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1. Introduction

In this paper, we consider the linear and nonlinear fractional boundary value problems

Pα(u) =
(RCDα

a,b
)
u(t) + r(t)u(t) = g(t), t ∈ (a, b), 0 < α < 1, (1.1)

Nα(u) =
(RCDα

a,b
)
u(t) = h(t, u), t ∈ (a, b), (1.2)

u(a) = ua, u(b) = ub, (1.3)

where r, g ∈ C[a, b], h(t, u) is a smooth function, and (RCDα
a,bu)(t) is the non-local fractional derivative.

The non-local fractional derivative of order 0 < α < 1, is defined by

(RCDα
a,b f )(t) =

1
2Γ(1 − α)

( ∫ t

a
(t − s)−α f ′(s)ds −

∫ b

t
(s − t)−α f ′(s)ds

)
. (1.4)
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For the definition of higher order non-local derivatives and their properties we refer the reader to [1].

Remark 1.1. The non-local fractional derivatives defined in Eq (1.4) is known in the literature by the
Riesz-Caputo derivative. As the definition has no direct connection to the Riesz derivative, we call it
the non-local derivative.

Fractional calculus is an emerging field in mathematics and it has many important applications
in several fields of science and engineering [5]. Fractional differential equations with different types
of fractional derivatives have been studied extensively. The existence of solutions of the problem
(1.2), (1.3) was established in [6]. In [7] a new maximum principle was derived and implemented to
study a multi-term time-space non-local fractional differential equation over an open bounded domain.
Fractional variation principles were derived using several types of non-local fractional operators, and
their applications were illustrated, see [2–4]. All the above mentioned results make non-local fractional
operator an interesting operator to be further investigated. Maximum principles are commonly used
to study the qualitative behavior of various types of functional equations. In recent years there many
studies devoted to extend the idea of maximum principles to fractional differential equations. Several
comparison principles were derived and used to analyze the solutions of fractional equations with
different types of fractional derivative, see [7–11]. In this paper, we extend the idea of maximum
principle to analyze the solutions of the linear and non-linear boundary value problems (1.1)–(1.3). In
Section 2, we derive a new estimate of the non-local derivative of order 0 < α < 1, of a function at
its extreme points. We then, use the result to formulate and prove a maximum principle for a linear
fractional equation in Section 3. In Section 4, we analyze the solutions of the associated linear and
nonlinear fractional boundary value problems. Finally, we close up with some conclusions in Section 5.

2. Extremum principles for the non-local derivative

In the following we use the space CW1([a, b]) = C[a, b] ∩W1(a, b), where W1(a, b) is the space of
functions f ∈ C1(a, b) such that f ′ ∈ L1(a, b). The space CW1([a, b]) is less restrictive than C1[a, b].
For instance, f (t) =

√
t ∈ CW1([a, b]) but not in C1[0, 1]. We have the following extremum principles

for the non-local derivative. Analogous results are obtained for several types of fractional derivatives,
and we refer the reader to [12, 13], among the first papers discussing this issue.

Lemma 2.1. Let a function f ∈ CW1([a, b]) attain its maximum at a point t0 ∈ (a, b) and 0 < α < 1.
Then the inequality

(RCDα
a,b f )(t0) ≥

1
2Γ(1 − α)

( f (t0) − f (a)
(t0 − a)α

+
f (t0) − f (b)

(b − t0)α

)
≥ 0, (2.1)

holds true.

Proof. We define the auxiliary function g(t) = f (t0) − f (t), t ∈ [a, b]. Then it follows that g(t) ≥ 0, on
[a, b], g(t0) = g′(t0) = 0 and (RCDα

a,bg)(t) = −(RCDα
a,b f )(t). We have

2Γ(1 − α)(RCDα
a,bg)(t0) =

∫ t0

a
(t0 − s)−αg′(s)ds −

∫ b

t0
(s − t0)−αg′(s)ds.
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Integrating by parts yields

2Γ(1 − α)(RCDα
a,bg)(t0) = (t0 − s)−αg(s)|t0a − α

∫ t0

a
(t0 − s)−α−1g(s)ds

−(s − t0)−αg(s)|bt0 − α
∫ b

t0
(s − t0)−α−1g(s)ds.

