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In this paper, the authors introduced certain subclasses S-uniformly g-starlike and B-uniformly g-convex functions of order «
involving the g-derivative operator defined in the open unit disc. Coeflicient bounds were also investigated.

1. Introduction

The g-analysis is a generalization of the ordinary analysis.
The application of the g-calculus was first introduced by
Jackson [1-3]. In geometric function theory, the g-hyper-
geometric functions were first used by Srivastava [4]. The ¢
-calculus provides valuable tools that have been used to
define several subclasses of the normalized analytic function
in the open unit disk U. Ismail et al. [5] were the first to study
a certain class 8™ of starlike functions by using the g-deriv-
ative operator. Recently, new subclasses of analytic functions
associated with g-derivative operators are introduced and
discussed, see for example [4, 6-18]. Motivated by the impor-
tance of g-analysis, in this paper, we introduce the classes of 3
-uniformly g-starlike and B-uniformly g-convex functions
defined by the g-derivative operator in the open unit disc,
as a generalization of S-uniformly starlike and B-uniformly
convex functions.

First, we recall some basic notations and definitions from
g-calculus, which are used in this paper. The g-derivative of
the function f is defined as follows [1-3]:

NERCELZE

1=z (z#0,0<g<1). (1)

From equation (1), it is clear that if f and g are the two
functions, then

Dy(f(2) + 9(2)) = Dyf (2) + Dyg(2), (2)

Dq(cf(2)) = cDyf (2), (3)

where ¢ is a constant. We note that D f(z) — f '(2) as q

— 17, where f' is the ordinary derivative of the function

In particular, using equation (1), the g-derivative of the
function h(z) = 2" is as follows:

D,h(z) = [n],2"", (4)
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where [1] 4 denotes the g-number and is given as follows:

1-4"
[n]q:?’

" (0<g<1). (5)

Since we note that [n], — n as q— 17, therefore, in
view of equation (4), D h(z) — h'(z) as g —> 17, where

h'(z) denotes the ordinary derivative of the function h(z)
with respect to z.

In this paper, we consider the classes & and I of the
functions, analytic in the open unit disc U={z€ C: |z] < 1},
of the following forms, respectively:

[ee)

f@)=2+ Y ad, (©)
f@=2- Y ae, (a,20). )

Also, using equations (2), (3), (4), and (6), we get the
following g-derivatives of the function f:

Df(z)=1+ i [n]qanz”’l, (0<g<1), (8)
D, (2D,f(z)) =1+ i [n]zanz”_l, (0<q<1), (9)

where [n], is given by equation (5).

The classes of starlike functions of order a(0 < « < 1) and
convex functions of order a(0<a < 1), denoted by & («)
and % (a), respectively, are defined as follows [19]:

" (o) = (7@
c?(oc)—{fegzi.m<f(z)>>oc}, (10)
H(a) = {fed:i){<1+ ZJJ:I"((ZZ))> >(x}. (11)

It is clear that §*(a) and # («) are the subclasses of the
class .

The classes of S-uniformly starlike functions of order
« and S-uniformly convex functions of order «, denoted

by §D(a, ) and FD(«, ), respectively, are defined as

follows [20]:
o' (2)
f(2) ’

(12)

S@(a,ﬁ)={fegi:m<zﬁg) —a) >
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(13)
where zeU, 0<a<1, and $>0.
The class of g-starlike functions of order y, denoted by

&, (1), is defined as follows [13]:

of"(2)
@)

%9(a,ﬁ)={fed:9{<

quf(z)
f(2)

S;(y):{fed:%( >>y, (zeEU;OsM<1)}.

(14)

Also, the class of g-convex functions of order y, denoted
by C,(u), is defined as [13]:

Cq(#):{f€d3m<m(DZl;q(£()Z))) > phs (ze[U;OSM<1)}.

(15)

The analytic function g is said to be subordinate to the
analytic function f in U [21], represented as follows:

g(z) <f(z)org<f, (16)

if there exists a Schwarz function w, which is analytic in
U with

w(0) =0,
lw(z)| <1, )
such that
9(2)=f(w(z)), (z€l). (18)

In the next section, we introduce the classes of
B-uniformly g-starlike and B-uniformly g-convex functions
of order a, denoted by &, (a, B) and #E€7 (e, f8), respec-
tively. Also, we obtain the coefficient bounds of the functions
belonging to these classes.

