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1 Introduction

Differential and integral inequalities have ended up being valuable instruments in inves-
tigating the differential and integral equations that are constructed by numerous analysts
(see [1-17]). The analysis of the theory of time-scale dynamic equations, which goes back
to its author Hilger [18], is a recent field of mathematics that has gained much interest.
The trendy thought is to demonstrate an equation for a dynamic circumstance or a dy-
namic inequality wherein the area of the unknown characteristic is a presumed time scale
T. The justification for considering time scales is to unify continuous and discrete inspec-
tion. Among diverse aspects of the concept, we observe that dynamic inequalities increase
and unify different views of both difference and differential equations in an anticipated
mode; see [19-21] and the references therein. Pachpatte [22] initially unifies the existing

fundamental inequality
50)<b0)+ [ Hswan, reT,
o

provided with x, /1 being right-dense continuous functions, x > 0.
After that in 2009, Li [23] achieved an integral inequality of the form

r

x(r) <xo + fr[h(u)x(u) + m(u)]Au + f g(u)[z(u, l)x(l)Al]Au,
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where z(u,1) > 0, z%(u,1) > 0 for r,l € T and [ < r. Recently, Sun and Hassan [24] discov-

ered a nonlinear integral inequality related to time scales given by
x(r) < b(r) +j(r)/ [h(u)x(u) +g(u)x (G(u)) — z(u)x? (a(u))]Au,
o

where b,j,h,g,z: T — R, are rd-continuous functions and &,y are positive constants
with0<& <1< .

During the last couple of years, many researchers have proved a few integral inequalities
utilizing dynamic time scale equations [25-29]. In light of the above work, we proceed
with our examination to acquire some new two-dimensional integral inequalities that are
partially linear on time scales. The obtained results additionally supply a reachable device
for the look at qualitative properties of solutions of integral and dynamic equations.

The rest of the paper is composed as follows. In Sect. 2, we describe principal relations
and tentative lemmas that are strategic guides for our principle results. The hypotheti-
cal discussions with finishing up corollaries and remarks are gathered in Sect. 3. The last
section is considered to delineate the uses of the theoretical investigations.

2 Essentials and lemmas on time scales

Without loss of generality, at some point of in this work, let time scales 7* and 7° with
delta differentiation operators 01,0, and Aj, A, respectively, contain at least two points
0,6 €T ro, v €T° &> 80, ¥ >10, Ty = [G0,00) N T*, T} = [ro,00) N T, T =T* x T®;
x21(g,7), x82(¢,7), and x2122(¢,r) = x2221(Z,7) are the delta derivatives of a function
x(¢,r) with respect to ¢,r, and pr, respectively, for ¢,r € R; R stands for the set of real
numbers, R, = [0,00), jo € Tx, T € TX, T > &y, C,q is the set of all rd-continuous func-
tions, N defines the set of all regressive and rd-continuous functions and i* = {x € N :
1+6(0)x(¢) > 0,6 €T}, (x® 0)(¢) = x(¢) + ¢(¢) + 5(§)x(¢)e(¢) for all ¢ € T*. On time
scales, the user is supposed to be comfortable with the theory and basic ideas regarding
the analytics. The monograph [30] is recommended for further details of time scale ide-

ology.
Some important lemmas in this paper are as follows:

Lemma 2.1 ([23]) Let ¢y € TX and IT: T x TX — R be continuous at (¢,¢), where ¢ > &g
and ¢ € TX. Assume that T1*(¢,-) is rd-continuous on [¢o,0(¢)|r and for every € > 0, a
neighborhood X* of ¢, independent of a € [{o,0 ()], such that

, seXx*,

[[[T(o(¢),n) - H(s,a)] - T*(¢,a)[0 () —s]| <€|o(¢) -s

where IT* symbolizes the derivative of I w.r.t. the first variable, and so

¢
)= M(;,a)Aa
%o
yields

¢
2= | O%¢a)Aa+(0(2),¢).
%o
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Lemma 2.2 ([31]) Letz* >0, c*>0,& >0, ¥ >0 be given, then for each x > 0,

£-1
o £ 208000
TSy \Ene) T

holds for the cases 1 <& < orO<y <& < 1.

