∑∞

k=n+1 ak, then

Rn ≤
∫ ∞

n
u(s)ds. (27)
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Theorem 4. Let u(s) be a continuous function on the interval [−1,1], which can be expanded in
terms of FDCHPs, Equation (23), |u(r)(s)| < M, where r is a positive integer. Then:

|Ak| ≤
2M
kr+1 , k > 2 . (28)

Proof. According to the expansion Equation (23), and the orthogonality of FDCHPs, Equa-
tion (10):

Ak =
1

γk

∫ 1

−1
u(s) DTk(s)

√
1− s2 ds, (29)

where γk =
(k+1)2π

2 . Furthermore, Equation (5) can be applied to solve the integration to
obtain:

Ak = −
1

(k + 1)π

∫ π

0
u(s)[cos (k + 2)θ − cos kθ] dθ, (30)

with integrating by parts:

Ak =
2

(k + 1)π

∫ π

0
u
′
(s)
[

sin (k + 2)θ
k + 2

− sin kθ

k

]
dθ. (31)

By taking the maximum values for sin(k + 1)θ and sin(kθ), it leads to |Ak| ≤ 2M
k2 , and

by taking the integration by parts for r-1 times:

Ak = −
1

(k + 1)π

∫ π

0
u(r)(s)[ϕi(θ)− ϕj(θ)] dθ, (32)

where ϕi(θ) and ϕj(θ) are two trigonometric polynomials in sin(θ) and cos(θ). After noting
that |sin(θ)|, |cos(θ)| ≤ 1, and after some influences, the required result is obtained.

Theorem 5. Let u(s) be a continuous function that satisfies Theorem 4. Then:

|u(s)− un(s)| . O
(

1
nr−2

)
. (33)

Proof. By using the expansion Equation (23):

|u(s)− un(s)| = |
∞

∑
k=n+1

Ak
DTk(s)| ≤ |

∞

∑
k=n+1

Ak|. (34)

Then, by applying Lemma (2) and the result of Theorem 4:

|u(s)− un(s)| =
∫ ∞

n
A(k) dk . O(

1
nr−2 ) , r > 2. (35)

Corollary 4. Let u(s) be a function that satisfies the assumptions of Theorem 5. Then, the step
stability of two successive approximations un and un+1 of the function u satisfies:

|un − un+1| . O
(

1
nr−2

)
. (36)

In the next section, the FDCHPs pseudo-Galerkin method will be tested through sev-
eral numerical examples. These will show the efficiency, accuracy, and reliable application
of the method. The results ensure the theoretical aspects of the error analysis section.
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5. Results

In this section, five examples are solved to demonstrate the efficiency and perma-
nency of the planned technique. These examples include well-known BVPs and real life
applications, such as the Lane–Emden equation, population model, and fluid problem.

Example 1. Consider the following 2nd order Lane–Emden Equation [36–38]:

u
′′
(s) +

2
s

u
′
(s) + um(s) = 0 , 0 ≤ m ≤ 5 ,

with the following initial conditions, u(0) = 1, u
′
(0) = 0, exact solutions u(s) = 1− s2

6 for

m = 0, u(s) = sin(s)
s for m = 1, and u(s) = (1 + s2

3 )
− 1

2 for m = 5. This equation has physical
importance for the value of s when u(s) = 0, and this value for s is approximately 2.5 when m = 0,
and about 3.1 for m = 1. These cases will be discussed as follows:

m = 0, and s ∈ [0, 2.5]: Shifting form [0, 2.5] to the domain of FDCHPs [−1, 1], using the
expansion (23): u(s) ≈ u2(s) = ∑2

k=0 Ak
DTk(s) , and applying FDCHPs pseudo-Galerkin to

obtain the system:

128A1 + 384A2 = −25, 64A1 + 768A2 = −25, (37)

A0 − 4A1 + 9A2 = 1, 4A1 − 24A2 = 0 , (38)

which yields to A0 = 259/384, A1 = −25/192, and A2 = −25/1152. Consequently, u(s) =
71
96 −

50
96 s− 25

96 s2, which is the exact solution for s ∈ [−1, 1].
m = 1, and s ∈ [0, 3.1]: Tables 1 and 2 represent the point-wise absolute error (PW-AE)

for s ∈ [0, 1] and s ∈ [0, 3.1], respectively. The author in [38] obtained 10−13 at n = 16 for
s ∈ [0, 1]. At the same time, we achieved a better accuracy, 10−16, with a greater efficiency n = 12.
For s ∈ [0, 3.1], we achieve a greater efficiency by using n = 15 against the method in [38]. These
results show the privilege of the FDCHPs pseudo-Galerkin method.

