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This present article explores the transversal magnetized flow of a viscous fluid. The

flow is confined to a vertical wall, saturated in permeable medium, along with ramped

wall temperature. In this study, the conjugate impact of heat and mass transfer with

slip and non-slip conditions are considered in the velocity field and energy equation.

The dimensionless Atangana-Baleanu fractional governing equations are derived with

Laplace transformation. Computational results are expressed graphically with the effect

of various physical parameters. Comparative graphical analysis of the Atangana-Baleanu

derivative for temperature, concentration and velocity field, with slip and non-slip impact,

shows that the memory effects of the Atangana-Baleanu derivative are better than the

results that exist in the literature.

Keywords: slip effect, heat and mass transfer, conjugate effect, magnetic effect, Stehfest’s algorithm, fractional

derivative

1. INTRODUCTION

In nature, heat and mass transfer is a common conjugate phenomenon for chemical reaction,
evaporation, and condensation caused by temperature and concentration. Consequently, the
behavior of heat transfer exists in different practical applications. The heat transfer mechanism
is linked with mass, to jointly produce electrically conducting fluid flow with a conjugate effect. In
a preamble surface the process of thermal and mass transfer with a conjugate effect have different
applications in the area of nuclear production, industry, oil production, and engineering disciplines
[1, 2]. The conjugate effect with convection flow over an infinite plate in preamble medium, along
time dependent velocity, electrically flow with a magnetic effect and have been studied by different
researchers. Ramped wall temperatures with thermal radiation have received much interest in
convection flow over boundless vertical plates [3–6]. In literature, Toki and Tokis [7] studied time
dependent boundary conditions on viscous fluid over a boundless preamble plate. Senapatil et al.
[8] investigated the influence of chemical parameters on viscous fluid over preamble medium with
a bounded slip region. Khan et al. [9] discussed the influence of heat andmass diffusion of a viscous
fluid over an oscillating plate. Das et al. [10] and Narahari and Ishaq [11] investigated the solution
of unsteady Walter’s fluids on convection flow over preamble medium with a magnetic effect and
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constant suction heat. Recently, Kumar et al. [12] discussed the
fractional model for radial fins with heat transfer. Some of the
latest results, according to this research, are given in Gupta et al.
[13], Khan et al. [14], and Imran et al. [15].

Moreover, the application of magnetic fields is significant,
with heat transfer in different situations of flow of an
incompressible fluid, for example, geothermal energy, magnetic
generator, and metallurgical processes. The influence of the slip
and non-slip condition with the magnetic field and chemical
reaction of an electrically conducting fluid over a porous surface,
have been developed by Boussinesqu’s approximation [16]. Jha
and Apere [17] and Seth et al. [18] analyzed the ion slip and
hall effect boundary conditions on a magnetized electrically
conducting flow between parallel plates. The impact of the
current and rotation with heat radiation and mass transfer, on
time depending heat observation over a preamble surface, were
taken into account. Over the last few years, fractional calculus has
played a significant role in viscoelastic models. The derivative of
the fractional order can be achieved by constitutive equations of
well-known models through time ordinary derivatives. Recently,
many fractional time derivative problems have been studied [19,
20]. Different real life problems have been investigated through
fractional time operators [21–23]. A modern fractional approach
has been presented without a singular kernel. A non-singular
kernel is used to find the solution for MHD convection flow
with ramped temperature, was investigated by Riaz et al. [24].
Furthermore, Riaz and Saeed [25] discussed the solution ofMHD
Oldroyd-B fluid using integer and fractional order derivatives
with slip effect and time boundary conditions. The Study of
natural convection flow with in channel using non-singular
kernels is discussed by Saeed et al. [26].