Lemma 2.3 ([32]) Suppose x,z € C,4, c € R,. Then

x2(0) <2(0)x(g) +ct), ¢ €T,
implies

¢

X(¢) < 2(G0)es(t o) + f e.(¢,0(@)cl@)Aa, ¢eT.
%o

Lemma 2.4 ([22]) Assume thatx,z,c € Cy([£0,00)T, R, ), where z is nondecreasing and not
identically zero. If

¢
0) < 20) + f c($)x(s)As, ¢ € (20,00,
%o

then

x(8) = z(ec(¢,50) & € [ro,00)r.

3 Dynamic integral inequalities (DIl) in two dimensions

Now we state and demonstrate our primary results:

Theorem 3.1 Suppose x,y,1,t,u,m € C,y(T,R,), z,¢ € C,y(T,(0,00)), y is nondecreasing
and not identically zero, &, are positive constants, 1 <& < or 0 < ¥ <& < 1. More-
over, m € Cy(T,R,) is nondecreasing in ¢, Il is defined as in Lemma 2.1 such that
I121(Z,r,0,0) > 0, [T*221(¢,7,0,0) > 0 for £ > 0,r > 0 and

4 r
X(eor) <y(5r) + / / I(0,0)%(0,0) A0 Ao
%o 0

T

e r
t(z,7) f f I1(,7,0,0)[u(0, 0)%(0,0) + 2(0, @) ( (0), 0)
co Jro

—c(0,0)x" (o(0), Q)]AQAO

S
+ [ mlo,r)x(o,r)Ao, (¢,1) €T, (1)
[

provided with
s

,LL({,T")@(C,V) <1, Wl(O,r)eV@W(O, ;O)A0< 1. (2)
o
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Then

f;) m(o, r)[y(o, ) + f;) evew (0,0 (7))D(t,r)At]Ao

1- f; m(o,r)evew (0, So) Ao

evew(Z,%o)

x(¢,r) <y, 1)+

s
+ | m(o,revew(t,0(0))Ao, (3)
o

where

a()
O@,r) = ™1(¢,1) f 0(0),1,0,0) (10, 0) + H(0,0)) Ag o
%o ro

+1(g,7) { HAzAl(g,r,o,g)H(o,a)Ang

f 118 (0:(0),7,2,0)H(E, 0) Ao @
W) = ] teone i [ [ 11812, 7,0,0)u(0, 0) A0 Ao

+ / 1% (6(¢),7,¢,0)u(¢,0) Ao, (5)

r U(/) r

n(e,r) = / 16, 0)y(¢,0) A0 + £21(¢,7) / / 11(0(¢),7,0,0) (1(0, 0)y(0,0)
o %o o
+H(0,0)y(c(0),0)) AoAo

+ (g, V)/ / T22%1(¢,r,0,0 )(u(o,g)y(o,,g)+H(0,Q)y(cr(o) Q))AQAO
o

ro

+/ % (o (¢),r,¢,0) (u(g,0)y(8,0) + H(EZ,0)y(0 (2),0)) Ao, (6)

£-1

AW -8 (= Del,r)\
HEn =05 ((s—nz(g,r)) @
Ve = —28D by = (L ule VR0 n). ®)

1 —pc({,r)@({,r)’

Proof Employing Lemma 2.2 in (1), we get

e r
x(¢,r) <y(¢,r) +/ / l(0,0)x(0,0) Ao Ao
S0 Jro

e r
+ t(c,r)/ (¢, 1,0,0)[u(0,0)x(0,0) + H(0,0)x(0 (0),0) | Ao Ao
%o Jro

S
+ m(o,r)x(0,r) Ao,
o

<y(,r)+A(L,1), )
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where H(¢,r) is as in (7) and a nondecreasing function A(¢, r) is defined by

4 r
A(g,r) = / l(0,0)x(0,0) Ao Ao

%o Jro

4 r
+(g,r) I,r,o, Q)[u(o, 0)x(0,0) + H(o, Q)x(a(o), Q)]AQAO

%o Jro
s
+ | m(o,r)x(0,r) Ao (10)
0
and
s
A(Lo, 1) = m(o,r)x(0,r)Ao. (11)

