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�e correlation coefficient between two variables plays an important role in statistics. Also, the accuracy of relevance assessment
depends on information from a set of discourses. �e data collected from numerous statistical studies are full of exceptions. �e
Pythagorean fuzzy hypersoft set (PFHSS) is a parameterized family that deals with the subattributes of the parameters and an appropriate
extension of the Pythagorean fuzzy soft set. It is also the generalization of the intuitionistic fuzzy hypersoft set (IFHSS), which is used to
accurately assess insufficiency, anxiety, and uncertainties in decision-making. �e PFHSS can accommodate more uncertainties
compared to the IFHSS, and it is the most substantial methodology to describe fuzzy information in the decision-making process. �e
core objective of the this study is to develop the notion and features of the correlation coefficient and the weighted correlation coefficient
for PFHSS and to introduce the aggregation operators such as Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Py-
thagorean fuzzy hypersoft weighted geometric (PFHSWG) operators under the PFHSS scenario. A prioritization technique for order
preference by similarity to the ideal solution (TOPSIS) under PFHSS based on correlation coefficients and weighted correlation
coefficients is presented. �rough the developed methodology, a technique for solving multiattribute group decision-making
(MAGDM) problem is planned. Also, the importance of the developed methodology and its application in indicating multipurpose
antivirus mask throughout the COVID-19 pandemic period is presented. A brief comparative analysis is described with the advantages,
effectiveness, and flexibility of numerous existing studies that demonstrate the effectiveness of the proposed method.

1. Introduction

Decision-making (DM) is one of the most interesting issues
these days to choose an appropriate alternative for any
particular purpose. Initially, it is assumed that information
regarding possible choices is collected in crisp numbers, but

in real-life scenarios, collective facts and figures always
comprises incorrect and imprecise information. Correlation
plays the main role in statistics as well as engineering.
�rough correlation analysis, the joint relationship of two
variables can be found and used to evaluate the in-
terdependence of two variables. Other than this,
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probabilistic strategies have been applied to so many
practical engineering issues, but there are many limitations.
For example, the probability of the process is dependent on
a lot of information, which may be haphazard. However,
large complex structures have numerous incomprehensible
uncertainties, and it is usually difficult to obtain accurate
probability events. �erefore, due to incomprehensive
quantitative information, consequences beneath probability
theory do not provide useful information for experts. Be-
sides, in practical applications, there are no adequate data to
correctly process renowned statistical data. Due to the
abovementioned barriers, consequences based on proba-
bility theory are not obtainable to experts at all time. So,
probabilistic methods are usually insufficient to resolve
specified procured uncertainties in the data. Quite a lot of
investigators in the world have projected and advised dif-
ferent methods to solve such difficulties that contain
vagueness. Zadeh proposed the idea of fuzzy sets (FSs) [1] to
solve complex problems that contain uncertainness as well as
ambiguity. In some cases, we must check membership as
a nonmembership value in the representation of objects that
cannot be handled by FS. To overcome this concern, Ata-
nassov proposed the concept of intuitionistic fuzzy sets
(IFSs) [2]. Based on this, theories, such as cubic IFS [3],
interval-valued IFS [4], and linguistic interval-valued IFS
[5], have been developed and used by investigators.

Ultimately, based on the above theories, experts ob-
served that the sum of their membership and non-mem-
bership cannot exceed one. Atanassov’s IFS only deals with
insufficient data due to membership and nonmembership
values, while IFS cannot deal with inappropriate and vague
information. �us, the above work is used to visualize our
surroundings of linear inequality between the degree of
membership (MD) and the degree of nonmembership
(NMD). However, if the decision-maker goes steady with
object MD� 0.8 and NDM� 0.5, then 0.8 + 0.5≰1. Clearly,
we can see that it cannot be handled by the abovementioned
IFS theories. To overcome the abovementioned limitations,
Yager [6, 7] extended the IFS to Pythagorean fuzzy sets
(PFSs) by modifying the condition T + J≤ 1 to
T2 + J2 ≤ 1. Zhang and Xu [8] defined some operational
laws and extended the TOPSIS technique to solve MCDM
problems under PFS environment. Wei and Lu [9] presented
several Pythagorean fuzzy power aggregation operators with
their properties and proposed the decision-making ap-
proaches to solve MADM problems based on developed
operators.Wang and Li [10] proposed the Pythagorean fuzzy
interaction operational laws and power Bonferroni mean
operators. �en, they discussed some specific cases of
established operators and considered their properties.

Zhang [11] established a novel decision-making tech-
nique based on Pythagorean fuzzy numbers (PFNs) to solve
multiple criteria group decision-making (MCGDM) prob-
lems. He also developed the accuracy function for the
ranking of PFNs and similarity measures under a PFS en-
vironment with some desirable properties. Garg [12] ex-
tended the weighted aggregation operators to PFSs and
developed several operators and presented a decision-
making approach based on developed operators. Peng and

Yang [13] proposed division and subtraction operators,
investigated their properties based on PFSs, and developed
a ranking method based on developed operators to solve
MAGDM problems. Garg [14] introduced the logarithmic
operational laws with several weighted averaging and
weighted geometric operators based on PFSs. Gao et al. [15]
established several Pythagorean fuzzy interaction operators
by using arithmetic and geometric operations and proposed
some decision-making approaches to solve MADM prob-
lems. Peng and Yuan [16] presented the Pythagorean fuzzy
point operators and established decision-making ap-
proaches to solve MADM problems based on developed
operators. Ma and Xu [17] improved the score and accuracy
functions for PFNs and developed novel averaging and
geometric operators based on PFS information.

All the above approaches are widely applied in many
areas and fields. However, these theories have limitations
due to their incompetence with the parameterization tool.
To overcome this kind of complexity, Molodtsov [18]
proposed a general mathematical parameterization tool
soft set (SS), which is used to deal with uncertain, am-
biguous, and indeterminate components, in which certain
specific parameters of the object are evaluated. Maji et al.
[19] extended the concept of SS, proposed some opera-
tions with their several properties, and used the estab-
lished concepts for decision-making [20]. Maji et al. [21]
planned the idea of fuzzy soft sets (FSSs) by combining FSs
and SSs. In addition, they projected an intuitionistic fuzzy
soft set (IFSS) with fundamental operations along with
properties [22]. Garg and Arora [23] extended the gen-
eralized version of the IFSS with weighted averaging and
geometric aggregation operators and built a decision-
making technique to resolve complications beneath an
intuitionistic fuzzy environment. Garg [24] developed
some improved score functions to analyze the ranking of
the normal intuitionistic and interval-valued intuition-
istic sets and established new methodologies to solve
multiattribute decision-making (MADM) problems. �e
idea of entropy measure and TOPSIS based on correlation
coefficient (CC) has been developed by using complex q-
rung orthopair fuzzy information and used the established
strategies for decision-making [25]. Garg and Arora [26]
developed aggregate operators by using dual hesitant
fuzzy soft numbers and utilized the proposed operators to
solve multicriteria decision-making (MCDM) problems.
To measure the relationship among dual hesitant fuzzy
soft set, Arora and Garg [27] introduced the CC and
developed a decision-making approach under the pre-
sented environment to solve the MCDM approach, and
they also used the proposed methodology for decision-
making, medical diagnoses, and pattern recognition. �ey
also developed operational laws and presented some
prioritized aggregation operators under linguistic IFS
environment [28] and extended the Maclaurin symmetric
mean (MSM) operators to IFSSs based on Archimedean T-
conorm and T-norm [29]. Garg and Arora introduced the
correlation measures on IFSSs and constructed the
TOPSIS technique on developed correlation measures
[30].
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In this era, the assumptions and application scenarios of
SSs and the abovementioned different research extensions
are developing rapidly. Peng et al. competently solved the
abovementioned complications [31] and proposed a novel
idea of Pythagorean fuzzy soft sets (PFSSs) by combining the
two existing theories PFS and SS with some basic operations
with ideal characteristics. Athira et al. [32] developed an
entropy measure based on PFSS information. �ey also
proposed the Hamming distance and Euclidean distance of
PFSSs and used them for decision-making [33]. As far as the
author knows, there are few studies on the theory of PFSSs.
�erefore, it is a better way to keep PFSSs flexible than IFSSs
or FSSs. Naeem et al. [34] established some operations with
their desirable properties and extended the TOPSIS and
VIKOR techniques to develop the affluence of linguistic
variables based on PFSS information. �ey also rendered an
application on the consequence of stock exchange in-
vestment by utilizing the developed techniques. Riaz et al.
[35] established the TOPSIS technique for m-polar PFSSs
and presented an example to solve MCGDM problems
within a considered hybrid structure. �ey also introduced
similarity measures for PFSSs [36]. Hwang and Yoon [37]
developed TOPSIS to solve decision-making problems. By
using the TOPSIS method, we can easily obtain the mini-
mum distance from a positive ideal solution which supports
electing the finest alternative. After the TOPSIS method was
developed, many researchers used the TOPSIS method for
decision-making and extended this method to fuzzy and
intuitionistic fuzzy environments [38–51].

Smarandache [52] extended the concept of SS to
hypersoft sets (HSSs) by replacing the one-parameter
function f with a multiparameter (subattribute) function
described on the Cartesian product of n attributes. �e
established HSS is more flexible than SS and more suitable
for the decision-making environments. He also launched
advanced extensions of HSSs, including crisp HSS, fuzzy
HSS, and intuitionistic fuzzy HSS. Nowadays, HSS theory
and its extensions have been rising unexpectedly. Several
investigators went through progressed distinctive operators
along with characteristics based on HSS and its extensions
[53–55]. Zulqarnain et al. [56] extended the notion of
IFHSSs and developed some aggregation operators and
TOPSIS technique based on CC under the IFHSS scenario.
�ey also established a decision-making technique by uti-
lizing the proposed TOPSIS technique to resolve theMADM
problem. �us, the above work is considered to examine the
environment of linear inequality between the degree of
membership (MD) and the degree of nonmembership
(NMD) of attributes and subattributes of the considered
parameters. However, if the decision-maker stabilizes when
the target MD� 0.7 and NDM� 0.6, then 0.7 + 0.6 ≰ 1.
Obviously, we can see that it cannot be handled by the
abovementioned theories. To overcome the above limita-
tions, we prolonged the IFHSS to PFHSS by modifying the
condition TF(�d)(δ) + JF(�d)(δ)≤ 1 to (TF(�d)(δ))2 +

(JF(�d)(δ))2 ≤ 1.
It is true that everyone is eager to purchase the smartest

mask for the present terrible virus, but distinct groups of
people must have different essential desires. Particularly

during the COVID-19 pandemic, it is our responsibility to
use good and effective antivirus masks to reduce the
COVID-19 effects. �us, for different groups of people,
logically picking out and using masks are of key importance.
�e best mask does not mean the most expensive mask. For
the majority of people, it is not necessary to use identical
masks like those used by frontline medical examination staff.
�e use of a gas mask not only depends on masks but also
depends on the human face. Besides, in serious pandemic
scenarios and shortage of gas masks, the choice of mask
could also be associated with components like reusability
along with the quality of raw materials. �us, the majority of
people, in serious pandemic scenarios, consider multiple
components while choosing masks to enhance the re-
apportionment of medical resources. But, with the ex-
traordinary information of the people as well as the
uncertainty of the increase in COVID-19, the difficulty
increases.�emajority of people are unable to choose a good
antivirus mask; mostly people prefer the cheapest antivirus
mask. Yang et al. [57] and Shahzadi and Akram [58] used the
spherical normal fuzzy sets and formation fuzzy soft Yager
ordered weighted average and geometric operators for the
selection of effective gas masks during the COVID-19
pandemic.