2. Coefficient Bounds

Since the g-derivative is a generalized form of the ordinary
derivative, therefore, in view of definitions of $(«a, ) and
K D(a, B), we define the classes of S-uniformly g-starlike
and B-uniformly g-convex functions of order «, denoted by
S;(a, B) and %€V ,(a, B), respectively, by replacing the
ordinary derivative with the g-derivative in equations (12)
and (13).

We provide the respective definitions of the classes
S;(a. B) and UEV ,(a, P).
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Definition 1. The function f € ¢ is said to be S-uniformly ¢
-starlike of order a, if it satisfies the following inequality:

(T )

qu<f<z>>’ )

f(z)

where 0<g<1,3>0,0<a<1,andzeU.

Definition 2. The function f € & is said to be S-uniformly
q-convex of order «, if it satisfies the following inequality:

D, (Zqu(Z)>
D,f(2)

-1, (20

Dyf(2)

where 0<g<1, $20,0<a<]1, and zeU.

Further, we define the classes 7S, (a, f) and #€T (a,
B) containing functions with negative coefficients and satis-
tying inequalities (19) and (20), respectively, as follows:

(21)
UCT (0, B)=UCY j(a, B)NT
Remark 3. We note that
(@) lim,_,;- Sy (o, f) = SD(a, B) and lim,_,, UEC7 (o,
B) = HD(a, B)
(ii) Syl B) =S, D(a) and %E7 (. 0) =F () (see
(8]).
(iii) lim,_,;-&,(2,0) =" (a) and lim,_, #E7 (a,0)

= (a)

Now, the relation between the subclasses & (1) and S,
(a, B)is given by the following result.

Theorem 4. Let f € Sy (a, B), then f €S, ((a+B)/(1+p))
where $>0,0<a<1,and 0<q< I

Proof. If f € é’q(tx, B), then in view of Definition 1 and using
the fact that —R < (z) < |z|, we get

(T )

zDy(f(2))
f@)

)
(22)

-1

which implies that

() o (DD

then

a+pf

>1+/3. (24)

(5

Since f>0 and 0<a<1, then 0< (a+B)/(1+ )< 1.
Hence, in view of equation (14), we obtain f € & ((a+ )/

(1+B))-

Also, the relation between the subclasses C () and
UCV (o, P)is given by the following result.

Theorem 5. Let f € UGV (a, B), then f € € ((a+ B)/(1 +
B)), where >0,0<a<1,and 0<g<]1.

Proof. I f € #€7 ,(a, f8), then in view of Definition 2 and
using the fact that —R < (z) < |z]|, we get

m( D72 )” I .
_ D, (zD,f(z)) _
. m( o 1),

which implies that

91(1)01(“%(2'))) _a>—,8m<D"(w"f(z))> +B (26)

D,f(z) D,f(z)
then
Dy (2D,f(2))\ _ a+p
§R< quf(z) ) > B (27)

since f=0and0<a<1,then0< (a+ f3)/(1+ )< 1. Hence,
in view of equation (15), we obtain f € € ((a + )/(1 + B)).

Next, the coefficient bound of the class &, (e, ) is given
by the following result.

Theorem 6. A function f € o belongs to the class S,(a, B) if
Y (I, (1+B) =@+ B))la < 1= (28)
n=2

where 0<q<1, >0, 0<a<lI, and [n], denotes the q
-number.

Proof. Now, using the fact that —-R(z) < |z|, we have

(@) | g (PaU )
e Y )
2L |
) @




Using equations (6) and (8) in the right hand side of
inequality (29), we get

Za (= 1) |

1+Y02,a,z"!

zDy(f(2))

(1+B) @

~1|=04p)

(30)

Since |z| < 1, therefore, from the above inequality, we get

o ([l e,
B SR

(1+pB)

N

(1+4)

Combining inequalities (29) and (31), we get

zD,(f(2)
A
(1+ ﬁ)an([n]q—1)|an|
l_zn:2|an| .
It (N((1+B) X2 (), — Dla, /(1 - X3250a,)) <1 - a

which is equivalent to inequality (28), then from inequality
(32) we get

DU | (L)

= 16

—1) <l-a, (33)

which is equivalent to inequality (19). Thus, in view of
Definition 1, the function f € §_(a, B).