%o

From Lemma 2.1 and by using the delta derivative (10) with respect to j, we deduce
AP, )
< [ 1e.0m(c. 0100
o
N o@) pr
816 [ [ 1(0©)m.0.0)[ul0,0150.0) + Ho, (010, 0) |30 a
o o
N NN
ctlen) [ [ 1149346,1,0,0)[uto.0)5(0,0) + Hlo,@)x(o (0 0) | A

+ t(C,r)/ HAI(a(;),r,{,Q)[u(g“,g)x({,g) +H(§,Q)?C(O’(§),Q)]AQ,

where, using (9) in the last inequality, we get
a0 = [ 16000+ AG0)ay

i , ,0) + Alo,
. (“/m f o (2),7,0,0) [0, 0) (3(0,0) + A(0,0))
+H(0,0)(y(c(0),0) +A(o(0),Q))]AQAO
1(E,0) / / T8z, 7,0,0)[u(0,0)(%(0,0) + A(0,0)

So Jro
+H(0,0)(y(c(0),0) + A(0(0),0)) ] Ao Ao
L 1(E,7) / (00, 1,2,0)[ule, 0) (%€, 0) + Az, 0))
+H(,0)(y(0(2),0) +A(a(¢),0))] Ao,

so that

ARM(L,r)

Page 5of 17
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< / 1, 0)y(¢,0)A0 + f 16, 0)A(, 0) Ao

a(g) pr
+t%1(¢,7) f f (o (¢),r,0,0)[u(0,0)y(0,0) + H(0,0)y(0 (0),0) | Ao Ao
o

0

o) pr
+A(0(¢),7) [tA‘(C,r)/ / (o (¢),r,0,0)(u(0,0) +H(0»Q))AQA0]
%o 70

t(,r) HAQAl(p 7,0, v)[ (0,0)y(0,0) + H(o, Q)y( (0), )]AQAO

%o Jro

+H¢,7) HAzAl(Cm 0,0)u(0,0)A(0,0) Ao Ao

to Jro
e [ I1%1(2,7,0,0)H(0, 0)A (0 (0),0) Ao Ao

So Jro
+t(¢,r)/ T2 (o (2),r,¢,0)[u(Z,0)y(¢,0) + H(E,0)y(0 (), 0)] A
s 8(e,7) / T2 (0(2),r, 6, 0)u(t, QA 0) Ag

+8(z,7) f 1% (0(¢), 1, ¢, 0)H(& 0)A (0 (¢), 0) Ac,
r0
which leads to

AP, r)
(¢)
[ t21(g,7) / (£),1,0,0)(u(0,0) + H(0,0)) Ao Ao
%o 0]
) TT4281( YH(0,0)A0A
Cr/m/ro (¢,r,0,0)H(0,0) Ao Ao
+t(¢,r)/ HAI(0(§),7’,(:Q)H(§,Q)AQ:|A(G(§),Q)
r e r
[ / teagrten [ [ 1o uo0n0n0
%o Jro
t(&,7) / o (o (¢),r.¢,0)u (g“,Q)AQ]A(s“,rH/ 1, 0)y(¢,0) Ao
+E%1(Z,7) / / (o (), r,0,0)[u(0,0)y(0,0) + H(0,0)y(0 (0),0) | Ao Ao
%o

ro

4 r
+t(¢,r) T2%1(¢,r,0, Q)[u(o, 0)y(0,0) + H(o, Q)y(o(o), Q)]AQAO

%o Jro

t(z,7) / 1% (), ¢, 0)[1(6, 0)y(50) + H(E,0)y(0 (¢),0) ] Ae

<O, NA(0(Q),r) + W(L, AL, r) +n(E,1), (12)
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with @ (¢,r), W(¢,r), n(¢,r) defined as in (4), (5), and (6). From (8), we obtain

v
O = T v (13)

In view of (12) and (13), we obtain

ARM(L, 1) <O, 1)(AQ, 1) + n(&, AR (L, 1) + WL, AL, 1) +n(,7)

V(Z,r)

= T vy AE N + ENA ) + WEDAG. ) + 1.1,

which yields

1 ABI(E ) < V(g r)+ W(C,r) + u(&,nV(E,nW,r)
1+//L(C,V)V(§,}”) 1+u(§,r)V(§,r)

A(g,r)+n(g,7),

or

AM(L,r) < (V&) + W) + w(&,nV(E, W (E,r)AQ,r)
+(1+p(&, VM),
<(Ve W)(¢,nA(L,r) +D(,r). (14)