In this study, the TOPSIS technique was extended to
PFHSS information, and the mechanism was based on the
assumption of PFHSNs. To measure the degree of de-
pendence on PHFSS, we proposed CC andWCC on PFHSSs
and studied some properties of the developed CC. To ac-
curately achieve the goal, the given TOPSIS technique can be
extended to solve the MAGDM problem. In this research,
our main goal is to introduce the CC andWCC based on the
PHFSS information and develop the TOPSIS method of
PFHSSs based on the proposed CC. In order to solve the
MAGDM problem based on the extended TOPSIS method,
an algorithm was developed, and the effectiveness of the
proposed technique was verified by a numerical example.
Given correlation measures for PFHSSs have been consid-
ered for paired PFHSSs, which will be used to calculate the
interrelationship between elements and the scope of de-
pendence. Since the existing IFS and IFSS, PFS, PFSS, and
IFHSS are special cases of PFHSS, the measures that have
been formulated are more general than the existing mea-
sures. �e correlation coefficient retains the linear re-
lationship between considered elements. To find the general
closeness coefficient by the TOPSIS method, generally, the
researchers used the similarity measure and distance. But, in
our developed TOPSIS technique, the closeness coefficient
can be calculated by using the correlation coefficient.

�e rest of this article is organized as follows. In Section
2, we recollect some basic definitions, such as SS, HSS,
IFHSS, and PFHSS, which will be used to construct the
structure of this article. In Section 3, we proposed the in-
formational energies and correlation measures for PFHSSs
and used the established terminologies to develop CC and
WCC and their properties. Some aggregation operators are
also introduced such as Pythagorean fuzzy hypersoft
weighted average (PFHSWA) and Pythagorean fuzzy
hypersoft weighted geometric (PFHSWG) operators. An
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extended TOPSIS technique based on CC in the PFHSS
environment is proposed, and an algorithm is developed
based on the proposed TOPSIS method to solve the
MAGDM problem, and a numerical description is given in
Section 4. Also, we use some existing techniques to propose
comparative studies between our proposed methods. Sim-
ilarly, the advantages, naivety, flexibility, and effectiveness of
planned algorithms are introduced. We have a brief dis-
cussion and comparative analysis of the proposed methods
and existing techniques in Section 5.

2. Preliminaries

In this section, we recollect some basic definitions that help
build the structure of the article such as soft set, hypersoft
set, fuzzy hypersoft set, IFHSS, and PFHSS.

Definition 1 (see [18]). Let U be the universal set and E be
the set of attributes concerning U. Let P(U) be the power
set ofU andA⊆E. A pair (F,A) is called a soft set overU,
and its mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) � F(e) ∈ P(U): e ∈ ϵ, F(e) � ∅, if e ∉ A{ }.

(2)

Maji et al. [21] explored the theory of FS and SS and
planned a more generalized version to handle the un-
certainty compared with the existing FS and SS along with its
unique features. �is is generally known as a fuzzy soft set,
which is a combination of FS and SS.

Definition 2 (see [21]). LetF(U) be a collection of all fuzzy
subsets over U and E be a set of attributes. Let A⊆E, then
a pair (F,A) is called FSS over U, where F is a mapping
such as F: A⟶ F(U).

Definition 3 (see [52]). Let U be a universe of discourse,
P(U) be a power set ofU, k � k1, k2, k3, . . . , kn􏼈 􏼉 (n≥ 1) be
a set of attributes, and set Ki be a set of corresponding
subattributes of ki, respectively, with Ki ∩Kj � φ for n ≥ 1

for each i, j ∈ 1, 2, 3, . . . , n{ }, and i≠ j. Assume K1 × K2 ×

K3 × · · · × Kn � A
···

� d1h × d2k × · · · × dnl􏼈 􏼉 be a collection of
multiattributes, where 1≤ h≤ α, 1≤ k≤ β, and 1≤ l≤ c and α,
β, and c ∈ N. �en, the pair (F, K1 × K2 × K3 × · · · × Kn �

A
···

) is said to be HSS over U and its mapping is defined as

F: K1 × K2 × K3 × · · · × Kn � A
···

⟶ P(U). (3)

It is also defined as

(F,A
···

) � �d,F
A
··· (�d): �d ∈ A

···

,F
A
··· (�d) ∈ P(U)􏼚 􏼛. (4)

Definition 4 (see [52]). Let U be a universe of discourse,
P(U) be a power set of U, and k � k1, k2, k3, . . . , kn􏼈 􏼉

(n≥ 1) be a set of attributes, and set Ki be a set of corre-
sponding subattributes of ki, respectively, with Ki ∩Kj � φ

for n ≥ 1 for each i, j ∈ 1, 2, 3, . . . , n{ }, and i≠ j. Assume K1 ×

K2 × K3 × · · · × Kn � A
···

� d1h × d2k × · · · ×􏼈 dnl} be a collec-
tion of subattributes, where 1≤ h≤ α, 1≤ k≤ β, and 1≤ l≤ c,
and α, β, and c ∈ N and FU be a collection of all fuzzy subsets
over U. �en, the pair (F, K1 × K2 × K3 × · · · × Kn � A

···

) is
said to be FHSS over U and its mapping is defined as

F: K1 × K2 × K3 × · · · × Kn � A
···

⟶ F
U

. (5)

It is also defined as

(F,A
···

) � �d,F
A
··· (�d)􏼒 􏼓: �d ∈ A

···

,F
A
··· (�d) ∈ FU ∈ [0, 1]􏼚 􏼛.

(6)

Example 1. Consider the universe of discourseU � δ1, δ2􏼈 􏼉

and L � ℓ1 � Teachingmethdology, ℓ2 � Subjects, ℓ3 �􏼈

Classes} be a collection of attributes with their corre-
sponding subattribute values given as teaching method-
ology� L1 � d11 � project base,􏼈 d12 � class discussion},
subjects� L2 � d21 � Mathematics,􏼈 d22 � Computer
Science Science, d23 � Statistics}, and classes�

L3 � d31 � Masters, d32 � Doctorol􏼈 􏼉. Let A
···

� L1 × L2 × L3
be a set of attributes:

A
···

� L1 × L2 × L3 � d11, d12􏼈 􏼉 × d21, d22, d23􏼈 􏼉 × d31, d32􏼈 􏼉

�

d11, d21, d31( 􏼁, d11, d21, d32( 􏼁, d11, d22, d31( 􏼁, d11, d22, d32( 􏼁, d11, d23, d31( 􏼁, d11, d23, d32( 􏼁,

d12, d21, d31( 􏼁, d12, d21, d32( 􏼁, d12, d22, d31( 􏼁, d12, d22, d32( 􏼁, d12, d23, d31( 􏼁, d12, d23, d32( 􏼁,

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

A
···

� �d1,
�d2,

�d3,
�d4,

�d5,
�d6,

�d7,
�d8,

�d9,
�d10,

�d11,
�d12􏽮 􏽯.

(7)
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�en, the FHSS over U is given as follows:

(F,A
···

) �

�d1, δ1, 0.6( 􏼁, δ2, 0.3( 􏼁􏼐 􏼑, �d2, δ1, 0.7( 􏼁, δ2, 0.5( 􏼁􏼐 􏼑, �d3, δ1, 0.8( 􏼁, δ2, 0.3( 􏼁􏼐 􏼑, �d4, δ1, 0.2( 􏼁, δ2, 0.8( 􏼁􏼐 􏼑,

�d5, δ1, 0.4( 􏼁, δ2, 0.3( 􏼁􏼐 􏼑, �d6, δ1, 0.2( 􏼁, δ2, 0.5( 􏼁􏼐 􏼑, �d7, δ1, 0.6( 􏼁, δ2, 0.9( 􏼁􏼐 􏼑, �d8, δ1, 0.2( 􏼁, δ2, 0.8( 􏼁􏼐 􏼑,

�d9, δ1, 0.4( 􏼁, δ2, 0.7( 􏼁􏼐 􏼑, �d10, δ1, 0.1( 􏼁, δ2, 0.7( 􏼁􏼐 􏼑, �d11, δ1, 0.4( 􏼁, δ2, 0.6( 􏼁􏼐 􏼑, �d12, δ1, 0.2( 􏼁, δ2, 0.7( 􏼁􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (8)

Definition 5. (see [52]). Let U be a universe of discourse,
P(U) be a power set ofU, and k � k1, k2, k3, . . . , kn􏼈 􏼉 (n≥ 1)
be a set of attributes, and set Ki be a set of corresponding
subattributes of ki, respectively, with Ki ∩Kj � φ for n ≥ 1 for

each i, j ∈ 1, 2, 3, . . . , n{ }, and i≠ j. Assume K1 × K2 × K3 ×

· · · × Kn � A
···

� d1h × d2k × · · · × dnl􏼈 􏼉 be a collection of
subattributes, where 1≤ h≤ α, 1≤ k≤ β, and 1≤ l≤ c, and α, β,
and c ∈ N and IFSU be a collection of all intuitionistic fuzzy
subsets overU.�en, the pair (F, K1 × K2 × K3 × · · · × Kn �

A
···

) is said to be IFHSS over U, and its mapping is defined as

F: K1 × K2 × K3 × · · · × Kn � A
···

⟶ IFSU. (9)

It is also defined as (F,A
···

) � 􏼚(�d,F
A
··· (�d)): �d ∈ A

···

,F
A
···

(�d) ∈ IFSU ∈ [0, 1]􏼛, whereF
A
··· (�d) � δ,TF(�d)􏽮 (δ),JF(�d)

(δ): δ ∈ U}, in whichTF(�d)(δ) andJF(�d)(δ) represent the
membership and nonmembership values of the attributes
such as TF(�d)(δ), JF(�d)(δ) ∈∈ [0, 1], and 0≤TF(�d)(δ)+

JF(�d)(δ)≤ 1.
Simply an intuitionistic fuzzy hypersoft number

(IFHSN) can be expressed as F � (TF(�d)(δ),JF(�d)(δ))􏽮 􏽯,
where 0≤TF(�d)(δ) + JF(�d)(δ)≤ 1.

Example 2. Consider the universe of discourse U � δ1, δ2􏼈 􏼉

and L � ℓ1 � Teachingmethdology, ℓ2 � Subjects, ℓ3 �􏼈

Classes} be a collection of attributes with their corre-
sponding attribute values given as teaching methodology�

L1 � d11 � project base, d12 � class discussion􏼈 􏼉, subjects�

L2 � d21 � Mathematics, d22 � Computer Science,􏼈 d23 �

Statistics}, and classes� L3 � d31 � Masters,􏼈 d32 �

Doctorol}. Let A
···

� L1 × L2 × L3 be a set of attributes:

A
···

� L1 × L2 × L3 � d11, d12􏼈 􏼉 × d21, d22, d23􏼈 􏼉 × d31, d32􏼈 􏼉

�
d11, d21, d31( 􏼁, d11, d21, d32( 􏼁, d11, d22, d31( 􏼁, d11, d22, d32( 􏼁, d11, d23, d31( 􏼁, d11, d23, d32( 􏼁,

d12, d21, d31( 􏼁, d12, d21, d32( 􏼁, d12, d22, d31( 􏼁, d12, d22, d32( 􏼁, d12, d23, d31( 􏼁, d12, d23, d32( 􏼁,
􏼨 􏼩

A
···

� �d1,
�d2,

�d3,
�d4,

�d5,
�d6,

�d7,
�d8,

�d9,
�d10,

�d11,
�d12􏽮 􏽯.