Since g(t0) = 0, we have

lim
s→t0

g(s)
(t0 − s)α

= lim
s→t0

g′(t)
−α(t0 − s)α−1 = − lim

s→t0

1
α

(t0 − s)1−αg′(t) = 0,

and
lim
s→t0

g(s)
(s − t0)α

= 0.

Thus,

2Γ(1 − α)(RCDα
a,bg)(t0) = −(t0 − a)−αg(a) − α

∫ t0

a
(t0 − s)−α−1g(s)ds

−(b − t0)−αg(b) − α
∫ b

t0
(s − t0)−α−1g(s)ds

≤ −(t0 − a)−αg(a) − (b − t0)−αg(b). (2.2)

The last equation yields

2Γ(1 − α)(RCDα
a,b(−g))(t0) ≥ (t0 − a)−αg(a) + (b − t0)−αg(b),

or
2Γ(1 − α)(RCDα

a,b f )(t0) ≥ (t0 − a)−α
(
f (t0) − f (a)

)
+ (b − t0)−α

(
f (t0) − f (b)

)
≥ 0,

which proves the result. �

Remark 2.1. Since g ∈ CW1([a, b]) and g(t0) = 0, then g(t) = (t0 − t)h(t), for some h ∈ C1(a, b), thus
the integral ∫ t0

a
(t0 − s)−α−1g(s)ds =

∫ t0

a
(t0 − s)−αh(s)ds,

exists and is nonnegative.

Remark 2.2. The following extremum principle was obtained in [7]. Let a function f ∈ C1[a, b] attain
its maximum at a point t0 ∈ (a, b) and 0 < α < 1, then it holds that

(RCDα
a,b f )(t0) ≥ 0. (2.3)

However, the extremum principle in (2.1) is more general and defined in a wider space CW1([a, b]).

By applying analogous steps to − f we have

Lemma 2.2. Let a function f ∈ CW1([a, b]) attain its minimum at a point t0 ∈ (a, b) and 0 < α < 1.
Then the inequality

(RCDα
a,b f )(t0) ≤

1
2Γ(1 − α)

( f (t0) − f (a)
(t0 − a)α

+
f (t0) − f (b)

(b − t0)α

)
, (2.4)

holds true.
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3. A maximum principle

We implement the results in Section 2 to obtain a maximum principle for a linear fractional equation.
We have

Lemma 3.1. (Maximum Principle) Let a function u ∈ CW1([a, b]) satisfy the fractional inequality

Pα(u) =
(RCDα

a,b
)
u(t) + r(t)u(t) ≤ 0, t ∈ (a, b), 0 < α < 1, (3.1)

where r(t) ≥ 0 is continuous on [a, b]. Then

u(t) ≤ max{u(a), u(b), 0}. (3.2)

Proof. Since u(t) is continuous on [a, b], then u attains a maximum at t0 ∈ [a, b]. Assume by
contradiction that the result in Eq (3.2) is not true, then it holds that

t0 ∈ (a, b), u(t0) > 0, u(t0) > u(a) and u(t0) > u(b).

Applying the result of Lemma 2.1 we have

(RCDα
a,bu)(t0) ≥

1
2Γ(1 − α)

(u(t0) − u(a)
(t0 − a)α

+
u(t0) − u(b)

(b − t0)α

)
> 0. (3.3)

Thus,

Pα(u)(t0) =
(RCDα

a,b
)
u(t0) + r(t0)u(t0),

≥
(RCDα

a,b
)
u(t0) > 0,

which contradicts the fractional inequality (3.1), and completes the proof.
�

4. Applications to linear and nonlinear equations

We apply the maxim principle to derive several comparison principles for linear and nonlinear
fractional equations. We also obtain uniqueness result to the fractional boundary value problems (1.1)–
(1.3) and a norm estimate of solutions to the linear fractional boundary value problem (1.1) and (1.3).
We have

4.1. The linear case

Lemma 4.1. Let u1, u2 ∈ CW1([a, b]) be two possible solutions to

Pα(u1) =
(RCDα

a,b
)
u1(t) + r(t)u1(t) = g1(t), t ∈ (a, b),

Pα(u2) =
(RCDα

a,b
)
u2(t) + r(t)u2(t) = g2(t), t ∈ (a, b),

where r(t) ≥ 0, g1(t), g2(t) are continuous on [a, b], and u1(a) = u2(a), u1(b) = u2(b). If g1(t) ≤ g2(t),
then it holds that

u1(t) ≤ u2(t), t ∈ [a, b].