In this paper, we discuss the computational calculation for
the magnetized flow of Newtonian fluid with slip and conjugate
effect, through a preamble surface. Computational results for the
velocity profile, temperature gradient, and concentration field
are calculated with the Atangana-Baleanu fractional derivative,
through the Laplace transform. Tzou and Stehfest’s algorithm
is used to find the inverse Laplace transform. Further, We
show the strength of non-singular and non-kernels. Fractional
order Atangana-Baleanu (ABC) derivatives are used to analyze
fractional parameters (memory effect) on the dynamics of fluid.
We conclude that the fractional order model is best for memory
effect and flow behavior of the fluid with reference to classical
models. ABC is good at highlighting the dynamics of fluid. The
influence of transverse magnetic fields are studied for ABC and
CF. Moreover, the impact of parameters on the velocity profile
are analyzed through numerical simulation and graphs for ABC
and CF models. Expression from some limited and special cases
were also obtained in terms of the velocity profile with different
flow parameters.

2. MATHEMATICAL MODEL WITH
STATEMENT OF THE PROBLEM

In this article, we assumed the slip effect between fluid and a
wall. After t = 0+, the temperature on the plate is enhanced or

reduced to θ∞+(θω−θ∞) t
to
when t ≤ to and therefore, for t > to,

is retained at a constant temperature θω and the concentration is
enhanced to Cω. The set of governing equations are given in [27]:

vt = vξξ + Grθ + GmC − Kpv−M2v, (1)
(

Preff
)

θt = θξξ , (2)

ScCt = Cξξ . (3)

With suitable conditions

v(ξ , 0) = 0, θ(ξ , 0) = θ∞,C(ξ , 0) = C∞, ∀ξ ≥ 0, (4)

FIGURE 1 | Variations in temperature with altered values of α and other

parameters are kp = 1.5, Gr = 2, Preff = 0.1, Gm = 0.75, M = 0.9, and

Sc = 0.5.

FIGURE 2 | Variations in concentration with altered values of α and other

parameters are kp = 1.5, Gr = 2, Preff = 0.1, Gm = 0.75, and M = 0.9.

Frontiers in Physics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 275

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Riaz et al. Viscous Fluid With Variant Temperature

v(ξ , t)− L(vξ |ξ=0) =
f (t)

µ
,C(0, t) = Cω, t > 0, (5)

θ(ξ , 0) = θ∞ + (θw − θ∞)
t

to
, 0 < t < to, (6)

v(y, t) = θ∞,C(y, t) = C∞, t > 0,

θ(y, t) = θω, t > to, y → ∞. (7)

We arrive at the governing equations, in terms of the Atangana-
Baleanu fractional derivative, as:

ABCDα
t v = vξξ + Grθ + GmC − kpv−M2v, (8)

ABCDα
t θ =

(

1

Preff

)

θξξ , (9)

ABCDα
t C =

(

1

Sc

)

Cξξ , (10)

where ABCDα
t is the fractional differential operator of order 0 <

α < 1 called the Atangana-Baleanu fractional operator as defined
by [21, 28]:

ABCDα
t f (ξ , τ ) =

M(α)

1− α

∫ τ

0
Eα

(

−
α(t − τ )α

1− α

)

∂f (ξ , τ )

∂τ
dτ ,

with

∞
∑

m=0

(−t)αm

Ŵ(1+ αm)
= Eα(−t)α , (11)

where M(α) denotes a normalization function obeying
M(0) = M(1) = 1.

The Laplace transform of Equation (11) is as follows [26]:

L
[

ABCDα
t f (ξ , τ )

]

=
sαL[f (ξ , τ )]− sα−1f (ξ , 0)

(1− α)sα + α
. (12)

The appropriate initial and boundary conditions are:

v(ξ , 0) = θ(ξ , 0) = C(ξ , 0) = 0, ∀ξ ≥ 0, (13)

v(ξ , t)− hvξ |ξ=0 = Z(t), (14)

C(0, t) = 1, C(∞, t) = 0, t > 0, (15)

θ(∞, t) = 0, v(∞, t) = 0, t > 0, (16)

θ(0, t) = t, 0 < t ≤ 1, θ(0, t) = 1, t > 1. (17)

FIGURE 3 | Velocity profiles with altered values of α and other parameters are kp = 1.5, Gr = 2, Preff = 0.1, Gm = 0.75, M = 0.9, and Sc = 0.5.
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3. SOLUTION OF THE PROBLEM