(10)

�en, the IFHSS over U is given as follows:

(F,A
···

) �

�d1, δ1, (0.6, 0.3)( 􏼁, δ2, (0.3, 0.5)( 􏼁􏼐 􏼑, �d2, δ1, (0.2, 0.7)( 􏼁, δ2, (0.1, 0.5)( 􏼁􏼐 􏼑, �d3, δ1, (0.2, 0.8)( 􏼁, δ2, (0.3, 0.4)( 􏼁􏼐 􏼑,

�d4, δ1, (0.2, 0.5)( 􏼁, δ2, (0.1, 0.6)( 􏼁􏼐 􏼑, �d5, δ1, (0.4, 0.3)( 􏼁, δ2, (0.3, 0.5)( 􏼁􏼐 􏼑, �d6, δ1, (0.2, 0.4)( 􏼁, δ2, (0.1, 0.5)( 􏼁􏼐 􏼑,

�d7, δ1, (0.2, 0.6)( 􏼁, δ2, (0.4, 0.2)( 􏼁􏼐 􏼑, �d8, δ1, (0.2, 0.5)( 􏼁, δ2, (0.3, 0.1)( 􏼁􏼐 􏼑, �d9, δ1, (0.4, 0.2)( 􏼁, δ2, (0.3, 0.5)( 􏼁􏼐 􏼑,

�d10, δ1, (0.1, 0.4)( 􏼁, δ2, (0.7, 0.2)( 􏼁􏼐 􏼑, �d11, δ1, (0.4, 0.5)( 􏼁, δ2, (0.2, 0.5)( 􏼁􏼐 􏼑, �d5, δ1, (0.1, 0.2)( 􏼁, δ2, (0.2, 0.7)( 􏼁􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(11)

�e abovementioned IFHSS cannot deal with the situ-
ation when the sum of MD and NMD of subattributes
exceeds one, so to handle such situations in this paper, we
introduce the general notion of PFHSS with its character-
istics by modifying the condition MD + NMD≤ 1 to
MD2 + NMD2 ≤ 1.

Definition 6. Let U be a universe of discourse, P(U) be
a power set of U, k � k1, k2, k3, . . . , kn􏼈 􏼉 (n≥ 1) be a set of
attributes, and set Ki be a set of corresponding subattributes of

ki, respectively, with Ki ∩Kj � φ for n ≥ 1 for each

i, j ∈ 1, 2, 3, . . . , n{ } and i≠ j. Assume K1 × K2 × K3 × · · · ×

Kn � A
···

� d1h × d2k × · · · × dnl􏼈 􏼉 be a collection of sub-
attributes, where 1≤ h≤ α, 1≤ k≤ β, and 1≤ l≤ c, and α, β, and
c ∈ N, and PFSU be a collection of all Pythagorean fuzzy subsets
over U. �en, the pair (F, K1 × K2 × K3 × · · · × Kn � A

···

) is
said to be PFHSS over U and its mapping is defined as

F: K1 × K2 × K3 × · · · × Kn � A
···

⟶ PFSU. (12)
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It is also defined as (F,A
···

) �

(�d,F
A
··· (�d)): �d ∈ A

···

,F
A
··· (�d) ∈ PFSU ∈ [0, 1]􏼚 􏼛, where

F
A
··· (�d) � δ,TF(�d)(δ),JF(�d)(δ): δ ∈ U􏽮 􏽯, in which

TF(�d)(δ) and JF(�d)(δ) represent the membership and
nonmembership values of the attributes such as TF(�d)(δ),
JF(�d)(δ) ∈∈[0, 1], and 0≤ (TF(�d)(δ))2 + (JF(�d)(δ))2 ≤ 1.

Simply, a Pythagorean fuzzy hypersoft number (PFHSN)
can be expressed as F � (TF(�d)(δ),JF(�d)(δ))􏽮 􏽯, where
0≤ (TF(�d)(δ))2 + (JF(�d)(δ))2 ≤ 1.

Example 3. Consider the universe of discourse U � δ1, δ2􏼈 􏼉

and L � ℓ1 � Teachingmethdology, ℓ2 � Subjects, ℓ3 �􏼈

Classes} be a collection of attributes with their corre-
sponding attribute values given as teaching methodology�

L1 � d11 � project base, d12 � class discussion􏼈 􏼉, subjects�

L2 � d21 � Mathematics, d22 � Computer Science,􏼈 d23 �

Statistics}, and classes� L3 � d31 � Masters,􏼈 d32 �

Doctorol}. Let A
···

� L1 × L2 × L3 be a set of attributes:

A
···

� L1 × L2 × L3 � d11, d12􏼈 􏼉 × d21, d22, d23􏼈 􏼉 × d31, d32􏼈 􏼉

�
d11, d21, d31( 􏼁, d11, d21, d32( 􏼁, d11, d22, d31( 􏼁, d11, d22, d32( 􏼁, d11, d23, d31( 􏼁, d11, d23, d32( 􏼁,

d12, d21, d31( 􏼁, d12, d21, d32( 􏼁, d12, d22, d31( 􏼁, d12, d22, d32( 􏼁, d12, d23, d31( 􏼁, d12, d23, d32( 􏼁,

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

A
···

� �d1,
�d2,

�d3,
�d4,

�d5,
�d6,

�d7,
�d8,

�d9,
�d10,

�d11,
�d12􏽮 􏽯.

(13)

�en, the PFHSS over U is given as follows:

(F,A
···

) �

�d1, δ1, (0.6, 0.3)( 􏼁, δ2, (0.3, 0.5)( 􏼁􏼐 􏼑, �d2, δ1, (0.2, 0.7)( 􏼁, δ2, (0.1, 0.5)( 􏼁􏼐 􏼑, �d3, δ1, (0.2, 0.8)( 􏼁, δ2, (0.3, 0.7)( 􏼁􏼐 􏼑,

�d4, δ1, (0.6, 0.5)( 􏼁, δ2, (0.5, 0.6)( 􏼁􏼐 􏼑, �d5, δ1, (0.7, 0.3)( 􏼁, δ2, (0.4, 0.8)( 􏼁􏼐 􏼑, �d6, δ1, (0.5, 0.4)( 􏼁, δ2, (0.6, 0.5)( 􏼁􏼐 􏼑,

�d7, δ1, (0.6, 0.5)( 􏼁, δ2, (0.5, 0.6)( 􏼁􏼐 􏼑, �d5, δ1, (0.7, 0.3)( 􏼁, δ2, (0.4, 0.8)( 􏼁􏼐 􏼑, �d6, δ1, (0.5, 0.4)( 􏼁, δ2, (0.6, 0.5)( 􏼁􏼐 􏼑,

�d10, δ1, (0.7, 0.4)( 􏼁, δ2, (0.7, 0.2)( 􏼁􏼐 􏼑, �d11, δ1, (0.4, 0.5)( 􏼁, δ2, (0.5, 0.3)( 􏼁􏼐 􏼑, �d12, δ1, (0.5, 0.7)( 􏼁, δ2, (0.4, 0.7)( 􏼁􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(14)

Remark 1.

(1) If both (TF(�d)(δ))2 + (JF(�d)(δ))2 ≤ 1 and
TF(�d)(δ) + JF(�d)(δ)≤ 1hold, then PFHSS was re-
duced to IFHSS [56].

(2) If (TF(�d)(δ))2 + (JF(�d)(δ))2 ≤ 1 and each param-
eter of the set of attributes consists of no sub-
attribute, then PFHSS was reduced to PFSS [31].

(3) If both (TF(�d)(δ))2 + (JF(�d)(δ))2 ≤ 1 and
TF(�d)(δ) + JF(�d)(δ)≤ 1 hold and a set of attributes
contains only one parameter with no subattributes,
then PFHSS was reduced to IFSS [22].

For simplicity, we will express Fδi
(�dj) � (T􏼈 F(�dj)

(δi),JF(�dj)(δi))|δi ∈ U􏼉 as J�dij
� TF(�dij), andJF(�dij) is

called PFHSN. In the process of applying PFHSNs in actual

problems, it is essential to rank them. For this, the scoring
function of J�dij

is defined as follows:

S J�dij
􏼒 􏼓 � T

2
F �dij( 􏼁

− J
2
F �dij( 􏼁

, S J�dij
􏼒 􏼓 ∈ [−1, 1].

(15)

However, in some cases, the scoring function cannot
compare the two PFHSNs. such as J�d11

� 0.4, 0.7〈 〉 and
J�d12

� 0.5568, 0.8〈 〉, and it is impossible to know which is
greater because S(J�d11

) � 0.33 � S(J�d12
). For this, an ac-

curacy function is defined as follows:

H J�dij
􏼒 􏼓 � T

2
F �dij( 􏼁

+ J
2
F �dij( 􏼁

, H J�dij
􏼒 􏼓 ∈ [0, 1]. (16)

�us, to compare two PFHSNsJ�dij
andT�dij

, the ranking
and comparison laws are defined as follows:
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(1) If S(J�dij
)>S(T�dij

), then J�dij
>T�dij

.
(2) If S(J�dij

) � S(T�dij
), then the following holds:

(i) If H(J�dij
)>H(T�dij

), then J�dij
>T�dij

.
(ii) If H(J�dij

) � H(T�dij
), then J�dij

� T�dij
.

3. Correlation Coefficient for Pythagorean
Fuzzy Hypersoft Set

In this section, the concept of correlation coefficient and
weighted correlation coefficient and some aggregation op-
erators on PFHSS have been proposed with some basic
properties.

Definition 7. Let (F,A
···

) � (δi, TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs defined over a universe of discourseU. �en,

their informational energies of (F,A
···

) and (G,B
···

) can be
described as follows:

ζPFHSS(F,A
···

) � 􏽘
m

k�1
􏽘

n

i�1
TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡,

ζPFHSS(G,B
···

) � 􏽘
m

k�1
􏽘

n

i�1
TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡.

(17)

Definition 8. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs defined over a universe of discourseU.�en,
their correlation measure between (F,A

···

) and (G,B
···

) can
be described as follows:

CPFHSS((F,A
···

), (G,B
···

))

� 􏽘
m

k�1
􏽘

n

i�1
TF dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠

+ JF �dk( ) δi( 􏼁􏼒 􏼓
2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼡.

(18)

Theorem 1. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two CPFHSSsS andCIFHSS((F,A
···

), (G,B
···

)) be a correlation
between them, then the following properties hold:

(1) CPFHSS((F,A
···

), (F,A
···

)) � ςPFHSS(F,A
···

).
(2) CPFHSS((G,B

···

), (G,B
···

)) � ςPFHSS(G,B
···

).

Proof. �e proof is trivial.

