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Abstract: Wede�nea conformabledi�-integral operator for a class ofmeromorphicallymultivalent functions.
We show that this conformable operator adheres to the semigroup property. We then use the subordination
properties to prove inclusion conditions, su�cienrt inclusion conditions and convolution properties for this
class of conformable operators.
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1 Introduction
The di�erential and integral (di�-integral) calculus of integer-order developed by Leibniz and Newton was
a great discovery in mathematics, having numerous applications in several areas of physics, biology, engi-
neering and others. The idea of the derivative of non-integer oder (commonly known as fractional calculus)
was motivated by the question, "What is dn

dtn f (t) for n = 1
2 and t a real variable?", �rst initiated by Lieb-

niz in his 1695 letter to L’Hospital which was not surfaced or published until 1849 [1]. Several types of frac-
tional derivatives have been introduced to date, amongwhich are the Riemann-Liouville, Caputo, Hadamard,
Caputo-Hadamard, Riesz and other types [2].

The fractional di�erential operators usually characterize physical capacities, the derivatives signify their
proportions of modi�cation, and the operator expresses a connection between them. Because such relations
are exceptionally common, di�erential operators play a pivotal role inmany areas of science. Recently, a new
local and limit-based extension of fractional derivatives, called conformable fractional derivative, has been
formulated by Khalil et al. [3], Katugampola [4], and Abdeljawad [5].

In 2015, Anderson and Ulness [6] introduced a conformable di�erential operator (CDO) which can be
used for control system analysis and design (also see [7]). In 2019, Ibrahim and Jahangiri [8] introduced a
conformable di�erential operator for a class of analytic functions g which are to be univalent in the open
unit disk U = {z ∈ C : |z| < 1}. Very recently, Ibrahim and Baleanu [9, 10] used the operator given in
[8] to formulate a hybrid conformable di�-integral operator and a quantum hybrid operator respectively. In
addition, fractional di�erential and integral operators areused to generalize di�erent concepts in information
science such as entropy [11, 12].

*Corresponding Author: RabhaW. Ibrahim: IEEE: 94086547, Kuala Lumpur, 59200, Malaysia,
E-mail: rabhaibrahim@yahoo.com
Dumitru Baleanu: Department of Mathematics, Cankaya University, 06530 Balgat, Ankara, Turkey, Institute of Space Sciences,
R76900 Magurele-Bucharest, Romania, Department of Medical Research, China Medical University, Taichung 40402, Taiwan,
E-mail: dumitru@cankaya.edu.tr
Jay M. Jahangiri:Mathematical Sciences, Kent State University, Burton, Ohio 44021-9500, U.S.A., E-mail: jjahangi@kent.edu

https://doi.org/10.1515/conop-2020-0113


Conformable di�erential operators for meromorphically multivalent functions | 151

In this paper we extend the conformable derivative operator de�ned in [8] to the class of meromorphic
functions Σk(ρ) consisting of functions f with the power series expansion

f (z) = z−ρ +
∞∑
n=k

anzn−ρ , z ∈ U, (1.1)

where k ∈ N = {1, 2, 3, ...} and n−ρ ∈ N. Recall that the functions f of the form (1.1) are calledmeromorphic
with a pole at z = 0 so that f (z) − z−ρ is analytic in U (see Komatu [13] or Hayman [14]). We then concentrate
on a subclass of Σk(ρ) de�ned by a subordination and prove inclusion properties and su�cient inclusion
conditions for this class and examin its closure property under convolution or Hadamard product.

2 Preliminaries
In this section we state a few de�nitions and a lemma that we shall need in the next section. First, we de�ne
a conformable di�erential operator for the class of meromorphic functions Σk(ρ) de�ned by (1.1).