Table 1. PW-AE of Example 1 for m = 1.

s FDCHPs Pseudo-Galerkin [38]
n = 12 n = 16

0.0 2.22× 10−16 -
0.1 0 6.24× 10−13

0.2 1.11× 10−16 -
0.3 1.11× 10−16 -
0.4 0 -
0.5 1.11× 10−16 5.82× 10−13

0.6 0 -
0.7 0 -
0.8 0 -
0.9 0 -
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Table 2. PW-AE of Example 1 for m = 1.

s FDCHPs Pseudo-Galerkin [38]
n = 15 n = 30

0.0 4.44× 10−16 0
0.1 2.88× 10−15 5.48× 10−15

0.2 5.77× 10−15 6.02× 10−15

0.3 6.77× 10−15 6.41× 10−15

0.4 6.99× 10−15 5.97× 10−15

0.5 7.54× 10−15 6.05× 10−15

0.6 7.66× 10−15 6.42× 10−15

0.7 7.32× 10−15 5.71× 10−15

0.8 7.43× 10−15 5.16× 10−15

0.9 7.32× 10−15 5.67× 10−15

1.0 7.10× 10−15 6.15× 10−15

1.5 5.88× 10−15 5.22× 10−15

2.0 4.05× 10−15 3.24× 10−15

2.5 2.30× 10−15 1.19× 10−15

3.0 6.45× 10−16 3.20× 10−16

3.1 4.59× 10−16 9.02× 10−16

m = 5, and s ∈ [0, 1]: FDCHPs pseudo-Galerkin method obtained 9.91× 10−13 at n = 15
and 2.67× 10−15 at n = 19 as a MAE, while the MAE is 1.73× 10−13 at n = 16 in [38]. Figure 1
shows the stability of the error.

0 5 10 15 20 25
−15

−10

−5

0

n

L
o

g
E

rr
o

r

Figure 1. LogError for Example 1 at m = 5.

Example 2. Consider the following 2nd order Lane–Emden Equation [39]:{
u
′′
(s) + 1

s u
′
(s) = −eu(s); 0 ≤ s ≤ 1

u
′
(0) = 0 , u(1) = 0.

(39)

The exact solution is u(s) = 2 log 4−2
√

2
(3−2

√
2)s2+1

. The PW-AE obtained using the FDCHPs
pseudo-Galerkin method and methods in [40,41] were presented in Table 3 for different values
of n. The best MAE is shown in Table 4, with a comparison with other methods. As we noted,
the presented method reached the double precision. i.e., almost the exact solution for n = 18. This
shows the privilege of the FDCHPs pseudo-Galerkin against the methods represented in [39–41].
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Table 3. PW-AE of Example 2.

s FDCHPs Pseudo-Galerkin [40] [41] [41]
n = 11 n = 14 n = 18 n = 14 n = 14 n = 28

0.0 3.34× 10−10 1.81× 10−13 4.44× 10−16 6.72× 10−08 - -
0.1 2.19× 10−10 1.11× 10−13 3.89× 10−16 6.69× 10−08 2.05× 10−10 5.99× 10−13