Definition 9. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs, then correlation coefficient between them is

given as δPFHSS((F,A
···

), (G,B
···

)) and is expressed as follows:

δPFHSS((F,A
···

), (G,B
···

)) �
CPFHSS((F,A

···

), (G,B
···

))
�����������

ςPFHSS(F,A
···

)

􏽱

∗
�����������

ςPFHSS(G,B
···

)

􏽱

δPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1 􏽐

n
i�1 TF dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡

�������������������������������������

􏽐
m
k�1 􏽐

n
i�1 TF dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

􏽳 �������������������������������������

􏽐
m
k�1 􏽐

n
i�1 TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

􏽳 .

(19)

Theorem 2. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs, then CC between them satisfies the following
properties:

(1) 0≤ δPFHSS((F,A
···

), (G,B
···

))≤ 1.
(2) δPFHSS((F,A

···

), (G,B
···

)) � δPFHSS((G,B
···

), (F,A
···

)).

(3) If (F,A
···

) � (G,B
···

), that is, ∀i, k, TF(�dk)

(δi) � TG(�dk)(δi), andJF(�dk)(δi) � JG(�dk)(δi), then

δPFHSS((F,A
···

), (G,B
···

)) � 1.

Proof. 1. δPFHSS((F,A
···

), (G,B
···

))≥ 0 is trivial, and here, we

only need to prove that δPFHSS((F,A
···

), (G,B
···

))≤ 1.
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From Equation (18), we have

CPFHSS((F,A
···

), (G,B
···

)) � 􏽘
m

k�1
􏽘

n

i�1
TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡

� 􏽘
m

k�1
TF �dk( ) δ1( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δ1( 􏼁􏼒 􏼓

2
+ JF �dk( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡

+ 􏽘
m

k�1
TF �dk( ) δ2( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δ2( 􏼁􏼒 􏼓

2
+ JF �dk( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡

+

⋮
+

· 􏽘
m

k�1
TF �dk( ) δn( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δn( 􏼁􏼒 􏼓

2
+ JF �dk( ) δn( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡

CPFHSS((F,A
···

), (G,B
···

)) �

TF �d1( ) δ1( 􏼁􏼒 􏼓
2
∗ TG �d1( ) δ1( 􏼁􏼒 􏼓

2
+ JF �d1( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �d1( ) δ1( 􏼁􏼒 􏼓

2
+

TF �d2( ) δ1( 􏼁􏼒 􏼓
2
∗ TG �d2( ) δ1( 􏼁􏼒 􏼓

2
+ JF �d2( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �d2( ) δ1( 􏼁􏼒 􏼓

2
+

⋮
TF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗ TG �dm( ) δ1( 􏼁􏼒 􏼓

2
+ JF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �dm( ) δ1( 􏼁􏼒 􏼓

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+

TF �d1( ) δ2( 􏼁􏼒 􏼓
2
∗ TG �d1( ) δ2( 􏼁􏼒 􏼓

2
+ JF �d1( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �d1( ) δ2( 􏼁􏼒 􏼓

2
+

TF �d2( ) δ2( 􏼁􏼒 􏼓
2
∗ TG �d2( ) δ2( 􏼁􏼒 􏼓

2
+ JF �d2( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �d2( ) δ2( 􏼁􏼒 􏼓

2
+

⋮
TF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗ TG �dm( ) δ2( 􏼁􏼒 􏼓

2
+ JF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �dm( ) δ2( 􏼁􏼒 􏼓

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+

⋮
+

·

TF �d1( ) δn( 􏼁􏼒 􏼓
2
∗ TG �d1( ) δn( 􏼁􏼒 􏼓

2
+ JF �d1( ) δn( 􏼁􏼒 􏼓

2
∗ JG �d1( ) δn( 􏼁􏼒 􏼓

2
+

TF �d2( ) δn( 􏼁􏼒 􏼓
2
∗ TG �d2( ) δn( 􏼁􏼒 􏼓

2
+ JF �d2( ) δn( 􏼁􏼒 􏼓

2
∗ JG �d2( ) δn( 􏼁􏼒 􏼓

2
+

⋮
TF �dm( ) δn( 􏼁􏼒 􏼓

2
∗ TG �dm( ) δn( 􏼁􏼒 􏼓

2
+ JF �dm( ) δn( 􏼁􏼒 􏼓

2
∗ JG �dm( ) δn( 􏼁􏼒 􏼓

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

� 􏽘
m

k�1
TF �dk( ) δ1( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δ1( 􏼁􏼒 􏼓

2
+ TF �dk( ) δ2( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δ2( 􏼁􏼒 􏼓

2
􏼠

+ . . . + TF �dk( ) δn( 􏼁􏼒 􏼓
2
∗ TG �dk( ) δn( 􏼁􏼒 􏼓

2
)

+ 􏽘

m

k�1
JF �dk( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δ1( 􏼁􏼒 􏼓

2
+ JF �dk( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δ2( 􏼁􏼒 􏼓

2
􏼠

+ · · · + JF �dk( ) δn( 􏼁􏼒 􏼓
2
∗ JG �dk( ) δn( 􏼁􏼒 􏼓

2
􏼡.

(20)
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Using Cauchy–Schwarz inequality, (α1β1 + α2β2 + · · · +

αnβn)2 ≤ (α21 + α22 + · · · + α2n) · (β21 + β22 + · · · + β2n), where
(α1 + α2 + · · · + αn) and (β1 + β2 + · · · + βn) ∈∈Rn.

CPFHSS((F,A
···

), (G,B
···

))
2

≤ 􏽘

m

k�1
TF �dk( ) δ1( 􏼁􏼒 􏼓

4
+ TF �dk( ) δ2( 􏼁􏼒 􏼓

4
+ · · · + TF �dk( ) δn( 􏼁􏼒 􏼓

4
􏼠 􏼡 + JF �dk( ) δ1( 􏼁􏼒 􏼓

4
+ JF �dk( ) δ2( 􏼁􏼒 􏼓

4
+ · · · + JF �dk( ) δn( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼨 􏼩

× 􏽘
m

k�1
TG �dk( ) δ1( 􏼁􏼒 􏼓

4
+ TG �dk( ) δ2( 􏼁􏼒 􏼓

4
+ · · · + TG �dk( ) δn( 􏼁􏼒 􏼓

4
􏼠 􏼡 + JG �dk( ) δ1( 􏼁􏼒 􏼓

4
+ JG �dk( ) δ2( 􏼁􏼒 􏼓

4
+ · · · + JG �dk( ) δn( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼨 􏼩

CPFHSS((F,A
···

), (G,B
···

))
2

≤ 􏽘

m

k�1
􏽘

n

i�1
TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡 × 􏽘

m

k�1
􏽘

n

i�1
TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

· CPFHSS((F,A
···

), (G,B
···

))
2 ≤ ςPFHSS(F,A

···

) × ςPFHSS(G,B
···

).

(21)

�erefore, CPFHSS((F,A
···

), (G,B
···

))2 ≤ ςPFHSS(F,A
···

)×

ςPFHSS (G,B
···

). Hence, by using Definition 9, we have δPFHSS

((F,A
···

), (G,B
···

))≤ 1. So, 0≤ δPFHSS((F, A
···

), (G, B
···

))≤ 1.

Proof. 2. �e proof is obvious.

Proof. 3. From Equation (19), we have

δPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1 􏽐

n
i�1 TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡

�������������������������������������

􏽐
m
k�1 􏽐

n
i�1 TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

􏽳 �������������������������������������

􏽐
m
k�1 􏽐

n
i�1 TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

􏽳 .

(22)

As we know that TF(dk)(δi) � TG(�dk)(δi) and
JF(�dk)(δi) � JG(�dk)(δi) ∀ i, k, we get

δPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1 􏽐

n
i�1 TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

�������������������������������������

􏽐
m
k�1 􏽐

n
i�1 TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

􏽳 �������������������������������������

􏽐
m
k�1 􏽐

n
i�1 TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡

􏽳

δPFHSS((F,A
···

), (G,B
···

)) � 1.

(23)

�us, the required result is proved.
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Definition 10. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs. �en, their correlation coefficient is given as

δPFHSS((F,A
···

), (G,B
···

)) and is defined as follows:

δ1PFHSS((F,A
···

), (G,B
···

)) �
CPFHSS((F,A

···

), (G,B
···

))

max ςPFHSS(F,A
···

), ςPFHSS(G,B
···

)􏼚 􏼛

δ1PFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1 􏽐

n
i�1 TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡

max 􏽐
m
k�1 􏽐

n
i�1 TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡, 􏽐

m
k�1 􏽐

n
i�1 TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼨 􏼩

.

(24)

Theorem 3. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs. ?en, the CC between them satisfies the
following properties:

(1) 0≤ δ1PFHSS((F,A
···

), (G,B
···

))≤ 1.

(2) δ1PFHSS((F,A
···

), (G,B
···

)) � δ1PFHSS((G,B
···

), (F,A
···

)).

(3) If (F,A
···

) � (G,B
···

), that is, ∀ i, k, TF(�dk) (δi) �

TG(�dk)(δi) and JF(�dk)(δi) � JG(�dk)(δi), then

δ1PFHSS((F,A
···

), (G,B
···

)) � 1.

Proof. It is similar to �eorem 2.
In this era, it is very necessary to consider the weights of

PFHSS in practical applications. Whenever the decision-

maker adjusts different weights for each alternative in the
universe of discourse, the decision may be different. Con-
sequently, it is particularly significant to plan the weight
before decision-making. Let Ω � Ω1,Ω2,Ω3, . . . ,Ωm􏼈 􏼉

T be
a weight vector for experts such as Ωk > 0, 􏽐

m
k�1Ωk � 1, and

c � c1, c2, c3, . . . , cn􏼈 􏼉
T be a weight vector for parameters

such as ci > 0, 􏽐
n
i�1 ci � 1. In the following, we develop the

WCC between PFHSS by extending Definitions 9 and 10.

Definition 11. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs. �en, their weighted correlation coefficient

is given as δWPFHSS((F,A
···

), (G,B
···

)) and is defined as
follows:

δWPFHSS((F,A
···

), (G,B
···

)) �
CWPFHSS((F,A

···

), (G,B
···

))
�������������

ςWPFHSS(F,A
···

)

􏽱

∗
������������

ςWPFHSS(G,B
···

)

􏽱

δWPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

��������������������������������������������

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

􏽳 ��������������������������������������������

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

􏽳 .

(25)

10 Complexity



Definition 12. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs. �en, their weighted correlation coefficient

is given as δ1WPFHSS((F,A
···

), (G,B
···

)) and is defined as
follows:

δ1WPFHSS((F,A
···

), (G,B
···

)) �
CWPFHSS((F,A

···

), (G,B
···

))

max ςWPFHSS(F,A
···

), ςWPFHSS(G,B
···

)􏼚 􏼛

δ1WPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

max 􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡, 􏽐

m
k�1 _ωk 􏽐

m
k�1Ωk 􏽐

n
i�1 ci TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡􏼠 􏼡􏼨 􏼩

.

(26)

If we consider Ω � {(1/m), (1/m),. . ., (1/m)} and c

� {(1/n), (1/n),. . ., (1/n)}, then δWPFHSS((F,A
···

), (G,B
···

))

and δ1WPFHSS((F,A
···

), (G,B
···

)) are reduced to

δWPFHSS((F,A
···

), (G,B
···

)) and δ1WPFHSS((F,A
···

), (G,B
···

)),
respectively.