AIMS Mathematics Volume 6, Issue 2, 1443–1451.



1447

Proof. Let z = u1 − u2, then z ∈ CW1([a, b]), and it holds that

Pα(z) =
(RCDα

a,b
)
z(t) + r(t)z(t),

=
(RCDα

a,b
)
(u1 − u2) + r(t)(u1 − u2),

= g1(t) − g2(t) ≤ 0, t ∈ (a, b). (4.1)

By virtue of Lemma 3.1 we have z(t) ≤ max{z(a), z(b), 0}. Since z(a) = z(b) = 0, then it holds that
z(t) ≤ 0, on [a, b] which proves the result. �

Lemma 4.2. Let u ∈ CW1([a, b]) be a possible solution to

Pα(u) =
(RCDα

a,b
)
u(t) + r(t)u(t) = g(t), t ∈ (a, b),

where r(t) ≥ δ0 for some δ0 > 0, is continuous on [a, b]. Then it holds that

||u||[a,b] = max
t∈[a,b]

|u(t)| ≤ M = max
t∈[a,b]
{|

g(t)
r(t)
|, u(a), u(b)}.

Proof. We have M ≥ |g(t)
r(t) |, or Mr(t) ≥ |g(t)|, t ∈ [a, b]. Let v1 = u − M, then v1 ∈ CW1([a, b]) and it

holds that

Pα(v1) =
(RCDα

a,b
)
v1(t) + r(t)v1(t)

=
(RCDα

a,b
)
u(t) + r(t)u(t) − r(t)M

= g(t) − r(t)M ≤ |g(t)| − r(t)M ≤ 0.

Thus by virtue of Lemma 3.1 we have v1 = u − M ≤ max{v1(a), v1(b), 0}. Since v1(a) = u(a) − M ≤ 0,
and v1(b) = u(b) − M ≤ 0, we have

v1 ≤ 0, or u ≤ M. (4.2)

Analogously, let v2 = −M − u, then v2 ∈ CW1([a, b]), v2(a) ≤ 0, v2(b) ≤ 0, and

Pα(v2) =
(RCDα

a,b
)
v2(t) + r(t)v2(t)

= −
(RCDα

a,b
)
u(t) − r(t)u(t) − r(t)M

= −g(t) − r(t)M ≤ |g(t)| − r(t)M ≤ 0.

Thus by the result of Lemma 3.1 we have v2 = −u − M ≤ 0, or

u ≥ −M. (4.3)

By combining the results of Eqs (4.2) and (4.3) we have |u(t)| ≤ M, t ∈ [a, b] and hence the result. �

Lemma 4.3. The linear fractional boundary value problem (1.1) and (1.3) admits at most one solution
u ∈ CW1([a, b]).

Proof. Let u1, u2 ∈ CW1([a, b]) be two possible solutions, and define v = u1 − u2, t ∈ [a, b]. We have
v ∈ CW1([a, b]) and it holds that
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Pα(v) =
(RCDα

a,b
)
(u1 − u2) + r(t)(u1 − u2) = 0,

v(a) = v(b) = 0.

Thus by virtue of Lemma 4.2 we have

||v||[a,b] ≤ 0, or ||v||[a,b] = 0, or v = 0.

Thus u1 = u2 which completes the proof.
�

4.2. The nonlinear case

Lemma 4.4. If h(t, u) is non-increasing with respect to u, then the nonlinear fractional boundary value
problem (1.2) and (1.3) admits at most one solution u ∈ CW1([a, b]).

Proof. Assume that u1, u2 ∈ CW1([a, b]) be two solutions of (1.2) and (1.3), and let z = u1 − u2. Then
z ∈ CW1([a, b]), z(a) = z(b) = 0, and

Nα(u1) − Nα(u2) =
(RCDα

a,b
)
(u1 − u2) − [h(t, u1) − h(t, u2)] = 0.