Here D(¢,r) is as in (8). As we know that A(¢, r) is rd-continuous and V @ W € R*. There-
fore, inequality (14) with the use of Lemma 2.3 and (11) implies the estimate

I3
A67) < Ao, evew(©to) + / evew (1,0(0)) D0, 7)Ao, (15)
%o

Substituting (9) and (15) on the right side of (11), we have

f;} m(o,7)[y(0,7) + f;; evew(0,0(7))D(t,r)AT)] Ao

A(go,7) <
' I- f;) m(o, r)evgw (0, 5o) Ao

, (16)

and, from (9), (15), and (16), we get the required bound in (3). a
A useful corollary of Theorem 3.1 with m(¢,r) = 0 can be obtained as follows:

Corollary 3.2 Under the same assumptions on x,y,1,t,u,z,¢,€,,I11,0,V,W,n,and H in
Theorem 3.1, the inequality

x(¢,7)

Sy(C,r)+/{

[

I F

r 4 r
l(0,0)x(0,0) Ao Ao + £(E,7) 11(¢,r,0,0)
/0 0,0)x(0,0)AoAo + r/{ofo r,0,0
x [u(0,0)x(0,0) + 2(0,0)%° (0 (0), 0) — c(0,0)x" (7 (0),0) | Ao Ao, (¢,7) €T,

implies

¢
x(L,r) <y(&,7) + / evew (1,0(0))D(o,r) Ao,
o
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If I1(¢,r,0,0) =1 in Theorem 3.1, we can produce the following corollary:

Corollary 3.3 Suppose that x,y,1,t,u,m,z,c,&, and H are same as in Theorem 3.1. If

T

4 r
() <) + / / (0, 0)x(0,0)Ag Ao
%o 0

7

c r
+t6) [ [ [u(0,0)3(0,0) + 20,005 (0(0),0) - cl0, 01" (00), )] 30 30
so Jro
S

+ m(o,r)x(0,r) Ao, (L,r) €T,
%0

then

. f;) m(a,r)[y(o,r) + f;; eview, (0,0 (7))Di(z,r)AT] Ao

S
1- f!() m(o, r)eV1€BW1 (0,20)Ao

x(¢,r) <9(¢, 1)

eview; (¢, %0)

N

+ | m(o,r)ev,gw, (1,0 (0)) Ao,
o

where Vi(§,1) = e Di(6or) = (L4 w(@ ) Vilg, mm(&,7),

() r r
@( ’ ):tAl( ’ ) (7 ) H( ) )A A t( ) ) H( ) )A )
18,7 ;Vv/go [(”00"' OQ)QO"' 57’/’0 £,0)A0

0

Wi(g,r) = / 1¢,0) A0 + £¢,7) / u(¢,0) A,

m(c,r)=/ 1(¢,0)y(¢,0)Ave

0

o) pr
L0, / (10, 0)y(0,0) + H(0,0)y(0(0),0)) Ao Ao

%o 7

+ t(f,r)f (u(z,0)y(¢,0) + H(E,0)y(o(£),0)) Ac.

Remark 3.4 Theorem 3.1 yields Lemma 3.1 of [33] by taking x(¢,r) = u(t),y(¢,r) = m(t),
t(c,r)=1U1),l,r)=2(,r)=c(,r)=m(L,r) =0, [T1(¢,r,0,0) =1, u(,r) = n(t) for fixed r
and m(t) being a nondecreasing function.