De�nition 2.1. For functions f ∈ Σk(ρ), de�ne the conformable di�erential operator as follows:

∆0f (z) = f (z),

∆ν f (z) = λ1(ν, z)
λ1(ν, z) + λ0(ν, z)

f (z) + λ0(ν, z)
λ1(ν, z) + λ0(ν, z)

(
−z
ρ

)
f ′(z)

= z−ρ +
∞∑
n=k

an

(
λ1(ν, z) +

(
(ρ − n)/ρ

)
λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)
zn−ρ ,

∆2ν f (z) = ∆(∆ν f (z))

= z−ρ +
∞∑
n=k

an

(
λ1(ν, z) +

(
(ρ − n)/ρ

)
λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)2

zn−ρ ,

...

∆m ν f (z) = ∆ν[∆(m−1)ν f (z)]

= z−ρ +
∞∑
n=k

an

(
λ1(ν, z) +

(
(ρ − n)/ρ

)
λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)m
zn−ρ

= z−ρ +
∞∑
n=k

an (Λn)m zn−ρ ,

(2.1)

where ν ∈ [0, 1], ρ ∈ N, m ∈ N∪{0}, z ∈ U,

lim
ν→0

λ1(ν, z) = 1, lim
ν→1

λ1(ν, z) = 0, λ1(ν, z) ≠ 0, ∀z ∈ U*, ν ∈ (0, 1),

and
lim
ν→0

λ0(ν, z) = 0, lim
ν→1

λ0(ν, z) = 1, λ0(ν, z) ≠ 0, ∀z ∈ U* ν ∈ (0, 1).
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Clearly, ∆m ν f (z) ∈ Σk(ρ) as well as

∆m ν[α f (z) + β g(z)]

=
(

λ1(ν, z)
λ1(ν, z) + λ0(ν, z)

)
[α f (z) + β g(z)]

+
(

λ0(ν, z)
λ1(ν, z) + λ0(ν, z)

) (
−z
ρ

)
[α f (z) + β g(z)]′

= α
((

λ1(ν, z)
λ1(ν, z) + λ0(ν, z)

)
f (z) +

(
λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

) (
−z
ρ

)
f ′(z)

)
+ β
((

λ1(ν, z)
λ1(ν, z) + λ0(ν, z)

)
g(z) +

(
λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

) (
−z
ρ

)
g′(z)

)
= α∆m ν f (z) + β∆m νg(z); α, β ∈ R.

So, we proved the following proposition.

Proposition 2.2. (semigroup property) The class of conformal di�erential operators de�ned by ∆m ν has the
semigroup property since for f and g in Σk(ρ) we have

∆m ν[α f (z) + β g(z)] = α∆m ν f (z) + β∆m νg(z).

We shall need the following subordination de�nition for our next class of meromorphic functions. For func-
tions f and g in Σk(ρ), we say that f is subordinate to g, denoted by f ≺ g if there exists a Schwarz function ω
with ω(0) = 0 and |ω(z)| ≤ |z| < 1 so that f (z) = g(ω(z)) in U (see [15] or [18]).

De�nition 2.3. For −1 ≤ B < A ≤ 1 and σ < 0, a function f ∈ Σk(ρ) is said to be in the class Σνk(A, B, σ, ρ) if it
satis�es the subordination condition

Ψ(z) = (1 − σ)zρ [∆m ν f (z)] −
(
σ
ρ

)
z1+ρ[∆m ν f (z)]′ ≺ JA,B(z) =

1 + Az
1 + Bz . (2.2)

The class of functions JA,B(ω(z)) := 1+Aω(z)
1+Bω(z) and in particular, the functions of the form JA,B(z) = 1+Az

1+Bz
are of special signi�cance since JA,B(ω(z)) is the class of Caratheodory functions of order 1−A

1−B , that is,
< {JA,B(ω(z))} > 1−A

1−B (see Janowski [16] or Jahangiri et. al. [17]).
To prove our results in the next section, we shall also need the following lemma which is due to Miller

and Mocanu [18].

Lemma 2.4. Suppose that ϕ(z) is analytic in U and ψ(z) is convex univalent in U such that ϕ(0) = ψ(0). If
ϕ(z) + (1/℘)ϕ′(z) ≺ ψ(z) for a non-zero complex constant number ℘ with <(℘) ≥ 0, then ϕ(z) ≺ ψ(z).