Also, we obtain the coeflicient bound for f € 7§, q(oc, B)
in the following result.

Theorem 7. The function feJ

(a, B), if and only if

belongs to the class TS,

[ee]

Z([n]q(1+[3)—(oc+[3))an£1—oc, (34)

n=2

where 0<q<1, B>0, 0<a<l, and [n], denotes the q

-number.

Proof. Since T is a subclass of class &, therefore in view of
Theorem 6, the sufficient condition of our result holds.
Now, we need to prove only the necessary condition. Let f

€IS, (a, B) and taking z real, then from inequality (19),
we have

zDy(f(2))

~> P

- 1‘. (35)

Now, using equations (7) and (8) in inequality (35), we
get
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aeet  SA(e )

— n-1 _y®© n—1
1 00,2 1 Y -4

then, letting z — 1 along the real axis, inequality (36), gives
the condition (34).

The coefficient bound of the class UCV(
the following result.

a, f3) is given by

Theorem 8. A function feg belongs to the class

UET (0 ) if
0, (1, 1) = ) ey < 1= (37

where 0<q<1, B>0, 0<a<l, and [n], denotes the
q-number.

Proof. Now, using the fact that =R < (z) < |z|, we have

D, (quf(z)) e D, (quf(z)) ~
de 1‘ m( D,f(2) 1) .
D,(2D,f(2))
<(1+p) % - 1.

Using equations (8) and (9) in the right hand side of
inequality (38), we get

1+ 2222 [n]flanz”’l _
1+ 2222 [n]qanzn71
(39)

D, (2D,f(2)) ~

(1+B) Df(2)

=(1+p)

Since |z| < 1, therefore, from the above inequality, we get

D,(:Dz) || (+BE (I Inl,)la
N6 1‘< = AT AR
(40)
Combining inequalities (38) and (40), we get
D, (D,f(z)) a1l 4 (2D,f (2)) _
A b, 1‘ m( bf@
(41)

£ (14 B) X ([n]y = [ la, /(1 = 232, 1] la, ) <1 -
a, which is equivalent to inequality (37), then from inequality
(41), we get
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D,(zD,f(z)) B 1‘ _m<(Dq(?qf)z))
Dq (z

P=D7@

—1) <l-a, (42)

which is equivalent to inequality (20). Thus, in view of
Definition 2, the function f € %67 (a, ).

The coefficient bound for f € # €T (
following result.

a, ) is given by the

Theorem 9. The function feJ
UCT 4(a, B) if and only if

belongs to the class

[e9)

Y [, (In,(1+B) - (@+B))a,<1-a  (43)

n=2

denotes the

where 0<q<1, q

q-number.

B=0, 0<a<l, and [n]

Proof. Since T is a subclass of class o/, therefore, in view of
Theorem 8, the sufficient condition holds. Now, we need to
prove only the necessary condition. Let f belong to the class
U€T ,(a, B) and taking z real, then from inequality (20), we

have

Dy (2D,f (2))

D, (quf(z)) L
D,f(z) '

Dyf(2)

—a>p (44)

Now, using equations (8) and (9) in inequality (44),
we get

o2 B (1 - [n],0,2)
-y

1- 220:2 [n};anzn_l

- >
=2 [n}qanzn_l

, (45)

[
g
38

an Zn-1

then letting z— 1 along real axis, inequality (45) gives
condition (43).

We note that, g — 17 in Theorems 6 and 8, we get the
coefficient bounds for the functions belonging to the classes
SY(a, B) and K D(a, B) in [20], respectively.

In the next section, we obtain the extreme points for
the functions belonging to the classes I8, (a, B) and

UCT (o, ).
3. Extreme Points

The extreme points of f € 7§, (a, f3) are given by the follow-
ing result.