Remark 3.5 As a distinctive case with r fixed, Theorem 3.1 reduces to Theorem 5 of [34] if
we put x(¢,7) = x#(t), B > 1 being a constant, y(¢,7) = a(t),1(¢,r) = b(t),t(¢,r) = 1,2(¢,7) =
1,14((,7') = m(é‘,r) = C(C,Y’) = 0: H((:F,O:Q) =1, x(U(C),") :L(trx(f(s))) andé =1

Theorem 3.6 Assume that x,y,l,t,u,m,z,c,&, ¥, IT, T2, [T*221 gnd H are as in Theo-
rem 3.1. Also let

¢ r
*(E,) < H(E7) + / f 0,0)%((0),0) Ao Ao
go Jro

T

4 r
+t(L,7) / / 11(g,r,0,0)[u(0,0)%(0,0) +2(0,0)%" (7 (0), 0)
%o Jro
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- C(O, Q)xw (G (0)1 Q)] AQAO
S R
+1(S,R) / 11(¢,7,0,0)[1(0,0)x(0,0) + 2(0, 0)¢ (0 (0), 0)
S0 Jro

—c(o,0)x" (O‘(O),Q)]AQAO, (17)

for(p,r)eT. If

¢ r
2= / H(C’ r,0, Q)[U(O, Q)eVZGBWz(o’ Q-O) + H(O) Q)eVZQBWz (0(0)’ é'o)]AQAO
So Y10

W) (18)

then

S,R
x5 = - YSR) o n(tr2o), (19)

- 2t(S,R)

so that

r o(¢) r
O(c,7) = / 16, )AL +£%1(¢, 1) / / 11(0(¢),7,0,0) (u(0,0) + H(0,0)) Ao Ao
7 %o 0

0 T

4 r
+t(§,r)/ / IT2221(¢,r,0,0)H(0,0) Ao Ao
g0 Jro
+ f 1T (0/(0), 1, W)H(E, 0) Ao, (20)
o
c r
Wz((ﬂ’):t(f,r)/ / 22212, r,0,0)u(0,0) Ao Ao
so Jro

+ f *1(0(0) 1, ¢,0)u(s,00Ae, 1)

@Z(K:r)

=107 (22)

V2(§’r) =

Proof Inequality (17), by applying Lemma 2.2, gives

e r
X(er) =9(r) + / / (0,0)%(0(0), 0) Ao Ao
o Jro

I3 r
+H(e,7) / 11(¢,7,0,0) (0, 0)%(0,0) + z(0, ) ((0), 0)
fo Jro
- c(0,0)x" (c(0),0) ] Ao Ao
S (R
+1(S,R) / 11(z,r,0,0)[u(0, 0)x(0, 0) + 2(0,0)x° (0 (0), 0)
So Yo
—c(0,0)x” (o (0), Q)]AQAO

4 r
<)+ f / (0,0)%(0(0), 0) Ao Ao
to Jro

Page9of 17
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¢ r
+t(g,r) (1,7, 0,0)[u(0, 0)x(0,0) + H(0,0)x(c (0),0) | Ao Ao
So vro

S (R
+t(S,R)/ 11(¢,r,0,0)[u(0, 0)x(0, 0) + H(0,0)x(c (0),0) | Ao Ao.  (23)
So Y7o

Denote A;(¢,r) a nondecreasing function as

1(&,r) = y(S, R)+/ / (0, 0) AQAo
+ L‘(é“r")f (¢, 7,0,0)[u(0, 0)x(0, 0) + H(0,0)x(0 (0),0) | Ao Ao
S0 Jro
S R
+t(S,R) I1(S, R, 0,0)[u(0,0)x(0,0) + H(0,0)x(c (0),0) | Ao Ao, (24)
S0 Jro

then, from (23) and (24), we get

x(¢,r) <A1(¢,7) (25)
and
A1(o,r) = y(S,R) + £(S, R) ). H(S,R,o,g)[u(o,g)x(o,g)
+H(0,0))%(c(0),0) ] AgAo. (26)

Using Lemma 2.1 and delta differentiation (24) with respect to j, we have
()
/ Ug, 00(0(¢),0) Ao
Lty /C / ),7,0,0)[u(0,0)x(0, 0) + H(0, 0)x(c(0), 0) | A0 Ao
1, r)f / 1%2%1(g,1,0,0)[u(0,0)x(0,0) + H(0,0)x(c (0),0) | Ao Ao
L1e7) / (o) t0) U050 0) + Hip0)x(o ) 0)] A0
The above inequality with the help of (25) takes the form of