3 Main Results
First we prove an inclusion theorem for the class Σνk(A, B, σ, ρ).

Theorem 3.1. Let f ∈ Σk(ρ). If σ2 < σ1 < 0 then

Σνk(A, B, σ2, ρ) ⊂ Σ
ν
k(A, B, σ1, ρ).

Proof. Let f ∈ Σνk(A, B, σ2, ρ). De�ne a function ϕ(z) = zρ[∆m ν f (z)], which is analytic in U with ϕ(0) = 1. A
computation implies

(1 − σ2)zρ [∆m ν f (z)] −
(
σ2
ρ

)
z1+ρ[∆m ν f (z)]′ = ϕ(z) − σ2ρ (zϕ′(z)).
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Thus, we obtain the inequality
ϕ(z) − σ2ρ (zϕ′(z)) ≺ Az + 1

Bz + 1 .

Applying Lemma 2.4 with ℘ := −σ2ρ > 0 yields

ϕ(z) ≺ Az + 1
Bz + 1 , z ∈ U .

Since, 0 < σ1/σ2 < 1 and since JA,B(z) is convex univalent in U, we have the following inequality

(1 − σ1)zρ [∆m ν f (z)] −
(
σ1
ρ

)
z1+ρ[∆m ν f (z)]′

= (1 − σ1)ϕ(z) −
(
σ1
ρ

)(
zϕ′(z) − ρϕ(z)

)
+
(
σ1
σ2
ϕ(z) − σ1σ2

ϕ(z)
)

= σ1σ2

(
(1 − σ2)ϕ(z) −

(
σ2
ρ

)
(zϕ′(z) − ρϕ(z))

)
+
(
1 − σ1σ2

)
ϕ(z)

= σ1σ2

(
(1 − σ2)zρ [∆m ν f (z)] −

(
σ2
ρ

)
z1+ρ[∆m ν f (z)]′

)
+
(
1 − σ1σ2

)
ϕ(z)

≺ JA,B(z).

Therefore, by De�nition 2.3, we have f ∈ Σνk(A, B, σ1, ρ).

Next we prove a su�cient inclusion condition for the class Σνk(A, B, σ, ρ).

Theorem 3.2. Let f ∈ Σk(ρ) and

Ψ(z) = (1 − σ)zρ [∆m ν f (z)] −
(
σ
ρ

)
z1+ρ[∆m ν f (z)]′.

Then Ψ(z) ≺ JA,B(z) =
1 + A z
1 + B z if one of the following inequalities hold

(a) 1 + `
(
zΨ ′(z)

)
≺
√
z + 1, ` ≥ max{`0, `1}, where

`0 =
2(0.22599B + 0.22599)

(A − B) , B + 1 ≠ 0, A − B ≠ 0;

and
`1 =

2((B − 1)(log(2) − 1))
(A − B) , B − 1 ≠ 0, A − B ≠ 0.

(b) 1 + `
(
z Ψ

′(z)
Ψ(z)

)
≺
√
z + 1, ` ≥ max{|`2|, |`3|}, where

`2 =
−2(i(log(2) − 1))
2πn − i log( A−1B−1 )

; log(A − 1B − 1 ) + 2iπn ≠ 0, A ≠ 1, B ≠ 1

and
`3 =

2i(−1 +
√
2 + log(2) − log(1 +

√
2))

2πn − i log( B+1A+1 )
,

(
B + 1 ≠ 0, A + 1 ≠ 0, log(B + 1A + 1) + 2πni ≠ 0

)
(c) 1 + `

(
z Ψ

′(z)
Ψ2(z)

)
≺
√
z + 1, ` ≥ max{`4, `5}, where

`4 =
0.451974(A + 1)

(A − B) , B + 1 ≠ 0, A ≠ B;

`5 =
2((A − 1)(log(2) − 1))

(A − B) , B − 1 ≠ 0A ≠ B.
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Proof. Case I: k = 0⇒ 1 + `
(
z Ψ ′(z)

)
≺
√
z + 1.