3.1. Distribution of Temperature Gradient
With Fractional Model 0 < α < 1
In order to find the solution of fractional concentration
distribution, we employ Equation (12) into Equation (9),
and obtain:

(

sα

(1− α)sα + α

)

θ̄(ξ , s) =
1

Preff
¯θξξ (ξ , s), (18)

θ̄(ξ , s) = c1e
−ξ

√

Preff

(

sα

(1−α)sα+α

)

+ c2e
ξ

√

Preff

(

sα

(1−α)sα+α

)

, (19)

with the help of (13)–(17), we find the values of constants c1 and
c2, and we have.

θ̄(ξ , s) =
(

1− e−s

s2

)

e
−ξ

√

Preff

(

sα

(1−α)sα+α

)

. (20)

3.2. Distribution of Concentration Gradient
With Fractional Model 0 < α < 1
In order to find the solution of fractional concentration
distribution, we employ Equation (12) into Equation (10),

and obtain:

(

sα

(1− α)sα + α

)

C̄(ξ , s) =
1

Sc
¯Cξξ (ξ , s), (21)

C̄(ξ , s) = c1e
−ξ

√

Sc

(

sα

(1−α)sα+α

)

+ c2e
ξ

√

Sc

(

sα

(1−α)sα+α

)

, (22)

with the help of (13)–(17), we find the values of constants c1 and
c2, and we have.

C̄(ξ , s) =
(

1

s

)

e
−ξ

√

Sc

(

sα

(1−α)sα+α

)

. (23)

3.3. Distribution of Velocity Field With
Fractional Model 0 < α < 1
In order to find the solution of the fractional concentration
distribution, we employ Equation (12) into Equation (8), and
obtain:

(

sα

(1− α)sα + α

)

v̄(ξ , s) = vξξ + Gr θ̄(ξ , s)+ GmC̄(ξ , s)

− kpv̄(ξ , s)−M2v̄(ξ , s). (24)

FIGURE 4 | Velocity profiles with altered values of kp and other parameters are Gr = 2, α = 0.5, Preff = 0.1, Gm = 0.75, M = 0.9, and Sc = 0.5.
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The solution of the homogeneous part of the second order partial
differential equation say that (24) is,

v̄(ξ , s) = c1e
−ξ

√

√

√

√

(

sα

(1−α)sα+α

)

+kp+M2

+ c2e
ξ

√

√

√

√

(

sα

(1−α)sα+α

)

+kp+M2

.
(25)

The general solution can be give as follows, after making use of
θ̄(ξ , s) and C̄(ξ , s),

v̄(ξ , s) = c1e
−ξ

√

√

√

√

(

sα

(1−α)sα+α

)

+kp+M2

+ c2e
ξ

√

√

√

√

(

sα

(1−α)sα+α

)

+kp+M2

−
Gr(1− e−s)

(

(1− α)sα + α

)

s2
(

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

) e
−ξ

√

Preff

(

sα

(1−α)sα+α

)

−
G3

(

(1− α)sα + α

)

s

(

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

) e
−ξ

√

Sc

(

sα

(1−α)sα+α

)

, (26)

with the help of Equations (13)–(17), we find the values of
constants c1 and c2 for the velocity equation:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+ Z(s)

}]

(

e
−ξ

√

sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (27)

The skin friction is defined as:

τ̄ (ξ , s) = −
∂ v̄(ξ , s)

∂ξ
|ξ=0, (28)

FIGURE 5 | Velocity profiles with altered values of Gr and other parameters are kp = 1.5, Gm = 0.75, Preff = 0.1, α = 0.5, M = 0.9, and Sc = 0.5 Gr = 2.
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τ̄ (ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+ Z(s)

}]

(
√

sα

(1− α)sα + α
+ kp +M2

)

−
Gr(1− e−s)

s2

(

√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

( √
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (29)

4. LIMITING CASES

A comparative study of the existing literature and the Atangana-
Baleanu derivative for some limiting cases are recovered from the
general solution of (Equation 30, [27]) and the general solution
of the given problem at Equation (27), are both discussed in
this section.

