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In the present article we obtain the boundedness for commutators of rough p-adic Hardy operator on p-adic central Morrey spaces.
Furthermore, we also acquire the boundedness of rough p-adic Hardy operator on Lebesgue spaces.

1. Introduction

The classical Hardy operator for a non-negative function
f : ℝ+ ⟶ℝ+is given as

H f xð Þ = 1
x

ðx
0
f tð Þdt, x > 0: ð1Þ

In [1], Hardy defined the above operator which satisfies

H fk kLr ℝ+ð Þ ≤
r

r − 1 fk kLr ℝ+ð Þ, 1 < r <∞: ð2Þ

The constant r/ðr − 1Þ in (2) is sharp. In [2], Faris
extended the Hardy operator in ℝn by

Hf xð Þ = 1
xj jn
ð

B 0, xj jð Þð Þ
f tð Þdt: ð3Þ

In this day and age, the Hardy operator has received a
relentless consideration, see for example [3–7]. Moreover,
the publications [8–12] and the references therein will do
world of good to comprehend the Hardy type operators.

The past few years has seen an immense attention
towards mathematical physics [13, 14] along with harmonic
analysis in the p-adic field [15–23]. Furthermore, the applica-

tions of p-adic analysis are seen mainly in string theory [24],
quantum gravity [25, 26], quantum mechanics [14] and
spring glass theory [27, 28].

Suppose p is a prime number, r ∈ℚ, we introduce the p
-adic norm jrjp by a rule

0j jp = 0, rj jp = p−α, ð4Þ

where the integer α = αðrÞ is defined by the following
notation

r = pαm/n, ð5Þ

integers m, n and p are coprime to each other. j·jp has many
properties of a real norm together with

r + sj jp ≤max rj jp, sj jp
n o

: ð6Þ

We denote the completion of ℚ in the norm j·jp by ℚp:

Any nonzero p-adic number can be written in series form
as (see [14]):

r = pα 〠
∞

i=0
γip

i, ð7Þ
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where γi, α ∈ℤ, γi ∈ℤ/pℤp, γ0 ≠ 0: The series (7) is conver-
gent as jpαγipijp = p−α−i:

The space ℚn
p contains all n-tuples of ℚp. The norm on

this space is

rj jp = max
1≤k≤n

rkj jp: ð8Þ

Represent by BαðaÞ the ball with radius pα and center at a
and SαðaÞ its sphere:

Bα að Þ = r ∈ℚn
p : r − aj jp ≤ pα

n o
, Sα að Þ = r ∈ℚn

p : r − aj jp = pα
n o

:

ð9Þ

Sinceℚn
p is a locally compact Hausdorff space, then there

exists the Haar measure dx on additive groupℚn
p and is nor-

malized by

ð
B0 0ð Þ

dx = B0 0ð Þj jH = 1, ð10Þ

where jEjH denotes the Haar measure of a measurable subset
E of ℚn

p : Moreover, it is not hard to see that jBγðaÞjH = pnγ

and jSγðaÞjH = pnγð1 − p−nÞ, for any a ∈ℚn
p .

Suppose Lsðℚn
pÞð1 ≤ s<∞Þ is the space of all complex-

valued functions f on ℚn
p such that

∥f ∥Ls ℚn
pð Þ =

ð
ℚn

p

f xð Þj jsdx
 !1/s

<∞: ð11Þ

In what follows author in [29] introduced the Hardy
operator in the p-adic field as for f ∈ Llocðℚn

pÞ, we have

Hpf xð Þ = 1
xj jnp

ð
B 0, xj jpð Þ

f tð Þdt: ð12Þ

For better understanding of Hardy type operators in the p
-adic field we refer the publications [12, 29–32] and the refer-
ences therein. From here on, we discuss the rough kernel ver-
sion of an operator which is also considered an important
topic in analysis, see for instance [20, 33–37]. In [10], Fu
et al. studied the roughness of Hardy operator in the real
field. In the p-adic setting, the rough Hardy operator and
its commutator are defined and studied in [20]. Suppose
f : ℚn

p ⟶ℝ, b : ℚn
p ⟶ℝ and Ω : S0 ⟶ℝ are measur-

able mappings, then

Hp
Ω f xð Þ = 1

xj jnp

ð
B 0, xj jpð Þ

Ω tj jpt
� �

f tð Þdt

Hp,b
Ω f xð Þ = 1

xj jnp

ð
B 0, xj jð Þp

b xð Þ − b tð Þð ÞΩ tj jpt
� �

f tð Þdt,

ð13Þ

respectively, whenever

ð
B 0, xj jpð Þ

Ω tj jpt
� �

f tð Þ
��� ���dt <∞

ð
B 0, xj jpð Þ

b tð ÞΩ tj jpt
� �

f tð Þ
��� ���dt <∞:

ð14Þ

In [20], authors showed the weighted estimates ofHp,b
Ω on

two weighted Herz-Morrey spaces. In the present article, we
acquire the λ − central bounded mean oscillations ðC _MOr,λ

ðℚn
pÞÞ estimate of Hp,b

Ω on p-adic central Morrey spaces. In
addition, we open up our results with a lemma which shows
the boundedness of rough p-adic Hardy operator on Lebes-
gue spaces. Throughout this paper, we have no intention to
obtain the best constants in the inequalities. The occurrence
of a letter C does not mean a same constant, its value may
vary at different positions.

Definition 1 [32]. Suppose λ ∈ℝ and 1 < r <∞: The p-adic

space _B
r,λðℚn

pÞ is defined as follows

fk k _B
r,λ

ℚn
pð Þ = sup

γ∈ℤ

1
Bγ

�� ��1+λr
H

ð
Bγ

f xð Þj jrdx
 !1/r

<∞, ð15Þ

where Bγ = Bγð0Þ: Interestingly _B
r,λðℚn

pÞ reduces to f0g for
−1/r > λ:

Definition 2 [32]. Suppose λ < 1/n and 1 < r <∞. The p-adic
space C _MOr,λðℚn

pÞ is given by

fk kC _MOr,λ ℚn
pð Þ = sup

γ∈ℤ

1
Bγ

�� ��1+λr
H

ð
Bγ

f xð Þ − f Bγ

��� ���rdx
 !1/r

<∞,

ð16Þ

where f Bγ
= 1/jBγjH

Ð
Bγ
f ðxÞdx, jBγjH is the Haar measure of

Bγ.

Remark 3. If λ = 0, then C _MOr,λðℚn
pÞ is reduced to CMOr

ðℚn
pÞ (see [29]).

2. Boundedness for Commutators of Rough p-
Adic Hardy Operator on Central Morrey
Spaces

In the present section ðC _MOr,λðℚn
pÞÞ estimates of Hp,b

Ω on
central Morrey spaces in the p-adic field are obtained.
However, to prove the result we need few lemmas.

2 Journal of Function Spaces



Lemma 4 [32]. Let b ∈ C _MOr,λðℚn
pÞ and i, j ∈ℤ, λ ≥ 0. Then

bBi
− bBj

��� ��� ≤ pn i − jj j bk kC _MOr,λ ℚn
pð Þ max Bij jλH , Bj

�� ��λ
H

n o
:

ð17Þ

Lemma 5. Suppose 1 < s <∞ and 1/s + 1/s′ = 1. Then the
inequality

Hp
Ω f

�� ��
Ls ℚn

pð Þ ≤ C fk kLs ℚn
pð Þ ð18Þ

holds for all f ∈ Lslocðℚn
pÞ and Ω ∈ LsðS0Þ.

Proof. Firstly, we set

~f xð Þ = 1
1 − pn

ð
ξpj j=1

f xj j−1p ξ
� �

dξ, x ∈ℚn
p : ð19Þ

Obviously ~f ðxÞ = ~f ðjxj−1p Þ. In what follows we take this
function a radial function on p-adic Lebesgue space. It is
not hard to see that

Hp
Ω

~f
� �

xð Þ =Hp
Ω fð Þ xð Þ: ð20Þ

In [29], it is shown that k~f kLsðℚn
pÞ ≤ k f kLsðℚn

pÞ. Therefore,

Hp
Ω f

�� ��
Ls ℚn

pð Þ
fk kLs ℚn

pð Þ
≤

Hp
Ω
~f

��� ���
Ls ℚn

pð Þ
~f
��� ���

Ls ℚn
pð Þ

: ð21Þ

This implies that ~f = f providing f is a radial function.
Consequently, the norm of an operator Hp

Ω along with its
restriction to the function f̂ have the same operator norm.
So, we assume f to be a radial function in the rest of the
proof.