Theorem 10. Let {f,(2)}, . be sequences of functions such

that
f1(z) =z
1—-a "
e N TR PRy
(n=2,0<q<1, >0, 0<a<]),

(46)

where [n]q denotes the q-number. Then f belongs to T S, (a,
B) if and only if f can be expressed as the form

= 3 M(2) )

where A, >0(n>1) and Y2 A, = 1.
Proof. Let f€T S (a, f), then in view of Theorem 7,

inequality (34) holds. Since a,>0(n>1) and 0<a<1,
therefore from inequality (34), we have

([n]q(l+ﬂ)—(oc+ﬁ))ans1—oc, n=2.  (48)
Thus, if we take

| 1+ B) @+ )

>
n 1—06 n

n=2, (49)

since A, >0, then, A, >0(n>1).
Substitutinga, from equation (49) witha,from equation
(7), we get:

Z 1+/3 ((x+‘8>)&nz”. (50)

Since Y 02, A, =1, therefore, we have

< -«

S b e L0 D ey

| (51)
=Az+ Z)t ( (1+,3) ((x+ﬁ)zn>’

since f,(z) = zand f,(z) is given by equation (46). Therefore,
from equation (51), we get the assertion (47). Conversely, let
f be expressible in the form (47), which on using equation
(46), gives

[ee]

bt | 1+/3

(a e (52)



which can be expressed as follows:

o= Y (53)
where
= Lo A, n>2 (54)
L P U M

Now, to prove that the function f, given by equation (53),
belongs to the class &, (a, B), we need to show that the
coeflicients 7, (n > 2) satisfy the inequality (34).

Since A, >0 and Y2\, =1, therefore from equation
(54), we have

i[”]q(l +1ﬂz; (a+p) "
_ ; [n],(1 +1ﬁz _ (a+p) ot +1ﬁ; ic — A,
= i A,=1-1,<1
- (55)
Thus, we get

S (1,1 4B~ @+ B, <1-a). (50

n=2

Therefore, in view of Theorem 7 and the above inequal-
ity, we proved that the function f, given by equation (53),
belongs to the class 7S, (a, f).

Also, the extreme points of f € €T (a, f) are given by

the following result.

Theorem 11. Let {f (2)},. be a sequence of functions such
that

f1(z) =z,
I-«a " (57)

P B

wheren>2,0<q<1,20,and0<a< 1. Then, f belongs to
UCT ,(a, B) if and only if f can be expressed in the form

given by equation (47) in terms of functions f,(n > 2), given
by equation (57), and A, >0(n>1), Y>> A, = 1.

Proof. Let f € UET ,(
have

o, B), then from inequality (43), we

(1], (11, (14 B) = (@ B)) Ja < 1 ~a
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If we set

i, (1], (1+ B) = (a+ B)

l-«

A:

n a

(n=2),  (59)

n

since A, =1, then A, >0 (n > 1). Then, substituting a, from
equation (59) with a, equation (7), we get

& l1-«
fle)=2- A" (60)
n;[n]q([n]q(l +B)-(a+B))

Since Y2, A, =1, therefore, we have

=Nz+ —4 z" |, (61)
Z( (@+p)) )

nl, (1, (1 + ﬁ)
since f,(z) = zand f (z) is given by equation (57). Therefore,
from equation (61), we get assertion (47).
Conversely, let f be expressible in the form (47), which
on using equation (60), gives

—z- _“ Az (62)
Z (H(l+ﬁ) (@+p))

which can be expressed as
=z- Y 0" (63)
n=2

where

0 = 1-«a 1
oI, B - @ B)

nz2. (64)

Now, to prove that function f is given by equation (63)
and belongs to the class #€7 ,(a, B), we need to show that
the coefficient 7, (n > 2) satisfies inequality (43). Since A, >
0and Y2 A, = 1, therefore from equation (64), we have

FUL ), S

n=2 n=2

(65)

Thus, we get

S 1l (1,1 )~ (a+ B, <1-a (66

n=2

Therefore, in view of Theorem 9 and the above inequal-
ity, we proved that function f, given by equation (63),
belongs to the class €# €T ,(a, B).
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4. Partial Sums

The sequence of partial sums of the function f(z) € o, is
defined as [22].

filz)=z+ Zk:anz” (keN; zel). (67)

Now, we find the bounds of the real part of the ratio of the
complex valued function f € ¢/ to its partial sums f, (k € IN),
for the function to be in the class & (e, 8) in the following
result.