4.1. Results With Ramped Wall
Temperature and Without Porosity Effect
(kp → 0)
The velocity profile with the Atangana-Baleanu derivative is
expressed for a general solution of the given problem at Equation
(27) is given as:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)−M2

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)−M2

)

+ Z(s)

}]

(

e
−ξ

√

sα

(1−α)sα+α
+M2

)

−
Gr(1− e−s)

s2
(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)−M2

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)−M2

)

. (30)

FIGURE 6 | Velocity profiles with altered values of Preff and other parameters are α = 0.5, Gr = 2, M = 0.9, Gm = 0.75, kp = 1.5, and Sc = 0.5.
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4.2. Results Without Thermal Radiation
(Nr → 0)
The velocity profile is obtained with the Atangana-Baleanu
derivative for the general solution of the given problem at
Equation (27) is given as:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√
sαPr

sα

(1−α)sα+α
(Pr − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+ Z(s)

}]

(

e
−ξ

√

sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(

e−ξ
√
sαPr

sα

(1−α)sα+α
(Pr − 1)− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (31)

4.3. Result Without Magnetic Parameter
(M → 0)
The velocity profile is obtained with the Atangana-
Baleanu derivative for the general solution
of the given problem at Equation (27) is
given as:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− kp

)

+
Gm

s
(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− kp

)

+ Z(s)

}](

e
−ξ

√

sα

(1−α)sα+α
+kp

)

−
Gr(1− e−s)

s2

(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− kp

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− kp

)

. (32)

FIGURE 7 | Velocity profiles with altered values of Gm and other parameters are α = 0.5, Gr = 2, Preff = 0.1, kp = 1.5, M = 0.9, and Sc = 0.5.
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5. SPECIAL CASES

For validation and to check our general results in this section, we
will discuss some special cases by customizing the value of f (t).
Moreover, our aim is to provide a comparison of our results with
the Caputo-Fabrizio (CF) time fractional derivative.

5.1. Case-I
By putting z(t) = t into Equation (27), we obtain a suitable result
for the velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+
1

s2

}]

(

e
−ξ

√

sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (33)

The analogs of the velocity profile are obtained by (Equation 40,
[27]) using the CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(

1+ h
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

+
1

s2

}]

(

e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(

e−ξ
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

. (34)

FIGURE 8 | Velocity profiles with altered values of M and other parameters are α = 0.5, Gr = 2, Preff = 0.1, Gm = 0.75, kp = 1.5, and Sc = 0.5.
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Graphs for the profiles of the velocity for both operators for
the variation of physical parameters α, Preff , M, Gr , Gm, Sc,
and kp are prepared. Moreover, the slip and no slip effects
are significant. It is noted that the memory effects obtained by
the Atangana-Baleanu derivative express more significant results
than the results recovered by the Caputo-Fabrizio derivative.

5.2. Case-II
By putting z(t) = tet into Equation (27), we obtain a suitable
result for the velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+
1

(s− 1)2

}]

(

e
−ξ

√

sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (35)

The analogs of the velocity profile are obtained by (Equation 42,
[27]) using CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(

1+ h
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

+
1

(s− 1)2

}]

(

e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(

e−ξ
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

. (36)

FIGURE 9 | Velocity profiles with altered values of Sc and other parameters are α = 0.5, Gr = 2, Preff = 0.1, Gm = 0.75, kp = 1.5, and M = 0.9.
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5.3. Case-III
By putting z(t) = sin(ωt) into Equation (27), we obtain a suitable
result for the velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+
ω

s2 + ω2

}]

(

e
−ξ

√

sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2
(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (37)

The analogs of the velocity profile are obtained by (Equation 44,
[27]) using CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(

1+ h
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

+
ω

s2 + ω2

}]

(

e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(

e−ξ
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

. (38)

FIGURE 10 | Velocity profiles with altered values of α and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, kp = 1.5, Sc = 0.5, and M = 0.9.
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5.4. Case-IV
By putting z(t) = t sin(ωt) into Equation
(27), we obtain a suitable result for the
velocity profile:

v̄(ξ , s) =
[

1

1+ h
√

sα

(1−α)sα+α
+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sαPreff
sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