()
< / I(¢,0)A1(0(2),0) Ag

o) pr
L) / f 11(0(¢),7,0,0)[u(0, 0)A1(0,0) + H(0,0)A1 (0(0), 0)] Ao Ao
%o

0

4 r
+ t(;,r) HAZAI ({,r, 0, Q)[M(O, Q)Al(ox Q) + H(O, Q)AI(U(O)r Q)]AQAO

%o Jro

Page 10 of 17
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+t(;“,r)/ T2 (0 (2),r,¢,0)[u(Z,0)A1(¢,0) + H(E,0)A1(0(¢),0) | Ac
E @2((,7)141(0’(@’),7) + WZ(E,V)Al(é',V), (27)

with ©,(¢,r7), Wa(¢,7) as in (20) and (21), respectively. It can be observed from (22) that

o _ Vz(f,l")
S W VATE) 28
Substituting (28) in (27), we acquire
AP, 7) < 038, M (AL(E,7) + 1lE, DAL, 7)) + WalE, DAL, 7)
V )
= #5)‘2@;’")(141((’” + M(;:r)AlAl(g:r)) + WZ(é‘vr)Al(;:r):
which implies
AN E,r) < (Vale,r) + Walg,r) + w(E, ) Va(E, ) Wa(L, 1) A (¢, 7)
+(1+ (g, n)Va(g,r)
< (V2 ® WL)(¢,nAL(L,7). (29)

Since A;1(¢, ) is rd-continuous and V, @ W, € R, inequality (29), with Lemma 2.4, (25)
and (26), produces

Al(z;’ l") =< Al(;Or r)eV2®W2 (C’ {0)

S PR
< {J’(S:R) + lf(S,R) H(S7 Rr 0, Q)[M(O, Q)Al(ox Q)

S0 Yo

+H(0,0)A1 (o (0), @)]Ang}evz@wz(;, )
= B(S, R)evyaw, (£, o), (30)
where
B(S,R) =y(S,R)

S R
+£(S,R) / I1(S, R, 0,0)[u(0,0)A1(0,0) + H(0,0))A1 (0 (0),0) | Ao Ao
fo Jro

S pR
<y(S,R)+ t(S,R)/ I1(S,R,0,0)
So Jro

X [M(O, Q)B(51 R)eV2®W2 (01 {0) + H(Or Q))B(J (S)! R)eVQEBWz (U (0)1 g‘O)] AQAO

¥(S,R)

~1-R2tS,R) (31)

Here 2 is defined as in (18). The conclusion in (19) can be achieved from (25), (30), and
(31). Details are omitted. 0
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Remark 3.7 If x(¢,r) = uP(x,9),9(¢,7) = ¢, ¢ > 0, t(£,7) = 0,1(¢,7) = f(x,9),x(c(¢),7) =
o(u(t1(£), 72(2))), then Theorem 3.6 can be transformed into the inequality of Theo-
rem 2.14 stated by Zheng et al. [35].

Remark 3.8 Ifx(¢,r) =x(0(¢),r) = ult,s),y(p,r) = a(t,s), (¢, r) = b(t,s) and £(¢,r) = 0, then
we can conveniently reach Theorem 1 of [36] from Theorem 3.6.

Theorem 3.9 Let x,y,l,u,z,¢c,H,& and r be as in Theorem 3.1. In addition, suppose m €
Cra(Y x T, R,) is nondecreasing in j and

4 r
) <o) + / / Z(c,r,o,g)[x(o,g)
o Jro

+ /0 /Q(u(n, k)x(o(n),k) + z2(m, k)b (1, k) = c(n, K)x¥ (n, k))AkAn] ApAo
g0 Jro

Iz

s
+ m(¢,0,r)x(0,r) Ao, (£, r) €T, (32)
%o
with
s
m(S,0,7)ey;ow; (0, Lo) Ao < 1. (33)
%o
Then
S,
we) < —— S evsows (6, 60), (34)
1- '[CO m(S, 0, r)eV3€BW3 (0» §0)A0
where
Ouc,n) - [ uie.0)e, (35)
ro

r e r
Ws(;“,r)=f l(o(C),r,C,Q)Awf / 1%2%1(¢,7,0,0) Ao Ao
7 g0 Jro

0 T

. / H(,0) Ao, (36)

@3((,)")

Vsl&n = T nenen

(37)