Theorem 12. Let f(z) € & in the form (6) and suppose that

Y e la, <1, (68)
n=2
where
n| (I+p)+(a+
Cn[]q( ﬁ) ( ﬂ) (n22’0<q<1’ﬁ20,0S“<1))

-«
(69)

then f(z) € S, (e, B). Further, the following inequalities hold:

Re ( k(Z)) S _Cker (71)

f@)) T+’

where

I,  ifn=23 -k
C, = (72)

Coop fn=k+1Lk+2, -,

Proof. Since {[n]q},., is increasing and $>0, a < 1, there-
fore, in view of equation (69), {cn},., is an increasing

sequence. Then, c,,, >c,, Y and
2 (1+f) - (a+ 1 (1+p)—(a+
e B p) W0p @)
1+a l-«a
Since [1]_ = 1, therefore, we have

q

c, 21, Vn. (74)

n

Thus, for the particular value k of n, condition (72) holds.
In view of the first inequality of condition (72), we have

k 0 0
Z|an‘+ck+1 Z |an|S ch|an|’ (75)
n=2 n=p, n=2

which in view of inequality (68), gives
k [eS)

Z'anl + Chr1 Z |an| <1 (76)

n=2 n=k+1
or, equivalently

o) k
Ch+1 Z |an| <1- Z|an|' (77)
n=k+1 n=2

Now, for some fixed positive integer k, we define

hl(z) =1+ Ch+1 (f;zk)(;)fk(z)) ) (78)

Now, using equations (6) and (67), equation (78) gives

Cr+1 (zzik-v-l anzn_l)

hi(z)=1+ (79)
1(2) 1+ Y% a2
From equation (79), we have
‘hl(z) -1 — Ck+lzzzk+1anzn71
k _ _
hl(z) +1 2+ 2Zn:2anzn ! + Ck+1z‘;1>2k+lanzn ! (80)

Ch+1 Z;ﬁkﬂ |an|
< T .
2- 22;1:2 ‘an| - Ck+122c:)k+1 |an|

In view of inequality (77), the above inequality gives
|(hy(z) =1)/(h,(z) + 1)| < 1, which implies

Re (h,(2)) 2 0. (81)

Since each ¢, € R, therefore, using equation (79) in
inequality (81), we get assertion (70).

Again, since {c, },., is an increasing function and ¢, > 1,
V, > 2, therefore, we have

[ee) [ee)
Yladl< Y culayl, (82)
n=2 n=2

which in view of inequality (68), gives
(8]
Yla,| < 1. (83)
n=2
Now, we define the function h,(z) as follows:

m@=aum(ﬁ%)wm. (84)

Using equations (6) and (67) in equation (84), we get

(Ck+1 + 1)Zfﬁk+lanzn_l
1+Y2,a,z"!

hy(z)=1- (85)



From equation (85), we have

hy(2) - 1’ _ —(Ck1 + D) Xk 32" ‘
hy(2) + 1] [242¥2,0,2" = (Copy + 1) X25010,2" !
_ ~(Cpr + 1) k13,2 ‘

2+ 22 28,2 4 (1= Gpy) X 32"

< (ckar + 1) 202k 9]

2280 - (1= ) 2|
(cker + D)X lan]

T 2230 a] + (G + 1) Xk | ’

(86)

using inequality (83) in inequality (86), we get |(h,(z) — 1)/
(hy(2) +1)| < 1, which implies

Re (I1,(2)) > 0. (87)

Therefore, using equation (84) in inequality (87), we get
assertion (71).

Now, we find the bounds of the real part of the ratio of the
complex valued function f € & to its partial sums f, (k € IN),
for the function to be in the class €7 (a, ) in the follow-

ing result.