0.2 1.59× 10−10 8.07× 10−14 5.55× 10−16 7.87× 10−09 2.44× 10−10 5.69× 10−13

0.3 1.22× 10−10 6.23× 10−14 3.86× 10−16 6.92× 10−09 2.64× 10−10 4.70× 10−13

0.4 9.51× 10−11 4.82× 10−14 3.33× 10−16 2.87× 10−08 2.74× 10−10 3.83× 10−13

0.5 7.27× 10−11 3.67× 10−14 3.61× 10−16 7.40× 10−10 2.77× 10−10 3.17× 10−13

0.6 5.38× 10−11 2.73× 10−14 5.55× 10−17 6.32× 10−08 2.11× 10−10 3.37× 10−13

0.7 3.72× 10−11 1.86× 10−14 2.50× 10−16 6.95× 10−08 1.57× 10−10 3.66× 10−13

0.8 2.23× 10−11 1.11× 10−14 1.25× 10−16 3.38× 10−09 1.07× 10−10 3.49× 10−13

0.9 8.80× 10−12 4.36× 10−15 4.86× 10−17 7.85× 10−08 5.72× 10−11 1.98× 10−13

1.0 1.42× 10−16 9.18× 10−17 8.28× 10−17 6.63× 10−08 - -

Table 4. The best MAE for Example 2.

Method Best MAE

[39] “n = 8” 6.35× 10−07

[40] “n = 14” 6.32× 10−08

[41] “n = 28” 1.98× 10−13

[42] “n = 512” 9.72× 10−15

FDCHPs Pseudo-Galerkin “n = 18” 5.55× 10−16

Example 3. Consider the integral Equation [43,44]:

u(s) = es −
∫ s

0
(s− x)u(x)dx; 0 ≤ s ≤ 1, (40)

with the exact solution u(s) = 1
2 (e

s + cos(s) + sin(s)). Equation (40) represents the population
model such that, u(s) is the number of female births, es is the contribution of birth due to female
already present at time s, and s− x is the net maternity function of females class age x at time s.
Equation (40) can be converted to the following BVP:

u
′′
(s) + u(s) = es; 0 ≤ s ≤ 1, (41)

with the initial conditions u(0) = 1, u
′
(0) = 1. The best MAE for the obtained results was shown

in Table 5. The comparisons with other methods showed the efficiency of the presented method.
Furthermore, Figure 2 illustrates the stability of the solution through the domain interval [0, 1],
for different values of n.

Table 5. The best MAE for Example 3.

Method Best MAE

[43] 2.14× 10−14

[44] 1.25× 10−15

FDCHPs Pseudo-Galerkin 4.44× 10−16
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Figure 2. PW-AE for Example 3.

Example 4. Consider 4th order BVP [8]:

32u(4)(s)− 8u(2)(s)− 2u(s) = (s− 5)e
s+1

2 ; −1 ≤ s ≤ 1 , (42)

subject to u(−1) = 1, u′(−1) = 0, u(1) = 0, and exact solution u(s) = (1− s) e(
1+s

2 ). In
Table 6, the PW-AE of Example 4 is listed. The values ensure both the accuracy and efficiency of the
FDCHPs pseudo-Galerkin method.

Table 6. PW-AE for Example 4.

s FDCHPs Pseudo-Galerkin [8]
n = 12 n = 14 n = 20

−1 6.66× 10−16 2.22× 10−16 0
−0.6 3.10× 10−14 3.33× 10−16 2.17× 10−14

−0.2 3.84× 10−14 1.11× 10−16 3.46× 10−14

0.2 4.24× 10−14 1.11× 10−16 5.28× 10−14

0.6 3.00× 10−14 1.67× 10−16 1.23× 10−14

1 2.02× 10−16 4.67× 10−17 0

Example 5. Consider 3rd order non-linear BVP:

u(3)(s) + u(s)u(2)(s)− α
(

u(1)(s)
)2

= 0, 0 < s < ∞ , (43)

subject to u(0) = 0, u′(0) = 1, and u′(∞) = 0. This equation represents the study of the
two-dimensional laminar flow due to the stretching wall [45–47] in the absence of the applied
magnetic field.

Interestingly, the problem has exact solutions for some values of α. For the case of α = 1, [48,49]
u(s) = 1− e−s. By applying the method of FDCHPs pseudo-Galerkin, with shifting the given
interval to [−1, 1], we obtain 9.39× 10−18 after four iterations as a MAE. On the other hand, the
method in [50] obtained a MAE of almost 10−06 after 29+1 = 1024 iterations.