Proof From (32) and Lemma 2.2, we have

e r
*(eor) <y(5r) + / f l(;,r,o,g)[x(o,@)
%o Jro

o re

+/ / (u(n,k)x(o(n),k)+H(n,k)x(n,k))AkAn:|AQAo
So Yo
s

+ | m(¢,0,r)x(0,7)Ao. (38)
o
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Clearly, x(¢,r) is nonnegative. Also f :) m(¢,0,7)x(0,7) Ao is a nondecreasing function be-

cause m(¢, 0, 0) is a nondecreasing function for (¢, r) € 7, By delta-differentiating (38), we

get

r ¢ re
A1( ) ): [ ( )1 56 |:( ’ ) (1k) ()11
x“1¢E,r / (a( r{g)x{g+/{‘0/m(uo x(ao <)

ro

+ H(o, k)x(o, k)AkAo)j| Ao

4 r
+/. / lAzAl ({,r,o,Q)[x(O,Q)
%o Jro

+ / 0 / V(u(mk)x(o(n),k) +H(n,k)x(n,k))AkAn] AoAo
%o Jro

r 14 r
SU o (£),r,¢,0)Av+ f / lml(;,r,o,g)AQAo]Az(z,r),
o So Jro

T

so that

14 r
Ar(E, ) =a(E,r) + / / (40, 0)x(0(0), 0) + H(0,0)x(0,0)) Ao Ao
to Jro

I

and

x(5,r) < Aa(8,7).

(39)

(40)

(41)

From inequality (39), again by delta differentiating with respect to j and using (40) and

(41), we get

AN (E, ) < W8, M ALE, 1) + O3(8, N A (0 (£), 7).

Further, the above inequality, by utilizing Lemma 2.4, (37), and the fact that A,(%,r) =

y(&,r) + f;; m(¢,0,r)x(0,1r) Ao, gives the bound

S
Ay, r) < (y(é,r) + [ m(g,0,r)x(o, r)AO)evs@wg(C,éo),

o

where @3, W3, V3 are defined as in (35), (36), and (37), respectively. The monotonicity of

y and m in the last inequality yields

P

AZ(C’ r) = ()’(51 }’) + VI’I(S, 0, r)x(o, V)A()) evsows (é‘: ;0)

[

=B1(S,n)evsow; (£, o)

where

s
Bi(S,r)=y(S,r) + m(S, 0,r)x(0,r) Ao.
%o

(42)
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From the definition of B;(Z,r), (41) and (42), we obtain

Bi(S,r) < —— y(S,r) | "
1- f(o m(S, 0,r)evsew; (0, 50) Ao
so the required bound in (34) can be acquired by combining (41), (42), and (43). O

Remark 3.10 If we fix r and %(¢,r) = u(t),y(¢,r) = ¢, ¢ >0, I(¢,r,0,0) = f(t), u(C,r) =
c(¢,r)=m(¢,7r) =0, 2(¢,r) = w(t,s) in Theorem 3.9, where w(¢,s) > 0, then we get the in-
equality obtained by Li et al. in [37]; see their Theorem 3.1.

4 Applications
In this section we focus on some of the applications of Theorem 3.1 to research certain
properties of differential equation solutions. Let us discuss the following dynamic integral

equation on time scales:

14 r
x(§>7)=y(§,r)+/ / Y(O’Q’x(0¢Q))AQA0
%o Jro

P

¢ r
+t(§,l")/ / P(grr;01Qxx(O:Q);x(O'(O),Q))AQAO
fo “Jro

7

¢
+ / T (o,r,x(0,)) Ao, (44)

%o

where P e Cy(Y? x RL,R) and Y, T € Cy(Y x R,R).
The ensuing example addresses the global existence on the solutions of (44).