Theorem 13. Let f(z) € of be in the form given by equation
(6) and

(e
an|an|S1, (88)

n=2

where

], (1n],(1+ B) = (a+ B))

S T—a (n>2;820,0<a<1,0<q<1).
(89)
Then, f(z) € %Cg%q(“, B). Further, the following

inequalities hold:

Re (f(z>>>1—i, (90)

Sk+1

Re <fk(z)> S Skl (91)

1 + Sk1 '

where

Sy > (92)

n

1, iftn=2,3,--'k,
Spep Mfn=k+1,k+2,--.
Proof. Using Theorem 6 and following the same steps

involved in the proof of Theorem 12, we get assertion (90)
and (91).
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In the next section, we discuss the integral means
inequality for the functions belonging to the classes 7§,

(a, B) and UET ,(a, B).

5. Integral Means Inequality

Silverman [23] has been using the subordination principle to
show that the 1ntegra1f If (re'?)|”d6 (o > 0,0 < r < 1) attains
its maximum value in class 7, when f, (z) = z — (z%/2). Then,
he applied that principle to solve the integral means inequality

\ f(re?)|’do < J" |f,(re®)|”d0. Also, he found the integral

means inequality for the classes §* () and F () with nega-
tive coefficients.
First, we need to mention the following lemma [24].

Lemma 14. If f and g are two analytic functions in U in the
form T and f < g, then

Jzn ()| a0 < En

i0

g(reie) ‘GdQ, (93)

where 0> 0, 0<r<1, and z=re".

Now, we establish the integral means inequality for the
functions belonging to the class 7S, (a, ).

Theorem 15. Let f be of the form given by equation (7) that
belongs to the class T S ,(a, ) and f,(z) be defined as follows:

1-«

O G T p - @ B

(94)

then, for z=re®(0 < r < 1), we have

21T 217
| s in@ra @>0. )
0 0
Proof. We define the function w, (z) as follows:

(@*h) a,z" .

2 [2,(1+) -
2,

= 96
W)=Y (%6)
From the above equation, we have
w, (0) = 0. (97)
Again, from equation (96), we have
< [21,(1+ )~ (a+ )
— q n—1
wn(e)]= Y o
CSEOH )
=] -« "
since z=re®(0<r<1) implies |z|=|r|<1, and using

inequality (37), therefore, from the above inequality, we have
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= 1-«

From equation (96), we have

(100)

¥ g o= - -« w,(z
= 2w = G g @

Since w, is analytic in U, therefore in view of equations
(18), (96), (97), and (100); inequality (99); and the subordi-
nation principle, we have

N n-1 l-a
1- Z;anz <1- [2]q(1+ﬁ)—(a+ﬁ)z' (101)

Since, the function on the both sides of the above relation
are analytic in U, therefore, in view of Lemma 14 and equa-
tion (94), we get assertion (95).

Next, we establish the integral means inequality for
the functions belonging to the class #€ 7 (a, ) with the

positive coefficients.

Theorem 16. Let f belong to the class U €T ,(a, B) and f5(z)
is defined by

1-«

fi(z)=1- z (102)
2),(12,(1+ ) - (a+ B)
then, for z=re(0<r< 1), we have
| verdes| nerae ©>o. o
Proof. We define the function w,(z) as follows:
00 1 o
Z ( a1+ ﬁi o /3)> a2t (104)
From the above equation, we have
w,(0) = 0. (105)
Again, from equation (104), we have
© 2], (2l,(1+B) = (a+B)
wy(2)| = | 16k — )
" (106)

i (](Hﬁi <a+ﬁ>)an|z|nl

since z=re?, then |z| = |r| <1 and using inequality (103),
therefore, from the above inequality, we have

9
e [n],([n],(1+B) - (a+B)
Iwz(Z)ISZ q( 1 — )an<1. (107)
From equation (104), we have
1—OZO:az”’1=l— oo w,(2)
=8 2, (12,4 P - @+p)
(108)

Since wj is analytic in U, therefore, in view of equations
(18), (104), (105), (108); inequality (107); and the subordina-
tion principle, we have

(o)
- l-«
1- Y a,"'<- z.
n=2

(109)
2, (121,(1+ B) = (a+ B)

Since, the function on the both sides of the above relation
are analytic in U, therefore, in view of Lemma 14 and equa-
tion (102), we get assertion (103).
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