6. Conclusions

This paper has investigated a numerical technique, FDCHPs pseudo-Galerkin, based
on Chebyshev polynomials’ first derivative to treat some types of linear and nonlinear
ODEs. Formulae and theorems for the novel basis functions have been introduced and
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proven. Based on this, we set up a new operational matrix for the differentiation of any
integer order. Before proceeding to the computational steps, error analysis and approxima-
tion convergence have been discussed and investigated. Finally, the proposed technique
has been applied to several types of BVPs, “Special applications were selected.” The ob-
served results reported from the tables and figures proved the efficiency and accuracy
of our technique. These results were compatible and consistent with the discussed error
analysis. As future work and open problems, we will extend the current relations to
investigate the linearization relation. This will allow us to developed a Tau method for
solving linear/nonlinear BVPs via Chebyshev polynomials’ first derivative.

Author Contributions: Conceptualization, M.A.; methodology, M.A. and T.A.-E.; software, M.A.
and T.A.-E.; validation, M.A., T.A.-E. and M.G.A.; formal analysis, M.A. and T.A.-E.; investigation,
M.A., T.A.-E. and M.G.A.; data curation, D.B., M.G.A.; writing—original draft preparation, T.A.-E.
and M.G.A.; writing—review and editing, M.A., T.A.-E. and D.B.; visualization, D.B., M.G.A. and
M.E.-K.; supervision, M.A. and M.E.-K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for carefully reading
the article and also for their constructive and valuable comments, which have improved the paper in
its present form. The authors are also sincerely grateful to the Helwan School of Numerical Analysis
in Egypt (HSNAE) members for their valuable support during this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Danish, G.A.; Imran, M.; Tahir, M.; Waqas, H.; Asjad, M.I.; Akgül, A.; Baleanu, D. Effects of non-linear thermal radiation and

chemical reaction on time dependent flow of Williamson nanofluid with combine electrical MHD and activation energy. J. Appl.
Comput. Mech. 2021, 7, 546–558.

2. Farman, M.; Ahmad, A.; Akgül, A.; Saleem, M.U.; Naeem, M.; Baleanu, D. Epidemiological Analysis of the Coronavirus Disease
Outbreak with Random Effects. Comput. Mater. Contin. 2021, 67, 3215–3227. [CrossRef]

3. Nan, A.; Khan, U.; Ahmed, N.; Mohyud-Din, S.T.; Khan, I.; Baleanu, D.; Nisar, K.S. Al2O3 and gamma Al2O3 nanomaterials
based nanofluid models with Surface Diffusion: Applications for thermal performance in multiple engineering systems and
industries. CMC 2021, 66, 1563–1576.

4. Çelik, E.; Bayram, M. The numerical solution of physical problems modeled as a systems of differential algebraic equations
(DAEs). J. Frankl. Inst. 2005, 342, 1–6. [CrossRef]

5. Çelik, E. On the numerical solution of chemical differential-algebraic equations by Pade series. Appl. Math. Comput. 2004, 153,
13–17. [CrossRef]

6. He, W.; Chen, N.; Dassios, I.; Shah, N.A.; Chung, J.D. Fractional system of Korteweg-De Vries equations via Elzaki transform.
Mathematics 2021, 9, 673. [CrossRef]

7. Kumar, S.; Shaw, P.K.; Abdel-Aty, A.H.; Mahmoud E.E. A numerical study on fractional differential equation with population
growth model. Numer. Methods Part. Differ. Eq. 2020, 1–2. [CrossRef]

8. Youssri, Y.H.; Hafez, R.M. Chebyshev collocation treatment of Volterra–Fredholm integral equation with error analysis. Arab. J.
Math. 2020, 9, 471–480. [CrossRef]

9. Lu, Y.; Yin, Q.; Li, H. The LS-SVM algorithms for boundary value problems of high-order ordinary differential equations. Adv.
Differ. Equ. 2019, 2019, 195. [CrossRef]

10. Akram, G.; Beck, C. Hierarchical cascade model leading to 7-th order initial value problem. Appl. Numer. Math. 2015, 91, 89–97.
[CrossRef]

11. Alsaedi, A.; Hayat, T.; Qayyum, S.; Yaqoob, R. Eyring-Powell nanofluid flow with nonlinear mixed convection: Entropy generation
minimization. Comput. Methods Programs Biomed. 2020, 186, 105183. [CrossRef] [PubMed]

12. Bhrawy, A.H. A new spectral algorithm for time-space fractional partial differential equations with subdiffusion and superdiffu-
sion. Proc. Rom. Acad. Ser. A 2016, 17, 39–47.