Theorem 4. Let (F,A
···

) � (δi,TF(�dk)(δi),JF(�dk)(δi))|􏽮

δi ∈ U} and (G,B
···

) � (δi,TG(�dk)(δi),JG(�dk)(δi))|δi ∈ U􏽮 􏽯

be two PFHSSs. ?en, the CC between them satisfies the
following properties:

(1) 0≤ δWPFHSS((F,A
···

), (G,B
···

))≤ 1.

(2) δWPFHSS((F,A
···

), (G,B
···

)) � δWPFHSS((G,B
···

),

(F,A
···

)).
(3) If (F,A

···

) � (G,B
···

), that is, ∀ i, k,
TF(�dk)(δi) � TG(�dk)(δi), and JF(�dk)(δi) �

JG(�dk)(δi), then δWPFHSS((F,A
···

), (G,B
···

)) � 1.

Proof. �e inequality δWPFHSS((F,A
···

), (G,B
···

))≥ 0 is trivial,
and here, we only need to prove that

δWPFHSS((F,A
···

), (G,B
···

))≤ 1.
As we know,

CWPFSS((F,A
···

), (G,B
···

)) � 􏽘

m

k�1
Ωk 􏽘

n

i�1
ci TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡⎛⎝ ⎞⎠

� 􏽘
m

k�1
Ωk c1 TF �dk( ) δ1( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δ1( 􏼁􏼒 􏼓

2
+ JF �dk( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

+ 􏽘
m

k�1
Ωk c2 TF �dk( ) δ2( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δ2( 􏼁􏼒 􏼓

2
+ JF �dk( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

+

⋮
+

􏽘

m

k�1
Ωk cn TF �dk( ) δn( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δn( 􏼁􏼒 􏼓

2
+ JF �dk( ) δn( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

�

Ω1 c1 TF �d1( ) δ1( 􏼁􏼒 􏼓
2
∗ TG �d1( ) δ1( 􏼁􏼒 􏼓

2
+ JF �d1( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �d1( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡+

Ω2 c1 TF �d2( ) δ1( 􏼁􏼒 􏼓
2
∗ TG �d2( ) δ1( 􏼁􏼒 􏼓

2
+ JF �d2( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �d2( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡+

⋮
+

Ωm c1 TF �dm( ) δ1( 􏼁􏼒 􏼓
2
∗ TG �dm( ) δ1( 􏼁􏼒 􏼓

2
+ JF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗ JG �dm( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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+

Ω1 c2 TF �d1( ) δ2( 􏼁􏼒 􏼓
2
∗ TG �d1( ) δ2( 􏼁􏼒 􏼓

2
+ JF �d1( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �d1( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡+

Ω2 c2 TF �d2( ) δ2( 􏼁􏼒 􏼓
2
∗ TG �d2( ) δ2( 􏼁􏼒 􏼓

2
+ JF �d2( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �d2( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡+

⋮

+

Ωm c2 TF �dm( ) δ2( 􏼁􏼒 􏼓
2
∗ TG �dm( ) δ2( 􏼁􏼒 􏼓

2
+ JF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗ JG �dm( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⋮

+

Ω1 cn TF �d1( ) δn( 􏼁􏼒 􏼓
2
∗ TG �d1( ) δn( 􏼁􏼒 􏼓

2
+ JF �d1( ) δn( 􏼁􏼒 􏼓

2
∗ JG �d1( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡+

Ω2 cn TF �d2( ) δn( 􏼁􏼒 􏼓
2
∗ TG �d2( ) δn( 􏼁􏼒 􏼓

2
+ JF �d2( ) δn( 􏼁􏼒 􏼓

2
∗ JG �d2( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡+

⋮

+

Ωm cn TF �dm( ) δn( 􏼁􏼒 􏼓
2
∗ TG �dm( ) δn( 􏼁􏼒 􏼓

2
+ JF �dm( ) δn( 􏼁􏼒 􏼓

2
∗ JG �dm( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

Ω1
��
c1

√
TF �d1( ) δ1( 􏼁􏼒 􏼓

2
∗ ��

c1
√

TG �d1( ) δ1( 􏼁􏼒 􏼓
2

+
��
c1

√
JF �d1( ) δ1( 􏼁􏼒 􏼓

2
∗ ��

c1
√

JG �d1( ) δ1( 􏼁􏼒 􏼓
2

􏼠 􏼡+

Ω2
��
c1

√
TF �d2( ) δ1( 􏼁􏼒 􏼓

2
∗ ��

c1
√

TG �d2( ) δ1( 􏼁􏼒 􏼓
2

+
��
c1

√
JF �d2( ) δ1( 􏼁􏼒 􏼓

2
∗ ��

c1
√

JG �d2( ) δ1( 􏼁􏼒 􏼓
2

􏼠 􏼡+

⋮

+

Ωm

��
c1

√
TF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗ ��

c1
√

TG �dm( ) δ1( 􏼁􏼒 􏼓
2

+
��
c1

√
JF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗ ��

c1
√

JG �dm( ) δ1( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

Ω1
��
c2

√
TF �d1( ) δ2( 􏼁􏼒 􏼓

2
∗ ��

c2
√

TG �d1( ) δ2( 􏼁􏼒 􏼓
2

+
��
c2

√
JF �d1( ) δ2( 􏼁􏼒 􏼓

2
∗ ��

c2
√

JG �d1( ) δ2( 􏼁􏼒 􏼓
2

􏼠 􏼡+

Ω2
��
c2

√
TF �d2( ) δ2( 􏼁􏼒 􏼓

2
∗ ��

c2
√

TG �d2( ) δ2( 􏼁􏼒 􏼓
2

+
��
c2

√
JF �d2( ) δ2( 􏼁􏼒 􏼓

2
∗ ��

c2
√

JG �d2( ) δ2( 􏼁􏼒 􏼓
2

􏼠 􏼡+

⋮

+

Ωm

��
c2

√
TF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗ ��

c2
√

TG �dm( ) δ2( 􏼁􏼒 􏼓
2

+
��
c2

√
JF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗ ��

c2
√

JG �dm( ) δ2( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

12 Complexity



+

⋮

+

Ω1
��
cn

√
TF �d1( ) δn( 􏼁􏼒 􏼓

2
∗ ��

cn

√
TG �d1( ) δn( 􏼁􏼒 􏼓

2
+

��
cn

√
JF �d1( ) δn( 􏼁􏼒 􏼓

2
∗ ��

cn

√
JG �d1( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡+

Ω2
��
cn

√
TF �d2( ) δn( 􏼁􏼒 􏼓

2
∗ ��

cn

√
TG �d2( ) δn( 􏼁􏼒 􏼓

2
+

��
cn

√
JF �d2( ) δn( 􏼁􏼒 􏼓

2
∗ ��

cn

√
JG �d2( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡+

⋮

+

Ωm

��
cn

√
TF �dm( ) δn( 􏼁􏼒 􏼓

2
∗ ��

cn

√
TG �dm( ) δn( 􏼁􏼒 􏼓

2
+

��
cn

√
JF �dm( ) δn( 􏼁􏼒 􏼓

2
∗ ��

cn

√
JG �dm( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

���
Ω1

􏽰 ��
c1

√
TF �d1( ) δ1( 􏼁􏼒 􏼓

2
∗

���
Ω1

􏽰 ��
c1

√
TG �d1( ) δ1( 􏼁􏼒 􏼓

2
+

���
Ω1

􏽰 ��
c1

√
JF �d1( ) δ1( 􏼁􏼒 􏼓

2
∗

���
Ω1

􏽰 ��
c1

√
JG �d1( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡+

���
Ω2

􏽰 ��
c1

√
TF �d2( ) δ1( 􏼁􏼒 􏼓

2
∗

���
Ω2

􏽰 ��
c1

√
TG �d2( ) δ1( 􏼁􏼒 􏼓

2
+

���
Ω2

􏽰 ��
c1

√
JF �d2( ) δ1( 􏼁􏼒 􏼓

2
∗

���
Ω2

􏽰 ��
c1

√
JG �d2( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡+

⋮

+

���
Ωm

􏽰 ��
c1

√
TF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗

���
Ωm

􏽰 ��
c1

√
TG �dm( ) δ1( 􏼁􏼒 􏼓

2
+

���
Ωm

􏽰 ��
c1

√
JF �dm( ) δ1( 􏼁􏼒 􏼓

2
∗

���
Ωm

􏽰 ��
c1

√
JG �dm( ) δ1( 􏼁􏼒 􏼓

2
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

���
Ω1

􏽰 ��
c2

√
TF �d1( ) δ2( 􏼁􏼒 􏼓

2
∗

���
Ω1

􏽰 ��
c2

√
TG �d1( ) δ2( 􏼁􏼒 􏼓

2
+

���
Ω1

􏽰 ��
c2

√
JF �d1( ) δ2( 􏼁􏼒 􏼓

2
∗

���
Ω1

􏽰 ��
c2

√
JG �d1( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡+

���
Ω2

􏽰 ��
c2

√
TF �d2( ) δ2( 􏼁􏼒 􏼓

2
∗

���
Ω2

􏽰 ��
c2

√
TG �d2( ) δ2( 􏼁􏼒 􏼓

2
+

���
Ω2

􏽰 ��
c2

√
JF �d2( ) δ2( 􏼁􏼒 􏼓

2
∗

���
Ω2

􏽰 ��
c2

√
JG �d2( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡+

⋮

+

���
Ωm

􏽰 ��
c2

√
TF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗

���
Ωm

􏽰 ��
c2

√
TG �dm( ) δ2( 􏼁􏼒 􏼓

2
+

���
Ωm

􏽰 ��
c2

√
JF �dm( ) δ2( 􏼁􏼒 􏼓

2
∗

���
Ωm

􏽰 ��
c2

√
JG �dm( ) δ2( 􏼁􏼒 􏼓

2
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⋮

+
���
Ω1

􏽰 ��
cn

√
TF �d1( ) δn( 􏼁􏼒 􏼓

2
∗

���
Ω1

􏽰 ��
cn

√
TG �d1( ) δn( 􏼁􏼒 􏼓

2
+

���
Ω1

􏽰 ��
cn

√
JF �d1( ) δn( 􏼁􏼒 􏼓

2
∗

���
Ω1

􏽰 ��
cn

√
JG �d1( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡+

���
Ω2

􏽰 ��
cn

√
TF �d2( ) δn( 􏼁􏼒 􏼓

2
∗

���
Ω2

􏽰 ��
cn

√
TG �d2( ) δn( 􏼁􏼒 􏼓

2
+

���
Ω2

􏽰 ��
cn

√
JF �d2( ) δn( 􏼁􏼒 􏼓

2
∗

���
Ω2

􏽰 ��
cn

√
JG �d2( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡+

⋮

+

���
Ωm

􏽰 ��
cn

√
TF �dm( ) δn( 􏼁􏼒 􏼓

2
∗

���
Ωm

􏽰 ��
cn

√
TG �dm( ) δn( 􏼁􏼒 􏼓

2
+

���
Ωm

􏽰 ��
cn

√
JF �dm( ) δn( 􏼁􏼒 􏼓

2
∗

���
Ωm

􏽰 ��
cn

√
JG �dm( ) δn( 􏼁􏼒 􏼓

2
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(27)
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By using Cauchy–Schwarz inequality, we get