De�ne a function F` : U → C admitting the structure

F`(z) = 1 + 2
`

(√
z + 1 − log(1 +

√
z + 1) − 1 + log(2)

)
.

Clearly, F`(z) is analytic in U satisfying F`(0) = 1 and it is a solution of the di�erential equation

1 + `
(
z F′`(z)

)
=
√
z + 1. (3.1)

Therefore, this yieldsW(z) := `
(
z F′`(z)

)
=
√
z + 1 − 1 is starlike in U . So for

F(z) := W(z) + 1,

we have
<
(
zW′(z)
W(z)

)
= <

(
z F′(z)
W(z)

)
> 0.

Thus, by Lemma 2.4 it follows that

1 + µ
(
z Ψ ′(z)

)
≺ 1 + `zF′`(z)⇒ Ψ(z) ≺ F`(z).

To conclude this argument, we must show that F`(z) ≺ JA,B(z). Evidently, the function F`(z) is increasing in
the interval (−1, 1) that is ful�lling the inequality

F`(−1) ≤ F`(1).

Since
1 − A
1 − B ≤ F`(−1) ≤ F`(1) ≤

1 + A
1 + B

whenever ` ≥ max{`0, `1} where

`0 =
2(B − 1)(log(2) − 1)

(A − B) , B + 1 ≠ 0, B − 1 ≠ 0, A − B ≠ 0

and
`1 =

2(0.225987B + 0.225987)
(A − B) , B + 1 ≠ 0, B − 1 ≠ 0, A − B ≠ 0.

Consequently, we obtain
Ψ(z) ≺ F`(z) ≺ JA,B(z)⇒ Ψ(z) ≺ JA,B(z).

Case II: k = 1⇒ 1 + `
(
z Ψ′(z)
Ψ(z)

)
≺
√
z + 1.

De�ne a function S` : U → C formulating the structure

S`(z) = exp
(
2
`

(√
z + 1 − log(1 +

√
z + 1) − 1 + log(2)

))
.

Obviously, S`(z) is analytic in U satisfying S`(0) = 1 and it is an outcome of the di�erential equation

1 + `

(
z S′`(z)
S`(z)

)
=
√
z + 1, z ∈ U . (3.2)

By assumingW(z) =
√
z + 1 − 1, which is starlike in U and F(z) = W(z) + 1, we get

<
(
zW′(z)
W(z)

)
= <

(
z F′(z)
W(z)

)
> 0.

Then again, in virtue of the Lemma 2.4, we obtain

1 + µ
(
z Ψ ′(z)
Ψ(z)

)
≺ 1 + `

(
zS′`(z)
S`(z)

)
⇒ Ψ(z) ≺ S`(z).
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Consequently
1 − A
1 − B ≤ S`(−1) ≤ S`(1) ≤

1 + A
1 + B

whenever ` ≥ max{|`2|, |`3|} where

`2 =
−2(i(log(2) − 1))
2πn − i log( A−1B−1 )

; log(A − 1B − 1 ) + 2iπn ≠ 0, A ≠ 1, B ≠ 1

and

`3 =
(2i(−1 +

√
(2) + log(2) − log(1 +

√
(2))))

2πn − i log( B+1A+1 )
,

(
B + 1 ≠ 0, A + 1 ≠ 0, log(B + 1A + 1) + 2πni ≠ 0

)
This indicates the following subordination inequalities

Ψ(z) ≺ S`(z) ≺ JA,B(z)⇒ Ψ(z) ≺ JA,B(z).

Case III: k = 2⇒ 1 + `
(
z Ψ′(z)
Ψ2(z)

)
≺
√
z + 1.

De�ne a function Q` : U → C by the formula

Q`(z) =
(
1 − 2

`

(√
z + 1 − log(1 +

√
z + 1) − 1 + log(2)

))−1
.