By the change of p-adic variables t = jxj−1p y, we have

Hp
Ω f

�� ��
Ls ℚn

pð Þ =
ð
ℚn

p

1
xj jnp

ð
B 0,∣xjpð Þ

Ω tj jpt
� �

f tð Þdt
�����

�����
s

dx
 !1/s

=
ð
ℚn

p

ð
B 0,1ð Þ

Ω ∣y ∣ py
� �

f ∣x ∣ −1p y
� �

dy
�����

�����
s

dx
 !1/s

:

ð22Þ

Now by using Minkowski’s inequality and Hölder’s
inequality ð1/s + 1/s′ = 1Þ, we get

Hp
Ω f

�� ��
Ls ℚn

pð Þ ≤
ð
B 0,1ð Þ

Ω yj jpy
� � ð

ℚn
p

f ∣y ∣ −1p x
� ���� ���sdx

 !1/s

dy

≤
ð
B 0,1ð Þ

Ω yj jpy
� �

yj j−n/sp dy
 !

fk kLs ℚn
pð Þ

= 〠
0

j=−∞

ð
Sj

Ω pjy
� �

p−nj/sdy
 !

fk kLs ℚn
pð Þ

≤ 〠
0

j=−∞
p−jn/s

ð
Sj

Ω pjy
� ��� ��sdy

 !1/s ð
Sj

dy

 !1/s′

� fk kLs ℚn
pð Þ:

ð23Þ

We handle the first part of sum as follows

ð
Sj

Ω pjy
� ��� ��sdy = ð

zj jp=1
Ω zð Þj jspjndz = Cpjn: ð24Þ

Hence inequality (23) takes the following form

Hp
Ω f

�� ��
Ls ℚn

pð Þ ≤ C fk kLs ℚn
pð Þ, ð25Þ

which completes the proof of a lemma.
Now, we turn towards our key result.

Theorem 6. Suppose 1 < r1 <∞, r1 ′ < r2 <∞, nð1/r2 − 1/r1Þ
< n/r1, 1/r1 + 1/r2 = 1/r, −1/r1 < λ1 < 0, λ = λ1 + λ2 and 0 ≤
λ2 < 1/n: If r1 ′ < s <∞, then the below inequality

Hp,b
Ω f

��� ���
_B
r,λ

ℚn
pð Þ ≤ C fk k _B

r,λ1 ℚn
pð Þ, ð26Þ

holds for b ∈ CMOmax fr2 ,sr1′/ðs−r1′Þ,λ2gðℚn
pÞ and Ω ∈ LsðS0Þ:

Proof. We suppose f ∈ _B
r1,λ1ðℚn

pÞ: We also take γ ∈ℤ and
without any brevity we consider kbkCMOmax fr2,sr1 ′/ðs−r1 ′Þ,λ2gðℚn

pÞ =
1: Applying Minkowski’s inequality to have

1
Bγ

�� ��1+λr
H

ð
Bγ

Hp,b
Ω f xð Þ

��� ���rdx
 !1/r

= 1
Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xjpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b xð Þ − b tð Þð Þdt
�����

�����
r

dx
 !1/r

≤
1

Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xjpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b xð Þ − bBγ

� �
dt

�����
�����
r

dx
 !1/r

+ 1
Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xjpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b tð Þ − bBγ

� �
dt

�����
�����
r

dx
 !1/r

= I + II:

ð27Þ
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For the evaluation of I, we make use of Lemma (5) which
shows that Hp