CWPFHSS((F,A
···

), (G,B
···

))
2

≤

Ω1c1 TF �d1( ) δ1( 􏼁􏼒 􏼓
4

+ JF �d1( ) δ1( 􏼁􏼒 􏼓
4

􏼠 􏼡 +Ω2c1 TF �d2( ) δ1( 􏼁􏼒 􏼓
4

+ JF �d2( ) δ1( 􏼁􏼒 􏼓
4

􏼠 􏼡 + · · · +

Ωmc1 TF �dm( ) δ1( 􏼁􏼒 􏼓
4

+ JF �dm( ) δ1( 􏼁􏼒 􏼓
4

􏼠 􏼡

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

Ω1c2 TF �d1( ) δ2( 􏼁􏼒 􏼓
4

+ JF �d1( ) δ2( 􏼁􏼒 􏼓
4

􏼠 􏼡 +Ω2c2 TF �d2( ) δ2( 􏼁􏼒 􏼓
4

+ JF �d2( ) δ2( 􏼁􏼒 􏼓
4

􏼠 􏼡 + · · · +

Ωmcm TF �dm( ) δ2( 􏼁􏼒 􏼓
4

+ JF �dm( ) δ2( 􏼁􏼒 􏼓
4

􏼠 􏼡

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

⋮
+

Ω1cn TF �d1( ) δn( 􏼁􏼒 􏼓
4

+ JF �d1( ) δn( 􏼁􏼒 􏼓
4

􏼠 􏼡 +Ω2cn TF �d2( ) δn( 􏼁􏼒 􏼓
4

+ JF �d2( ) δn( 􏼁􏼒 􏼓
4

􏼠 􏼡 + · · · +

Ωmcn TF �dm( ) δn( 􏼁􏼒 􏼓
4

+ JF �dm( ) δn( 􏼁􏼒 􏼓
4

􏼠 􏼡

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

·

Ω1c1 TG �d1( ) δ1( 􏼁􏼒 􏼓
4

+ JG �d1( ) δ1( 􏼁􏼒 􏼓
4

􏼠 􏼡 +Ω2c1 TG �d2( ) δ1( 􏼁􏼒 􏼓
4

+ JG �d2( ) δ1( 􏼁􏼒 􏼓
4

􏼠 􏼡 + · · · +

Ωmc1 TG �dm( ) δ1( 􏼁􏼒 􏼓
4

+ JG �dm( ) δ1( 􏼁􏼒 􏼓
4

􏼠 􏼡

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

Ω1c2 TG �d1( ) δ2( 􏼁􏼒 􏼓
4

+ JG �d1( ) δ2( 􏼁􏼒 􏼓
4

􏼠 􏼡 +Ω2c2 TG �d2( ) δ2( 􏼁􏼒 􏼓
4

+ JG �d2( ) δ2( 􏼁􏼒 􏼓
4

􏼠 􏼡 + · · · +

Ωmcm TG �dm( ) δ2( 􏼁􏼒 􏼓
4

+ JG �dm( ) δ2( 􏼁􏼒 􏼓
4

􏼠 􏼡

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

⋮
+

Ω1cn TG �d1( ) δn( 􏼁􏼒 􏼓
4

+ JG �d1( ) δn( 􏼁􏼒 􏼓
4

􏼠 􏼡 +Ω2cn TG �d2( ) δn( 􏼁􏼒 􏼓
4

+ JG �d2( ) δn( 􏼁􏼒 􏼓
4

􏼠 􏼡 + · · · +

Ωmcn TG �dm( ) δn( 􏼁􏼒 􏼓
4

+ JG �dm( ) δn( 􏼁􏼒 􏼓
4

􏼠 􏼡

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

CWPFHSS((F,A
···

), (G,B
···

))
2

≤ 􏽘
m

k�1
Ωk 􏽘

n

i�1
ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡⎛⎝ ⎞⎠ × 􏽘

m

k�1
Ωk 􏽘

n

i�1
ci TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡⎛⎝ ⎞⎠

CWPFHSS((F,A
···

), (G,B
···

))
2 ≤ ςWPFSS(F,A

···

)∗ ςWPFSS(G,B
···

).

(28)

�erefore, CWPFHSS((F,A
···

), (G,B
···

))≤������������������������

ςWPFSS(F,A
···

)∗ ςWPFSS(G,B
···

)

􏽱

; hence, 0≤ δWPFSS((F,A
···

),

(G,B
···

))≤ 1.

Proof. 2. �e proof is obvious.

Proof. 3. From Equation (25), we have

δWPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ TG �dk( ) δi( 􏼁􏼒 􏼓

2
+ JF �dk( ) δi( 􏼁􏼒 􏼓

2
∗ JG �dk( ) δi( 􏼁􏼒 􏼓

2
􏼠 􏼡􏼠 􏼡

��������������������������������������������

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

􏽳 ��������������������������������������������

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TG �dk( ) δi( 􏼁􏼒 􏼓

4
+ JG �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

􏽳 .

(29)
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As we know that TF(dk)(δi) � TG(�dk)(δi) and
JF(�dk)(δi) � JG(�dk)(δi) ∀ i, k, we get

δWPFHSS((F,A
···

), (G,B
···

)) �

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

��������������������������������������������

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

􏽳 ��������������������������������������������

􏽐
m
k�1Ωk 􏽐

n
i�1 ci TF �dk( ) δi( 􏼁􏼒 􏼓

4
+ JF �dk( ) δi( 􏼁􏼒 􏼓

4
􏼠 􏼡􏼠 􏼡

􏽳

δWPFHSS((F,A
···

), (G,B
···

)) � 1.

(30)

�us, the required result is proved.

Definition 13. Let J�dk
� (T�dk

,J�dk
), J�d11

� (T�d11
,J�d11

),
andJ�d12

� (T�d12
,J�d12

) be three PFHSNs and α be a positive
real number; by algebraic norms, we have

(1) J�d11
⊕J�d12

�
�������������������
T2

�d11
+T2

�d12
−T2

�d11
T2

�d12

􏽱
,J�d11

J�d12
􏼜 􏼝.

(2) J�d11
⊗J�d12

� T�d11
T�d12

,
������������������
J2

�d11
+J2

�d12
−J2

�d11
J2

�d12

􏽱
􏼜 􏼝.

(3) αJ�dk
�

�������������

1 − 􏼒1 − T2
�dk

􏼓
α

􏽲

,Jα
�dk

􏼪 􏼫.

(4) Jα
�dk

� Tα
�dk

,

�������������

1 − 􏼒1 − J2
�dk

􏼓
α

􏽲

􏼪 􏼫.

Some averaging and geometric aggregation operators for
PFHSSs have been defined based on the above laws for the
collection of PFHSNs.

Definition 14. Let J�dij
� (T�dij

,J�dij
) be a PFHSN, Ωi and cj

be the weight vector for expert’s and subattributes of the
considered parameters, respectively, with given conditions
Ωi > 0, 􏽐

n
i�1Ωi � 1, cj > 0, and 􏽐

m
j�1 cj � 1. �en, PFHSWA

operator is defined as PFHSWA:Δn ⟶ Δ, which is defined
as follows:

PFHSWA J�d11
, J�d12

, . . . ,J�dnm
􏼐 􏼑 � ⊕mj�1cj ⊕

n
i�1ΩiJ�dij

􏼒 􏼓

�

������������������������

1 − 􏽙
m

j�1
􏽙

n

i�1
1 − T

2
�dij

􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

􏽶
􏽴

, 􏽙
m

j�1
􏽙

n

i�1
J�dij

􏼒 􏼓
Ωi

⎞⎠

cj

⎛⎝ 􏼫,􏼪

(31)

where Ωi and cj are the weight vector for experts and
subattributes of the parameters, respectively, with given
conditions Ωi > 0, 􏽐

n
i�1Ωi � 1, cj > 0, and 􏽐

m
j�1 cj � 1.

Remark 2.

(1) If both T2
�dij

+ J2
�dij

≤ 1 and T�dij
+ J�dij
≤ 1 hold, then

the PFHSWA operator was reduced to the IFHSWA
operator [56].

(2) If both T2
�dij

+ J2
�dij

≤ 1 and T�dij
+ J�dij
≤ 1 hold and

a set of attributes contains only one parameter with

no subattributes, then the PFHSWA operator was
reduced to the IFSWA operator [59].

Definition 15. Let J�dij
� (T�dij

,J�dij
) be a PFHSN, and Ωi

and cj be the weight vector for experts and subattributes of
considered parameters, respectively, with given conditions
Ωi > 0, 􏽐

n
i�1Ωi � 1, cj > 0, and 􏽐

m
j�1 cj � 1, then PFHSWG

operator is defined as PFHSWG: Δn⟶Δ, which is defined
as follows:

PFHSWG J�d11
, J�d12

, . . . ,J�dnm
􏼐 􏼑 � ⊗m

j�1 ⊗
n
i�1J
Ωi

�dnm

􏼒 􏼓
cj

PFHSWG J�d11
, J�d12

, . . . ,J�dnm
􏼐 􏼑 � 􏽙

m

j�1
􏽙

n

i�1
T�dij

􏼒 􏼓
Ωi

⎛⎝ ⎞⎠

cj

,

��������������������������

1 − 􏽙
m

j�1
􏽙

n

i�1
1 − J

2
�dij

􏼒 􏼓
Ωi

⎞⎠

cj

⎛⎝ 􏼫,

􏽶
􏽴

􏼪

(32)
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where Ωi and cj are the weight vector for experts and
subattributes of the given parameters, respectively, with
given conditions Ωi > 0, 􏽐

n
i�1Ωi � 1, cj > 0, and 􏽐

m
j�1 cj � 1.

Remark 3.

(1) If both T2
�dij

+ J2
�dij
≤ 1 and T�dij

+ J�dij
≤ 1 hold, then

the PFHSWG operator was reduced to the IFHSWG

operator [56].
(2) If both T2

�dij
+ J2

�dij

≤ 1 and T�dij
+ J�dij
≤ 1 hold and

a set of attributes contains only one parameter with
no subattributes, then the PFHSWG operator was
reduced to the IFSWG operator [59].

4. TOPSIS Approach on PFHSS for MAGDM
ProblemBasedon theCorrelationCoefficient

In this section, we are going to develop a methodology for
solving decision-making issues through continuing the
TOPSIS method for PFHSS information based on correla-
tion coefficients. Hwang and Yoon [37] developed the
TOPSIS method and used it to promote the order of eval-
uation components of positive and negative ideal solutions
for decision-making issues. By utilizing the TOPSIS method,
we will be able to discover the best possible choices which
have the smallest and largest distances to PIS and NIS,
respectively. �e TOPSIS technique ensures that the cor-
relation measure can be used to distinguish positive ideals
from negative ideals by choosing rankings. Generally, in-
vestigators are using the TOPSIS method to find closeness
coefficients along with distinctive distance forms as well as

comparable measures. �e TOPSIS technique with corre-
lation coefficients is superior for locating closeness co-
efficients instead of distance as well as similarity measures
because the correlation measure retains the linear re-
lationship between the factors considered. By utilizing the
developed CC, a TOPSIS method is presented to select the
most suitable option.