Since h(t, u) is a smooth function, applying the mean value theorem we have

h(t, u1) − h(t, u2) =
∂h
∂u

(u∗)(u1 − u2),

for some u∗ between u1 and u2. Thus,

Nα(u1) − Nα(u2) =
(RCDα

a,b
)
(u1 − u2) −

∂h
∂u

(u∗)(u1 − u2) = 0,

=
(RCDα

a,b
)
z −

∂h
∂u

(u∗)z = 0. (4.4)

Since −∂h
∂u (u∗) > 0, and z(a) = z(b) = 0, we have z(t) ≤ 0, by virtue of Lemma 3.1. Also, Eq (4.4) holds

true for −z and thus −z ≤ 0, by virtue of Lemma 3.1. Thus, z = 0 which proves that u1 = u2. �

Lemma 4.5. Let u, v ∈ CW1([a, b]) be possible solutions to the nonlinear fractional inequalities(RCDα
a,b

)
u ≤ h(t, u), t ∈ (a, b) (4.5)(RCDα

a,b
)
v ≥ h(t, v), t ∈ (a, b), (4.6)

with u(a) ≤ v(a) and u(b) ≤ v(b). If h(t, u) is a smooth function and is non-increasing with respect to u,
then

u(t) ≤ v(t), t ∈ [a, b].

Proof. Let z = u − v, then z(a), z(b) ≤ 0 and it holds that

(RCDα
a,b

)
z ≤ h(t, u) − h(t, v) =

∂h
∂u

(u∗)(u − v) =
∂h
∂u

(u∗)z,
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for some u∗ between u and v. The last equation yields

(RCDα
a,b

)
z −

∂h
∂u

(u∗)z ≤ 0,

which together with z(a), z(b) ≤ 0, proves that z ≤ 0, t ∈ [a, b], and completes the proof.
�

We illustrate the results with the following examples. Consider the linear boundary value problem

(
RCDα

0,1u
)
(t) + u(t) = g(t), t ∈ (0, 1), (4.7)

u(0) = 0, u(1) = 1. (4.8)

For u(t) = t, direct calculations lead to

(RCDα
0,1t

)
(t) =

1
2Γ(1 − α)

( ∫ t

0
(t − s)−αds −

∫ 1

t
(s − t)−αds

)
=

1
2Γ(2 − α)

(
t1−α − (1 − t)1−α). (4.9)

Thus, u(t) = t is a solution to the fractional boundary value problem (4.7), (4.8), provided that
g(t) = 1

2Γ(2−α)

(
t1−α − (1 − t)1−α) + t, for arbitrary 0 < α < 1. By Lemma 4.3 this is the unique solution

u ∈ CW1([0, 1]) to (4.7), (4.8). Analogously, u(t) = t is a solution to the nonlinear fractional boundary
value problem

(
RCDα

0,1u
)
(t) = h(t, u), t ∈ (0, 1), (4.10)

u(0) = 0, u(1) = 1, (4.11)

where h(t, u) = 1
2Γ(2−α)

(
t1−α − (1 − t)1−α) − u2 + t2, for arbitrary 0 < α < 1. Since

∂h
∂u = −2u = −2t ≤ 0, t ∈ (0, 1), then by virtue of the result in Lemma 4.4 we have, u(t) = t, is the
unique solution to (4.10), (4.11) in the space CW1([0, 1]).

5. Concluding remarks

In this paper, we have proved two extremum principles for the non-local fractional derivative of
order 0 < α < 1. Based on these extremum principles, a maximum principle is derived for a linear
fractional equation. We have formulated and proved several comparison principles for the linear and
nonlinear fractional equations, and obtained uniqueness results for the associated fractional boundary
value problems. A norm estimate of solutions of the linear boundary value problem is also derived.
The obtained results are extendable to the linear and nonlinear multi-term fractional boundary value
problems
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Pα(u) =

(
RCDαm

a,b +

m−1∑
i=1

ci
RCDαi

a,b

)
u(t) + r(t)u(t) = g(t), t ∈ (a, b),

Nα(u) =

(
RCDαm

a,b +

m−1∑
i=1

ci
RCDαi

a,b

)
u(t) = h(t, u), t ∈ (a, b),

u(a) = ua, u(b) = ub,

where 0 < α1 < α2 < · · · < αm < 1, ci ≥ 0, i = 1, · · · ,m − 1, r, g ∈ C[a, b], h(t, u) is a smooth function.
However, the existence results of the above systems are the main challenging, and we leave these
problems for a future study.
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