Example 4.1 Suppose that

Y (¢,rd)| <U¢,n)\d), (45)
|P(¢,7,0,0,d,h)| < [T1(¢,1,0,0)[u(0,0)ld| + 2(0,0)|hI* - c(0,0)Ih"], (46)
|7, d)| < m(¢,r)ld], (47)

for (¢,r) €T, d,o € R, then x(¢,r) is a solution of (44) with

S

w(¢,ne,r <1, m(o,7)evgw(0,50)Ao < 1,
%o

and satisfies

i m(o,n)lIy(0,n)| + [; evew(o,0(1)D(r,r)AT] Aa

|x(§,r)| = |y(Crr)| + 1— f:) WI(O, I’)ev@w(o, fo)Ao eVGBW(g’ é‘O)
s
+ | m(o, r)ev@\,v(f, o(o)) Ao, (48)
o

where x,[,t,y,u,z,¢c,m, I1,&,y,0, W,V and D are as in Theorem 3.1.
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Proof Equation (44) by utilizing (45)—(47) can be restated as

S pr
(,)5‘(,) Y (0,0,%(0,0)) Ao A
’x{r! y;r+/{o/r) (ogxog) oAo

0

P r
+t¢,r) / / P(g,r,0,0,%(0,0),%(c(0),0)) AvAo
%o Jro

T

+ /{ T(o,r,%(0,r)) Ao

%o

e r
< |y(¢.n| +f / |Y(0,0,%(0,0))| Ao 2o
%o Jro

T

s r
+ t(;,r)/ / |P(¢,7,0,0,%(0,0),%(c(0),0)) | Ao Ao
So Jro

T

¢
+ |T(0, r,x(0, r))‘Ao
o

¢ r
< ble,n)| + / f 0,0)|(0,0)| Ao Ao
o Jro

¢ r
8(c,7) / / 11(6,7,0,0)[u(0, 0)|(0,0)] + 2(0, 0)| (0 (0), 0) [}
%o 0

T

-c(0,0) \x(a (0),0) | 1/f] AoAo

s
+ m(o,r) |x(0, r) | Ao. (49)
%o

We attain (48) by applying the same procedure as in the proof of Theorem 3.1 to (49). O

Example 4.2 Let us consider the following hypotheses:

Y (¢, r,dr) = Y (¢,r,dy)| < UE,7)|dy - dy, (50)
|P(¢,7,0,0,d1,l1) = P(,7,0,0,d, )| < TT(¢,7,0,0)[u(0, 0)|d1 — db]

+2(0,0)h = ha|* = c0,0)ll —ha| "], (51)
T, dh) = T(¢,r,d)| < m(s,7)|dy - dal, (52)

then the dynamic integral equation (44) has a unique solution.

Proof If x1(¢,r) and x,(¢, r) are solutions of (44), then

4 r
w0(60r) = 22(607) = / / [¥(0,0,%1(0,0)) - Y (0, 0,2(0,0)) | AvA
%o 0

¢ r
t(é") PC,,,,(,), ();
' rf;o/m[ (6:1,0,0.11(0,0),11(7(0):0))
_P(g’rr0’Q’xZ(O:Q)er(U(O)rQ))]AQAO

¢
+/ [T(o, r, %1 (0, r)) - T(o, r,x1(o, r))]Ao.

[
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From (50)—(52) used to the previous equation, we get
’xl(gi 7’) _xZ(C’r)‘

¢ opr ¢ o
S/zo /0 l(O,Q)IJQ(O,Q)—xz(O,Q)|AQA0+t({,r)/{O /O (¢, 7,0, 0)

x [(0,0)|%1(0,0) - %2(0,0)| + 2(0,0) |%1 (0 (0), 0) = %2 (0 (0), 0) ||

~ c(0,0)|%1(5(0), @) ~ %20 (0),0) " ] A Ao
S

+ [ mo,r) }xl(o, r) —x2(0,7) | Ao, (53)
o

so applying a similar method as that in Theorem 3.1 with suitable changes to the function
|x1(p, ) —x2(p, )| in (53), we have

|01(¢,7) —%2(8,7)| <0, (¢,r)eT.
Hence x1(¢,7) = %2(¢, ). Thus the dynamic equation (44) has one positive solution. a

5 Conclusion

Like other recognized and proven inequalities in the literature, Theorems 3.1, 3.6, and 3.9
examined such dynamic integral inequalities with suggested remarks for two independent
variables on time scales. In order to overcome the conceptual classifications of differential
equations, one may also apply the introduced corollaries. Our results may be extended by
using the basic methodology to solve the difficulty of achieving estimates on the specific
bounds of unknown functions and therefore to expand and unify continuous inequalities.
This investigation offers the foundation for further advancement of the idea of integral
inequality for time scale calculus implementations, providing scope for maximizing efforts
to reach a desirable outcome.
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