Ω is bounded from Lrðℚn
pÞ to Lrðℚn

pÞ,
ð1 < r<∞Þ: By Hölder’s inequality ð1 = r/r1 + r/r2Þ, we have

I ≤ Bγ

�� ��−1/r−λ
H

ð
Bγ

b xð Þ − bBγ

��� ���r2dx
 !1/r2 ð

Bγ

Hp
Ω f xð Þ�� ��r1dx

 !1/r1

≤ Bγ

�� ��−1/r−λ
H

ð
Bγ

b xð Þ − bBγ

��� ���r2dx
 !1/r2 ð

Bγ

f xð Þj jr1dx
 !1/r1

= C fk k _B
r1,λ1 ℚn

pð Þ:
ð28Þ

In order to estimate II, we proceed as follows

IIr ≤
1

Bγ

�� ��1+λr
H

ð
Bγ

1
xj jnp

ð
B 0,∣xpð Þ

Ω ∣t ∣ pt
� �

f tð Þ b tð Þ − bBγ

� �
dt

�����
�����
r

dx

≤
1

Bγ

�� ��1+λr
H

〠
γ

k=−∞

ð
Sk

p−knr
ð
B 0,pkð Þ

∣Ω tj jpt
� �

f tð Þ b tð Þ − bBγ

� �
dt ∣

 !r

dx

= C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ b tð Þ − bBγ

� �
dt ∣

 !r

≤
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ b tð Þ − bBj

� �
dt ∣

 !r

+ C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ bBj
− bBγ

� �
dt ∣

 !r

= II1 + II2:

ð29Þ

For j, k ∈ℤ with j ≤ k, we have

ð
Sj

Ω pjt
� ��� ��sdt = ð

zj jp=1
Ω zð Þj jspjndz ≤ Cpkn: ð30Þ

To evaluate II1, we apply Hölder’s inequality together
with (30) to get

II1 ≤
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

Ω pjt
� ��� ��sdt

 !1/s"

×
ð
Sj

f tð Þj jr1dt
 !1/r1 ð

Sj

b tð Þ − bBj

��� ���r2dt
 !1/r2#r

≤
C

Bγ

�� ��1+λr
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1−r+r/sð Þ 〠

k

j=−∞
Bj

�� ��1/r1+λ1+1/r2+λ2( )r

≤
C

Bγ

�� ��1+λr
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1+λrð Þ = C

Bγ

�� ��1+λr
H

fk k _B
r,λ1 ℚn

pð Þp
γn 1+λrð Þ

= C fk k _B
r,λ1 ℚn

pð Þ:

ð31Þ

The convergence of above series is eminent from λ1
+ λ2 + 1/r1 + 1/r2 ≥ λ1 + 1 − 1/s > −1/r + 1 − 1/s = 1/r1 ′ − 1/s
> 0.

For II2, we use Lemma 4, inequality (30) and Hölder’s
inequality to obtain

II2 =
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

∣Ω pjt
� �

f tð Þ bBj
− bBγ

� �
dt ∣

 !r

≤
C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞

ð
Sj

Ω pjt
� �

f tð Þ γ − jð Þ Bγ

�� ��λ2
H
dt

" #r

= C

Bγ

�� ��1+λr
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞
γ − jð Þ

ð
Sj

Ω pjt
� �

f tð Þdt
" #r

≤
C

Bγ

�� ��1+λ1r
H

〠
γ

k=−∞
pkn 1−rð Þ 〠

k

j=−∞
γ − jð Þ

ð
Sj

Ω pjt
� ��� ��sdt

 !1/s"

×
ð
Sj

f tð Þj jr1dt
 !1/r1 ð

Sj

dt
 !1/r1′−1/s#r

≤
C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1−r+r/sð Þ 〠

k

j=−∞
γ − jð Þ Bj

�� ��λ1+1−1/s" #r

≤
C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
pkn 1−r+r/sð Þ γ − kð Þr Bkj j λ1+1−1/sð Þr

= C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þ 〠
γ

k=−∞
γ − kð Þrpknr 1/r+λ1ð Þ

= C

Bγ

�� ��1+λ1r
H

fk k _B
r,λ1 ℚn

pð Þp
γnr 1/r+λ1ð Þ = C fk k _B

r,λ1 ℚn
pð Þ,

ð32Þ

where we notice that 0 < λ1 + 1 − 1/s together with λ1 + 1/r1
+ 1/r2 > 1/r2 > 0 = λ1 + 1/r: From (28), (31) and (32), we get

Hp,b
Ω f

��� ���
_B
r,λ1 ℚn

pð Þ ≤ C fk k _B
r,λ1 ℚn

pð Þ: ð33Þ

3. Conclusion

We mainly focused on the boundedness for commutators of
rough p-adic Hardy operator on p-adic central Morrey
spaces. Besides, we also obtained the boundedness of rough
p-adic Hardy operator on p-adic Lebesgue spaces.
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