+
Gm

s

(

1+ h
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

+
2sω

s2 + ω2

}]

(

e
−ξ

√

sα

(1−α)sα+α
+kp+M2

)

−
Gr(1− e−s)

s2

(

e−ξ
√

sαPreff

sα

(1−α)sα+α
(Preff − 1)− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sαSc

sα

(1−α)sα+α
(Sc − 1)− (kp +M2)

)

. (39)

The analogs of the velocity profile are obtained by (Equation 46,
[27]) using CF operator:

v̄(ξ , s) =
[

1

1+ h
√

s
(1−α)s+α

+ kp +M2

{

Gr(1− e−s)

s2

(

1+ h
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

+
Gm

s

(

1+ h
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

+
2sω

s2 + ω2

}]

(

e
−ξ
√

s
(1−α)s+α

+kp+M2
)

−
Gr(1− e−s)

s2

(

e−ξ
√

sPreff

sPreff − s
(1−α)s+α

− (kp +M2)

)

−
Gm

s

(

e−ξ
√
sSc

sSc − s
(1−α)s+α

− (kp +M2)

)

. (40)

By making α → 1 in Equations (20), (23), and (27) we obtain a
result for a classical model, the same as that discussed by Ghalib
et al. [27]. This validates our obtained results. In our flowmodels,

FIGURE 11 | Velocity profiles with altered values of kp and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, α = 0.5, Sc = 0.5, and M = 0.9.
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FIGURE 12 | Velocity profiles with altered values of Gr and other parameters are ω = 0.2, α = 0.5, Preff = 0.1, Gm = 0.75, kp = 1.5, Sc = 0.5, and M = 0.9.

we use the Laplace transform technique to solve this model, using
the definition of the ABC model. In order to find the inverse,
we use Stehfest’s algorithms [29] for semi-analytical solutions.
Stehfest’s algorithms are used for the verification of our inverse
Laplace transformation

v(y, t) =
ln(2)

t

2m
∑

j=1

djv̄(y, j
ln(2)

t
),

dj = (−1)j+m

min(j,m)
∑

i=[
j+1
2 ]

im(2i)!

(m− i)!i!(i− 1)!(j− i)!(2i− j)!
.

6. RESULTS AND DISCUSSION

The physical aspects of the CF and ABC time derivative are
discussed in the given problem. Numerical results for T, C, and v
are plotted usingMATHCAD for embedded physical parameters,
such as M, kp, Preff , Gr , Gm, Sc, and slip parameter h. Figure 1
shows the behavior of α on temperature. It is shown that the
value of α increases, while the temperature of the fluid decreases.
The memory effect is explained well with the ABC derivative in
comparison to the CF derivative.

Figure 2 examines the behavior of α on concentration. It
reduces as the value of α increases. The Antangna-Baleanu
derivative shows significant behavior in comparison to the
Caputo-Febrizio derivative for different values of α. Graphs for
the velocity, with function f (t) = t, are shown in Figures 3–9,
and with function f (t) = sin(ωt), as shown in Figures 10–16.
Fluid velocity decreases with the increase of α as well as for
slip and non-slip boundary conditions. Figure 3 shows that the
memory effects of the Antangna Baleanu derivatives, with short
and long time for the velocity profile, as well as with slip and non-
slip conditions, are more significant than the memory effects of
the Caputo Febrizio derivatives. For longer times, the graphical
representation of the velocity shows inverse behavior, as the
velocity increases with the increase of the value of α, for both the
velocity profile and slip and non-slip velocity. Variation in fluid
velocity with respect to the porosity coefficient is displayed in
Figures 4, 11. It represents the increase in the porosity coefficient,
resulting in the decrease in the velocity profile, as well as the
velocity with slip and non-slip boundary conditions for both a
short and long time. The representation of the velocity profile
with the Antangna Baleanu derivatives, for a short and long time,
as well as fluid velocity with the slip and non-slip effect is more
significant than the velocities recovered with the Caputo-Fabrizio
derivatives. Figures 5, 12 illustrate the influence of the Grashof
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FIGURE 13 | Velocity profiles with altered values of Preff and other parameters are ω = 0.2, Gr = 2, M = 0.9, Gm = 0.75, α = 0.5, Sc = 0.5, and kp = 1.5.