Clearly, Q`(z) is analytic in U achieving Q`(0) = 1 and it is the outcome of the di�erential equation

1 + µ
(
z Q′

`(z)
Q`(z)

)
=
√
z + 1. (3.3)

By applying the functionsW(z) =
√
z + 1 − 1, which is starlike in U and F(z) = W(z) + 1, we receive

<
(
zW′(z)
W(z)

)
= <

(
z F′(z)
W(z)

)
> 0.

Hence, the Lemma 2.4 yields

1 + `

(
z Ψ ′(z)
Ψ2(z)

)
≺ 1 + `

(
zQ′

`(z)
Q2
` (z)

)
⇒ Ψ(z) ≺ Q`(z).

Accordingly, we have
1 − A
1 − B ≤ Q`(−1) ≤ Q`(1) ≤

1 + A
1 + B

if `2 assumes the upper and lower bounds

`4 =
0.451974(A + 1)

(A − B) , B + 1 ≠ 0, A ≠ B;

`5 =
2((A − 1)(log(2) − 1))

(A − B) , B − 1 ≠ 0A ≠ B.

This yields the subordination

Ψ(z) ≺ Q`(z) ≺ JA,B(z)⇒ Ψ(z) ≺ JA,B(z).

As a conclusion, we obtain

(1 − σ)zρ [∆m ν f (z)] −
(
σ
ρ

)
z1+ρ[∆m ν f (z)]′ ≺ JA,B(z),

for all σ < 0 and ρ ∈ N. Consequently, f ∈ Σνk(A, B, σ, ρ).

Finally, we prove a convolution condition for the class Σνk(A, B, σ, ρ).
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De�nition 3.3. The Hadamard product or convolution of two power series

f (z) = z−ρ +
∞∑
n=k

anzn−ρ

and

g(z) = z−ρ +
∞∑
n=k

bnzn−ρ

in Σk(ρ) is denoted by

(f * g)(z) = f (z) * g(z) = z−ρ +
∞∑
n=k

anbnzn−ρ .

Theorem 3.4. Let f ∈ Σνk(A, B, σ, ρ) and φ ∈ Σk(ρ). Then f * φ ∈ Σ
ν
k(A, B, σ, ρ) if

<
(
zρ∆m νφ(z)

)
> 1
2 . (3.4)

Proof. By the properties of the Hadamard product, we have

(1 − σ)zρ [∆m ν(f * φ)(z)] −
(
σ
ρ

)
z1+ρ[∆m ν(f * φ)(z)]′

= (1 − σ)
(
zρ[∆m ν f (z)] * zρ[∆m νφ(z)]

)
−
(
σ
ρ

)(
z1+ρ[∆m ν f (z)]′ * (zρ[∆m νφ(z)])

)
=
(
(1 − σ)zρ [∆m ν f (z)] −

(
σ
ρ

)
z1+ρ[∆m ν f (z)]′

)
*
(
zρ∆m νφ(z)

)
= Ψ(z) *

(
zρ∆m νφ(z)

)
,

where Ψ(z) ≺ JA,B(z). Given the condition (3.4) yields
(
zρ∆m νφ(z)

)
has the Herglotz representation (e.g. see

[19]) (
zρ∆m νφ(z)

)
=
∫

|χ|=1

dµ(χ)
1 − χ z ,

where d µ indicates the probability measure on the unit circle |χ| = 1 and∫
|χ|=1

dµ(χ) = 1.

Since JA,B(z) is convex in U, we conclude that

(1 − σ)zρ [∆m ν(f * φ)(z)] −
(
σ
ρ

)
z1+ρ[∆m ν(f * φ)(z)]′

= Ψ(z) *
(
zρ∆m νφ(z)

)
=
∫

|χ|=1

Ψ(χ z)dµ (χ)

≺ JA,B(z).

Hence, f * φ ∈ Σνk(A, B, σ, ρ).

4 Conclusion
From what presented above, it is apparent that we formulated a new conformable di�erential operator for a
class of meromorphically multivalent functions. We presented some results concerning the geometric prop-
erties of the given operator connecting with the Janowski function in the open unit disk. Our results showed
under some conditions, the given operator converges to the Janowski function.
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