4.1. Proposed Decision-Making Approach. Assume a set of
“s” alternatives such as Q � Q1,Q2,Q3, . . . ,Qs􏼈 􏼉 for assess-
ment under the team of experts X � X1,X2,X3, . . . ,Xn􏼈 􏼉

with weights Ω � (Ω1,Ω1, . . . ,Ωn)T and Ωi > 0, 􏽐
n
i�1Ωi � 1.

Let L � d1, d2, . . . , dm􏼈 􏼉 be a set of attributes and
J′ � (d1ρ × d2ρ × · · · × dmρ), for all ρ ∈ 1, 2, . . . , t{ }􏽮 􏽯, be
a collection of their corresponding subattributes, with
weights c � (c1ρ, c2ρ, c3ρ, . . . , cmρ)

T such as cρ > 0,
􏽐

t
ρ�1 cρ � 1. �e elements in the collection of subattributes

are multivalued; for the sake of convenience, the elements of
J′ can be expressed asJ′ � �dz: z∈ 1, 2, . . . , k{ }􏽮 􏽯. �e team
of experts Xi: i � 1, 2, . . . , n􏼈 􏼉 evaluate the alternatives
Q(z): z � 1, 2, . . . , s􏽮 􏽯 based on the desired subattributes of
the considered parameters �dz: z � 1, 2, . . . , k􏽮 􏽯 given in the
form of PFHSNs such as (J

(z)
�dij

)n×z � (T
(z)
�dij

,J
(z)
�dij

)n×z, where

0≤T(z)
�dij

,J
(z)
�dij

≤ 1, and (T
(z)
�dij

)2 + (J
(z)
�dij

)2 ≤ 1 for all i, j.

Step 1. Construct a matrix for each alternative
Q(z): z � 1, 2, . . . , s􏽮 􏽯 in the form of PFHSNs by using
subattributes of the given attributes such as follows:

�d1
�d2 . . . .. �dz

Q
(z)

,J′􏼐 􏼑
n×δ �

X1

X2

⋮

Xn

T
(z)
�d11

,J
(z)
�d11

􏼒 􏼓 T
(z)
�d12

,J
(z)
�d12

􏼒 􏼓 · · · T
(z)
�d1 z

,J
(z)
�d1 z

􏼒 􏼓

T
(z)
�d21

,J
(z)
�d21

􏼒 􏼓 T
(z)
�d22

,J
(z)
�d22

􏼒 􏼓 · · · T
(z)
�d2 z

,J
(z)
�d2 z

􏼒 􏼓

⋮ ⋮ ⋮ ⋮

T
(z)
�dn1

,J
(z)
�dn1

􏼒 􏼓 T
(z)
�dn2

,J
(z)
�dn2

􏼒 􏼓 · · · T
(z)
�dn z

,J
(z)
�dn z

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(33)

Step 2. Normalize the collective information decision ma-
trix by converting the rating value of the cost-type pa-
rameters into benefit-type parameters with the help of
normalization formula:

hij �

J
c
�dij

� J
(z)
�dij

,T
(z)
�dij

􏼒 􏼓; cost − type parameter,

J�dij
� T

(z)
�dij

,J
(z)
�dij

􏼒 􏼓; benefit − type parameter.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

Step 3. Construct the weighted decision matrix for each
alternative Q

(z)
� (J

(z)
�dij

)n×z, where

J
(z)
�dij

� cjΩiJ
(z)
�dij

�

������������������

1 − 1 − T
2
�dij

􏼒 􏼓
Ωi

􏼠 􏼡

cj

􏽳

, J�dij
􏼒 􏼓

Ωi

􏼠 􏼡

cj

⎛⎝ ⎞⎠

� T
(z)
�dij

,J
(z)
�dij

􏼒 􏼓,

(35)

where Ωi and cj are the weights for the ith expert and jth

subattribute, respectively.
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Step 4. Find the indices hij � argmaxz θ(z)
ij􏽮 􏽯 and

gij � argminz θ(z)
ij􏽮 􏽯 for each expert Xi and subattribute �dj

from CC matrices and determine the PIA and NIA based on
indices as follows:

L
+

� T
+
�dij

,J
+
�dij

􏼒 􏼓
n×z

� T
hij( 􏼁

�dij

,J
hij( 􏼁

�dij

􏼠 􏼡, (36)

L
−

� T
−
�dij

,J
−
�dij

􏼒 􏼓
n×z

� T
gij( 􏼁

�dij

,J
gij( 􏼁

�dij

􏼠 􏼡. (37)

Step 5. Compute the CC between each alternative of
weighted decision matrices Q(z) and PIA L+ as follows:

p
(z)

� δPFHSS Q
(z)

,L
+

􏼒 􏼓 �
CPFHSS Q

(z)
,L

+
􏼒 􏼓

������������������

ςPFHSSQ
(z) ∗ ςPFHSSL

+
􏽱

�
􏽐

m
j�1 􏽐

n
i�1 T

(z)
�dij
∗T+

�dij
+ J

(z)
�dij
∗J+

�dij
􏼒 􏼓

��������������������������

􏽐
m
j�1 􏽐

n
i�1 T

(z)
�dij

􏼒 􏼓
2

+ J
(z)
�dij

􏼒 􏼓
2

􏼠 􏼡

􏽳 ��������������������������

􏽐
m
j�1 􏽐

n
i�1 T

+
�dij

􏼒 􏼓
2

+ J
+
�dij

􏼒 􏼓
2

􏼠 􏼡

􏽳 .

(38)

Step 6. Compute the CC between each alternative of the
weighted decision matrix Q

(z) and NIA L− as follows:

q
(z)

� δPFHSS Q
(z)

,L
−

􏼒 􏼓 �
CPFHSS Q

(z)
,L

−
􏼒 􏼓

������������������

ςPFHSSQ
(z) ∗ ςPFHSSL

−

􏽱

�
􏽐

m
j�1 􏽐

n
i�1 T

(z)
�dij
∗T−

�dij
+ J

(z)
�dij
∗J−

�dij
􏼒 􏼓

��������������������������

􏽐
m
j�1 􏽐

n
i�1 T

(z)
�dij

􏼒 􏼓
2

+ J
(z)
�dij

􏼒 􏼓
2

􏼠 􏼡

􏽳 �������������������������

􏽐
m
j�1 􏽐

n
i�1 T

−
�dij

􏼒 􏼓
2

+ J
−
�dij

􏼒 􏼓
2

􏼠 􏼡

􏽳 .

(39)

Step 7. �e closeness coefficient for each alternative can be
found as follows:

R
(z)

�
K Q

(z)
,L

−
􏼒 􏼓

K Q
(z)

,L
+

􏼒 􏼓 + K Q
(z)

,L
−

􏼒 􏼓

, (40)

where

K Q
(z)

,L
−

􏼒 􏼓 � 1 − q
(z)

,

K Q
(z)

,L
+

􏼒 􏼓 � 1 − p
(z)

.
(41)

Step 8. Choose the alternative with a maximum value of
closeness coefficient.

Step 9. Analyze the ranking of the alternatives.
�e flow chart of the proposed method can be seen in

Figure 1.

4.2. Selection of an Effective Mask Based on the Proposed
TOPSIS Technique. To show the importance as well as the
usefulness of the proposed model based on the PFHSS data,

we investigated the numerical example of choosing an an-
tivirus mask in the global serious situation of the COVID-19
disease. Everybody in the world has quite a lot of trouble in
acquiring an excellent as well as multipurpose antivirus mask
to prevent themselves from contracting COVID-19. In this
risky COVID-19 situation, the overall demand for antivirus
masks seems to have exaggerated. Due to increased demand, it
is really difficult to find suitable gas masks in the market. �e
increase in demand has also caused second-class gas masks to
come into the market. Raza et al. [60] discussed the complex
transmission of the epidemic problems by utilizing the
nonlinear fractional-order Ebola virus mathematical model.
�ey developed the fractional-order Ebola virus transmission
model for the treatment and control to reduce its effect on
a population that plays an important role in public health.
Ahmed et al. [61] introduced somemodels for the COVID-19
that can address important questions about global health care
and suggest important notes. Yang et al. [57] and Shahzadi
and Akram [58] used the spherical normal fuzzy sets and
formation fuzzy soft Yager ordered weighted average and
geometric operators for the selection of effective gas masks
during the COVID-19 pandemic.�emajor inspiration of the
current application is to pick out multipurpose gas masks
according to the TOPSIS technique for PFHSS to reduce the
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spreading of coronavirus. �e team of four expertsX � X1,􏼈

X2,X3,X4} having weights (0.2, 0.3, 0.4, 0.1)T evaluated the
rating of the different types of antivirus masks Q � Q1 �􏼈

KN95,Q2 � disposablemedicalmask, Q3 � surgicalmask, Q4

� home− made clothmask}. �e team of experts decides the
criteria (attributes) for the selection of antivirus mask as
follows: let L � ℓ1 � anti − static properties, ℓ2 � efficiency,􏼈

ℓ3 � quality} be a collection of attributes, and their corre-
sponding subattributes are given as antistatic properties� ℓ1 �

d11 �􏼈 limited performance of protective clothingagainst the
flame spread d12 �Protection against infectious bacteria}, efficie
ncy� ℓ2 � d21 � Good breathability,􏼈 d22 � Goodfiltering res
ults}, and quality� ℓ3 � d31 �􏼈 leakage ratio, d32 � reusability}.
Let J′ � ℓ1 × ℓ2 × ℓ3 be a set of subattributes:

J′ � ℓ1 × ℓ2 × ℓ3 � d11, d12􏼈 􏼉 × d21, d22􏼈 􏼉 × d31, d32􏼈 􏼉

�
d11, d21, d31( 􏼁, d11, d21, d32( 􏼁, d11, d22, d31( 􏼁, d11, d22, d32( 􏼁,
d12, d21, d31( 􏼁, d12, d21, d32( 􏼁, d12, d22, d31( 􏼁, d12, d22, d32( 􏼁

􏼨 􏼩.
(42)

LetJ′ � �d1,
�d2,

�d3,
�d4,

�d5,
�d6,

�d7,
�d8􏽮 􏽯 be a set of all multi-

subattributes with weights (0.12, 0.18, 0.1, 0.15, 0.05, 0.22,

0.08, 0.1)T. Each expert will evaluate the ratings of antivirus
masks in the form of PFHSNs for each subattribute of the
considered parameters. �e developed method to find the
best alternative is as follows (Tables 1–4):

(1) Step 1. Develop the decision matrices for each al-
ternative under defined multi-subattributes
according to each decision-makers rating in terms of
PFHSNs.

(2) Step 2. All criteria are of benefit types, so no need to
normalize them.

Ranking order of 
alternatives

Choose the alternative with maxi-
mum value of close coefficient

To determine PIA and NIA 
compute the indices

Compute the correlation coefficient among weighted 
decision matrix and PIA and NIA, respectively

Compute the closeness 
coefficient

Developed weighted decision matrix for each alternative by utilizing 
PFHSWA operator or PFHSWG operator

Converts rating value of its into benefit-type 
sub attributes by using normalization rule

Yes NoIdentify the cost-
type subattributes

Construction of decision matrices for alternatives according to experts 
evaluation in form of PFHSNs in accordance with their sub attributes

Define the alternatives Appoint a team of experts Choose the set of attributes

Choose the sub attributes for each 
parameter

Input

Figure 1: Flow chart of TOPSIS method under PFHSS Scenario.
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(3) Step 3. Construct the weighted decision matrix for
each alternative Q(z)

� (L
(z)

ij )n×z by using Equation
(35) given in Tables 5–8.