numberGr on the fluid velocity, which increases with the increase
of the Grashof number Gr for a short time as well as for a long
time, both in the case of the slip and non-slip effects, because
the thermal buoyancy forces tend to accelerate the fluid velocity
for different times. The memory effects of the Antangna Baleanu
derivatives for the variation of Gr with a short time and long
time, oncovers more significant memory effects than the Caputo
Febrizio derivatives. The velocity profile for different values of
the effective Prandtl number Preff are shown in Figures 6, 13.
Fluid velocity decreases with the increase of Preff for different
times, also in the case of slip and non-slip boundary conditions.
Graphical representation for various values of Preff with the
Antangna-Baleanu derivative is more impressive for short and
long times as well as for slip and non-slip boundary conditions,
than it is for the caputo-Fabrizio derivatives. Figures 7, 14

display the influence of the variation of a modified Grashof
number Gm, and the fluid velocity increases with the increase
of Gm for various times, as well as with the slip and non-
slip parameters. Memory effects with the Antangna-Baleanu
derivatives are better than with the Caputo-Fabrizio derivatives.
The velocity profile for different values of magnetic field M are
given in Figures 8, 15. Fluid velocity shrinks on a large value of
M with a short time as well as with long time. It also displays the
same behavior for both slip and non-slip boundary conditions,

particularly, on increasing the value of M causes to enhance the
frictional force which tends to resist the flow of fluid and, thus,
velocity ultimately decreases. Moreover, we observed that the
fluid velocity obtained with the Atangana-Baleanu derivatives for
the variation of M, in case of both a short and long time, is more
significant than the velocity obtained with the Caputo-Fabrizio
derivatives. In Figures 9, 16 velocity profiles with variations of
Sc are shown. It was found that the velocity decreases when
increasing the value of Sc for both short and long times, as
well as for slip and non-slip parameters. The velocity profile
of different values of Sc with the Atangana-Baleanu derivatives
for various times, are more expressive than the velocity that is
obtained with the Caputo-Fabrizio derivatives. In Figure 10 fluid
velocity reduces with enlarged values of α. It also shows the same
behavior with slip as well as non-slip fluid flow conditions, and
it shows the same behavior for short and long times. Memory
effects show better results with the Atangana-Baleanu derivative
in comparison to the Caputo-Fabrizio derivative.

7. CONCLUSION

Ramped wall velocity and temperature conditions had a
significant impact on MHD fractional Oldroyd-B fluid over
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FIGURE 14 | Velocity profiles with altered values of Gm and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, α = 0.5, kp = 1.5, Sc = 0.5, and M = 0.9.

FIGURE 15 | Velocity profiles with altered values of M and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, α = 0.5, Sc = 0.5, and kp = 1.5.
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FIGURE 16 | Velocity profiles with altered values of Sc and other parameters are ω = 0.2, Gr = 2, Preff = 0.1, Gm = 0.75, α = 0.5, M = 0.9, and kp = 1.5.

a infinite vertical plate on a permeable surface. Fractional
derivative operators are used to find the analytical solution
using the Laplace transformation and inversion algorithm.
Fluid velocity was analyzed through graphical results with the
effect of different physical parameters. The main points of this
problem are:

• The ABC fractional derivative is more significant compared to
the classical model and other fractional models.

• The magnitude of the velocity increases with an increase in the
fractional parameter α.

• The relationship between fractional parameters α and γ

are reversed.
• Retardation time and relaxation time have a strong impact on

the motion of fluid velocity.
• Velocity enhances with an increase in the value of λr .
• The relationship between λ and λr is the opposite to

each other.

• The fluid velocity decreases with a large value of Pr .
• In the velocity field, the velocity reduces with the

expansion ofM.
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