13. Abdelkawy, M.A.; Ezz-Eldien, S.S.; Amin, A.Z.M. Jacobi spectral collocation scheme for solving Abel’s integral equations. Prog.
Fract. Differ. 2015, 1, 187–200.

14. Youssri, Y.H.; Abd-Elhameed, W.M.; Abdelhakem, M. A robust spectral treatment of a class of initial value problems using
modified Chebyshev polynomials. Math. Meth. Appl. Sci. 2021, 44, 9224–9236. [CrossRef]

15. Abdelhakem, M.; Doha, M.R.; Saadallah, A.F.; El-Kady, M. Monic Gegenbauer approximations for solving differential equations.
J. Sci. Eng. Res. 2018, 5, 317–321.

http://doi.org/10.32604/cmc.2021.014006
http://dx.doi.org/10.1016/j.jfranklin.2004.07.004
http://dx.doi.org/10.1016/S0096-3003(03)00604-0
http://dx.doi.org/10.3390/math9060673
http://dx.doi.org/10.1002/num.22684
http://dx.doi.org/10.1007/s40065-019-0243-y
http://dx.doi.org/10.1186/s13662-019-2131-3
http://dx.doi.org/10.1016/j.apnum.2014.10.009
http://dx.doi.org/10.1016/j.cmpb.2019.105183
http://www.ncbi.nlm.nih.gov/pubmed/31760302
http://dx.doi.org/10.1002/mma.7347


Fractal Fract. 2021, 5, 165 13 of 14

16. Abdelhakem, M.; Ahmed, A.; El-kady, M. Spectral monic Chebyshev approximation for higher order differential equations. Math.
Sci. Lett. 2019, 8, 11–17.

17. Sweilam, N.H.; Nagy, A.M.; Youssef, I.K.; Mokhtar M.M. New spectral second kind Chebyshev wavelets scheme for solving
systems of integro-differential equations. Int. J. Appl. Comput. Math. 2017, 3, 333–345. [CrossRef]

18. Abd-Elhameed, W.M.; Youssri, Y.H. Fifth-kind orthonormal Chebyshev Polynomial solutions for fractional differential equations.
Comp. Appl. Math. 2018, 37, 2897—2921. [CrossRef]

19. Abd-Elhameed, W.M.; Youssri, Y.H. Sixth-Kind Chebyshev spectral approach for solving fractional differential equations. Int. J.
Nonlin. Sci. Num. 2019, 20, 191–203. [CrossRef]

20. De Florio, M.; Schiassi, E.; D’Ambrosio, A.; Mortari, D.; Furfaro, R. Theory of Functional Connections Applied to Linear ODEs
Subject to Integral Constraints and Linear Ordinary Integro-Differential Equations. Math. Comput. Appl. 2021, 26, 65. [CrossRef]

21. Guan, X.; Zhong, R.; Qin, B.; Wang, Q.; Shao, W. Vibro-acoustic analysis of combined elliptical–cylindrical–elliptical shells
immersed in acoustic medium. J. Fluids Struct. 2021, 106, 103391. [CrossRef]

22. Shen, J. Efficient spectral-Galerkin Method I. direct solvers of second- and fourth-order equations. SIAM J. Sci. Comput. 1995, 15,
1489–1505. [CrossRef]

23. Issa, K.; Adeniyi, R.B. Extension of generalized recursive Tau method to non-linear ordinary differential equations. J. Niger. Math.
Soc. 2016, 35, 18–24. [CrossRef]

24. Shahni, J.; Singh, R. Bernstein and Gegenbauer-wavelet collocation methods for Bratu-like equations arising in electrospinning
process. J. Math. Chem. 2021, 1–17. [CrossRef]
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