(4) Step 4. Determine the PIA and NIA based on indices
by using Equations (36) and (37):

L
+

�

(0.6867, 0.9915) (0.5691, 0. 9576) (0.6791, 0. 9762) (0.6694, 0.9848) (0.8241, 0.9840) (0.5021, 0.9778) (0.8073, 0.9889) (0.6791, 0.9762)

(0.7200, 0. 9872) (0.6109, 0.9517) (0.7068, 0.9529) (0.7781, 0. 9301) (0.9070, 0.9821) (0.6509, 0.9553) (0.8033, 0.9915) (0.7068, 0.9933)

(0.7443, 0.9438) (0.6422, 0. 9513) (0.7270, 0.9798) (0.7386, 0.9465) (0.8527, 0.9683) (0.4959, 0.9225) (0.7749, 0.9498) (0.7819, 0.9727)

(0.6328, 0. 9891) (0.4402, 0.9908) (0.6829, 0.9909) (0.5644, 0.9821) (0.8457, 0.9974) (0.4321, 0.9800) (0.7648, 0.9945) (0.6339, 0.9880)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L
−

�

(0.7559, 0.9835) (0.6572, 0.9754) (0.7920, 0.9862) (0.7048, 0.9645) (0.9028, 0.9909) (0.5987, 0.9699) (0.8491, 0.9854) (0.7920, 0.9862)

(0.7599, 0.9754) (0.7038, 0.9728) (0.9085, 0.9333) (0.9009, 0.9301) (0.9070, 0.9897) (0.4661, 0.9236) (0.9089, 0.9621) (0.8671, 0.9645)

(0.8678, 0.9257) (0.7379, 0.9513) (0.9083, 0.9529) (0.8376, 0.9465) (0.9190, 0.9898) (0.6897, 0.9408) (0.8509, 0.9781) (0.9083, 0.9377)

(0.7229, 0.9891) (0.5034, 0.9786) (0.7408, 0.9949) (0.6667, 0.9821) (0.9995, 0.9919) (0.6575, 0.9506) (0.7866, 0.9872) (0.7631, 0.9840)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(43)

(5) Step 5. Compute the CC betweenQ(z) and PIAL+ by
using Equation (38), given p(1) � 0.99915, p(2)

� 0.99811, p(3) � 0.99746, and p(4) � 0.99787.

(6) Step 6. Compute the CC between Q
(z) and NIA L−

by using Equation (39), given q(1) � 0.99742, q(2)

� 0.99806, q(3) � 0.99870, and q(4) � 0.99870.

Table 1: Decision matrix for alternative Q(1).

Q(1) �d1 �d2 �d3 �d4 �d5 �d6 �d7 �d8
X1 (0.3, 0.8) (0.7, 0.3) (0.6, 0.7) (0.5, 0.4) (0.2, 0.4) (0.4, 0.6) (0.5, 0.8) (0.9, 0.3)

X2 (0.6, 0.7) (0.4, 0.6) (0.3, 0.4) (0.9, 0.2) (0.3, 0.8) (0.2, 0.4) (0.7, 0.5) (0.4, 0.5)

X3 (0.7, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.8, 0.4) (0.6, 0.7) (0.2, 0.5)

X4 (0.8, 0.4) (0.2, 0.9) (0.2, 0.4) (0.4, 0.6) (0.6, 0.5) (0.5, 0.6) (0.4, 0.5) (0.8, 0.3)

Table 2: Decision matrix for alternative Q(2).

Q(2) �d1 �d2 �d3 �d4 �d5 �d6 �d7 �d8
X1 (0.7, 0.6) (0.3, 0.4) (0.6, 0.5) (0.3, 0.9) (0.5, 0.4) (0.4, 0.6) (0.7, 0.5) (0.4, 0.8)

X2 (0.8, 0.5) (0.7, 0.4) (0.9, 0.2) (0.7, 0.4) (0.4, 0.5) (0.9, 0.3) (0.2, 0.7) (0.3, 0.8)

X3 (0.3, 0.7) (0.4, 0.5) (0.4, 0.8) (0.3, 0.4) (0.6, 0.7) (0.3, 0.4) (0.9, 0.2) (0.7, 0.2)

X4 (0.5, 0.4) (0.7, 0.6) (0.9, 0.3) (0.8, 0.5) (0.9, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.5)

Table 3: Decision matrix for alternative Q(3).

Q(3) �d1 �d2 �d3 �d4 �d5 �d6 �d7 �d8
X1 (0.5, 0.7) (0.8, 0.5) (0.7, 0.4) (0.4, 0.3) (0.4, 0.9) (0.2, 0.4) (0.8, 0.4) (0.7, 0.5)

X2 (0.8, 0.5) (0.7, 0.4) (0.8, 0.5) (0.5, 0.2) (0.5, 0.7) (0.7, 0.5) (0.7, 0.6) (0.6, 0.4)

X3 (0.6, 0.8) (0.4, 0.5) (0.6, 0.5) (0.6, 0.4) (0.7, 0.5) (0.8, 0.4) (0.5, 0.8) (0.4, 0.5)

X4 (0.5, 0.7) (0.9, 0.3) (0.3, 0.5) (0.5, 0.7) (0.3, 0.5) (0.8, 0.5) (0.7, 0.5) (0.2, 0.5)

Table 4: Decision matrix for alternative Q(4).

Q(4) �d1 �d2 �d3 �d4 �d5 �d6 �d7 �d8
X1 (0.5, 0.7) (0.8, 0.5) (0.7, 0.4) (0.4, 0.3) (0.4, 0.9) (0.2, 0.4) (0.8, 0.4) (0.7, 0.5)

X2 (0.8, 0.5) (0.7, 0.4) (0.8, 0.5) (0.5, 0.2) (0.5, 0.7) (0.7, 0.5) (0.7, 0.6) (0.6, 0.4)

X3 (0.5, 0.4) (0.4, 0.8) (0.5, 0.6) (0.3, 0.4) (0.7, 0.6) (0.7, 0.5) (0.4, 0.9) (0.5, 0.2)

X4 (0.4, 0.7) (0.1, 0.3) (0.7, 0.5) (0.5, 0.8) (0.3, 0.5) (0.8, 0.3) (0.3, 0.5) (0.2, 0.5)
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(7) Step 7. Compute the closeness coefficient by using
Equation (40),R(1) � 0.75219,R(2) � 0.50653,R(3)

� 0.33854, and R(4) � 0.37901.
(8) Step 8. Choose the alternative with maximum

closeness coefficient R(1) � 0.75219, so Q(1) is the
best alternative.

(9) Step 9. Analyzing the ranking of the alternatives, we
can see R(1) > R(2) >R(4) > R(3), so the ranking
of the alternatives is Q(1) > Q(2) >Q(4) > Q(3).

5. Discussion and Comparative Analysis

In the following sections, we will discuss the effectiveness,
naivety, flexibility, and advantages of the proposed method
and algorithms. We also organized a brief comparison of the
following: the recommendedmethod and available methods.

5.1. Superiority of the Proposed Method. �rough this re-
search and comparative analysis, we have concluded that the
results of this method are more universal than that of the
existing techniques. However, in the decision-making
process, compared with the existing decision-making
methods, it contains more information to deal with the
uncertainty of the data. Besides, many hybrid structures of
FSs have become special cases of PFHSSs, and some suitable
conditions have been added. Among them, the information
related to the object can be expressed more accurately and
empirically, so it is a convenient tool to combine inaccurate
and uncertain information in the decision-making process.
�erefore, our proposed method is effective, flexible, simple,
and superior to other hybrid structures of fuzzy sets.

5.2. Comparative Analysis. By using the technique of Zadeh
[1], we can process the MD of the attributes, but this method
cannot deal with the NMD and subattributes of the con-
sidered parameters. Zhang et al. [62] dealt with uncertainty
by using MD and NMD, but these theories also has some
limitations such as when the sum of MD and NMD exceeds
1, then these theories cannot handle the situation. To
overcome such difficulties, Yager [7] developed the PFS, but
PFS cannot deal with the parametric values of the alter-
natives. Maji et al. [21] established the FSS to handle the
parameterization of the alternatives. �e FSS has no in-
formation about the NMD of the alternative’s attributes, and
it deals only with the MD of the attributes. On the contrary,
our presented PFHSS handles the uncertainty by utilizing
the MD and NMD. Maji et al. [22] proposed the IFSS to
accommodate the uncertainty by using MD and NMD of the
attributes with their parameterization. �e IFSS is unable to
solve these problems, where the sum of MD and NMD
exceeds one. Peng et al. [31] developed the PFSS to handle
the uncertainty competently compared to IFSS. When at-
tributes have their corresponding subattributes, then all the
abovementioned theories fail to handle the situation. Zul-
qarnain et al. [56] presented the TOPSIS technique under
the IFHSS environment to deal with uncertain problems by
usingMD andNMD in which the sum of subattributes of the

considered parameters cannot exceed one. When the sum of
MD and NMD of subattributes exceeds one such as
TF(�d)(δ) + JF(�d)(δ)≥ 1, then IFHSS cannot accommodate
the situation. To overcome the above limitations, we ex-
tended the IFHSS to PFHSS by modifying the condition
TF(�d)(δ) +JF(�d)(δ)≤1 to (TF(�d)(δ))2 + (JF(�d) (δ))2≤1.
Instead, the method we developed is an advanced technique
that can handle alternatives with multiple subattribute in-
formation listed in Table 9. On the contrary, the established
method in this research deals with the uncertainty by using
the MD and NMD of the subattributes of alternatives.
�erefore, the developed technique is more competent
compared to the existing methodologies and surely provides
better outcomes for decision-makers during the decision-
making process.

6. Conclusion

�e notion of PFHSS is used to solve the problem that
contains insufficient information, ambiguity, and in-
consistency by considering the degree of membership and
nonmembership of the subattributes of considered at-
tributes. Among them, we developed the CC andWCC for
PFHSS and demonstrated their desirable characteristics.
Similarly, based on the developed correlation, an extended
TOPSIS method is introduced by considering the attribute
set with its corresponding subattributes and decision-
makers. To find PIA and NIA, we developed correlation
indices. �e closeness coefficients have been developed
based on the established TOPSIS technique to calculate
the ranking of alternatives. Also, PFHSWA and PFHSWG
operators defined and introduced a decision-making
approach based on the developed TOPSIS method. By
using the proposed TOPSIS method, a numerical illus-
tration to solve the MAGDM problem has been described.
In addition, a comparative analysis was carried out to
verify the effectiveness and demonstration of the pre-
sented method. Finally, based on the obtained results, it
can be concluded that the proposed technique shows
higher stability and practicality for decision-makers in the
decision-making process. Future research will concen-
trate on presenting ideas to decision-making complica-
tions to several operators in the PFHSS environment.
Several other structures, such as topological structures,
algebraic structures, and ordered structures, can be de-
veloped and investigated under considered environment.
�is research article has pragmatic boundaries and can be
immensely helpful in real-life dimensions, including
medical profession, pattern recognition, and economics.
We are sure this article will open new vistas for re-
searchers in this field.
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